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ABSTRACT
An extension of the Conjugate Gradient Iterative method is
described for 1inequality constrained minimisation of a positive
definite 1linear/quadratic functional. Several applications to
Finite Element approximation are discussed , and the described
methods are applied to an obstacle problem, and two constrained
approximation problems. The use of constrained minimisation in

Moving Finite Element methods is also detailed.
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Inequality Constrained Finite Elements

SECTION 1. INTRODUCTION

In this report we present the application of simple quadratic
programming techniques to constrained optimisation problems where
the matrix describing the quadratic form is symmetric, positive
definite, large and sparse. It might be thought that the solution
of such problems would be computationally expensive. We aim to
show, however, that there are many constrained optimisation
problems, occuring in Finite Element work, which can be solved
efficiently using sparse matrix techniqgues. This opens the door
to the practical solution of a whole variety of problems other

than the "first variation equals zero" type.

In section 2 a brief account of constrained optimisation
theory is included for the benefit of those unaquainted with it,
and in order to explain easily how methods can be constructed to
perform the regquired task. Examples useful in later sections are
presented.

The application of the Conjugate Gradient Method to Finite
Element problems is discussed 1in section 3, together with an
observation on how to avoid the requirement of “overwriting”
essential boundary conditions. An algorithm based on Conjugate
Gradient iteration for the minimisation of quadratic functionals
subject to non-negativity constraints on the variables is
described. It 1is proved that the algorithm successfully
terminates only if the solution of the quadratic programming

problem has been found.
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The algorithm presented in section 3 1is generalised in
section 4 to allow minimisation subject to bounds on the
variables, and to the case where some of the variables are

reguired to satisfy an ordering constraint.

In section 5 applications to some Finite Element problems are
presented with numerical examples, and in section 6 a numerical

scheme for a practical moving grid element method is proposed.
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SECTION 2. CONSTRAINED OPTIMISATION THEORY.

In this section we give a brief outline of the optimisation
theory which will be reguired in later sections, together with
some relevant examples.

2.1 _Convex_ Sets.

Since we are concerned here with discrete approximations to
continuous problems, we will deal with optimisation theory only as
it pertains to a finite dimensional vector space V.

Definition 1: A subset X of V i1s called convex if it satisfies the

property
6 x + (1 -8) yeXx Vx,y€ X, Voel[0,1].
Examples of convex subsets of R" of interest in Finite Element
work are
(i) X = R",

(ii) X

n -— —— ——
{ x € R : Xj1' a,, sz— az,...,xjk- a, Y,

i.e. X is an n-k dimensional subspace of R" in which k of the n
components of x are fixed.

(i1i) X = { x € R" : x.,. 20, x..2 0

31 j2 yeeag X2 0},

Jk

i.e. k of the components of x are required to be non-negative.

. _ n .
(iv) X ={ x € R : Xj1$ szs S Xjk

i.e. k of the n components of x are required to appear in
numerical order.

(v) X = { x € R" : a s x.sA

im o for m=1,2,..,k 1},

i.e. k of the n variables are required to lie in a given interval

(including the case a = Am).
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2.2 Fundamental Optimality Conditions.

Let Y be a continuous functional on a closed convex set X ¢ V.

Definition 2. v € X is called a minimising element if

Y(v) < ¥(x) YV x € X.
Since X is closed, ¥ is continuous, and V is finite dimensional,
then v exists. Note that none of the sets (i) - (v) is necessarily
closed. However 1in Finite Element work ¥ will often be of such a
nature as to guarantee at least one minimising element.

Optimality Theorem

Suppose ¥ is differentiable on X, then a necessary condition

that v € X is a minimising element is
¥ (v)(x = v) 20 YV x € X . (2.1)
Proof: Suppose v € X is a minimising element and let x be any
element of X, then
y =(1-06)v+8x¢€eX V8e€ [0,1],
as X is convex. Hence
¥(y) 2 ¥(v) ,

and hence

Y(v + 6(x — v)) = ¥(v)
5 20 VY 8 € (0,1]

Since Y is differentiable, we therefore have in the 1imit as
6 -0

¥ (v)(x - v) 2 0,
and since x € X was arbitrary, inequality (2.1) is established.
Inequality (2.1) 1is called the Kuhn-Tucker condition for the
non-linear programming problem [8]. In most cases of interest in

this report, (2.1) is also a sufficient condition for v to be

4
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minimising as the following standard result shows.

Sufficiency Condition.

If ¥ is twice differentiable on X and is such that ¥" is
positive semi-definite for all x € X (i.e. (v-w)¥"'(x)(v-w) 2 O
vV x,v,w € X), then (2.1) is also a sufficient condition for v € X
to be a minimising element.

Proof: Suppose v € X satisfies condition (2.1) and suppose Y" is
positive semi-definite on X, then if w is any element of X, we
have by Taylor’s theorem

Y(w) = ¥(V) + P (V) (W-v) + S(w=v)¥"(2) (w-V) (2.2)
where z = 6v + (1-0)w for some 8 € [0,1]. Hence ¥(w) 2 ¥(v) and
¥(v) must be the minimum value of ¥ on X.

Uniqueness: If ¥" 1is strictly positive definite on X, then the

solution 1is unique since then (2.2) 1implies that ¥(w) > Y¥Y(v)
whenever w # v.

Thus, whenever ¥" is positive semi-definite, condition (2.1)
gives us a rigorous test as to whether or not a given element v is
minimising. Condition (2.1) is a generalisation of the test : "Is
the the gradient of ¥ zero at v ?". In many cases condition (2.1)
is easy to apply as we now show with a few examples.

2.3 Examples.

A routine problem faced in Finite Element work is

(i) min R Y(x)
x € R

where Y(x) = % xTAx - be,

A is a real symmetric positive definite n X n matrix, and b is a
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real n-vector.
In this case
¥ (x) = Ax - b,
and hence condition (2.1) is then
(w-v) T (Av -b) 2 0 VweR",
Since this 1inequality has to hold for every w, and since the
components of (w-v) can be of either sign, we conclude that
Av - b = 0,
which 1is both a necessary and sufficient condition on the
minimising element v in this case.
A slightly less trivial example is when we have to perform
the minimisation of ¥ subject to some of the variables taking on
specified values. We then have the problem

(ii) min s Y(x)
X € R

subject to x. = a

ik K for k= 1,2,..., m £ n. Condition (2.1) for

this problem is simply
[ Av - b ]i= 0,

whenever i # jx, k=1,2,,,, m, since the vector (w-v) in this case
has zeros in the components jk. In other words the values of the
components of the "residual"” Ax-b corresponding to the free
variables must be zero at the minimum, the other components of the
residual can have any value. This idea will be used to some
advantage when we examine inequality constrained minimisation

problems.



Inequality Constrained Finite Elements

The next example 1is concerned with data fitting by Finite
Elements. Suppose we are given a Finite Element mesh on which we
have to approximate some initial function u(s) before applying a
time-stepping scheme. Because of error considerations we would
normally take the best least squares Finite Element fit to u(s) on
the solution domain Q. If we have n Finite Element basis functions

¢1,¢2, ..... ,¢n, then the Finite Element fit to u(s) is given by

u (s) = Z uJ.¢J.(S),
1

where the L2 error, E is given by
E = J (u, (s) - u(s))da
Q

The best L2 fit is then given by minimising E with respect to the
nodal parameters uj, which 1is equivalent to minimising the

functional

Y(v) = % vTA v - va,
_ T
where v = (u1,u2,....,un) ;
[ A] = J ¢ dQ , and
1] Q 1)
[ b]. = J u o dao
J 0 J

The symmetric n X n positive definite matrix A is the usual "mass"
matrix. On some occaisions the solution of the linear system
Av = b, may yield formally unacceptable values for the nodal
parameters u, For example if u(s) represents an initial pressure
or density profile, then unconstrained minimisation of ¥ may lead

to some of the nodal parameters being negative. In this case it
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might be better to solve the problem
(ii1) m
subject to xj 2 0, for j =
Here, the components of the vectors v and w in (2.1) may take on

only non-negative values. Thus condition (2.1) 1i1s seen to be

equivalent to the following rules
At the solution v of problem (iii) either

[ Av - b]i > 0 and [v]i =0

(2.3)
or [ Av - b]i = 0,
for each component i = 1,2,..,n.
This result can be extended to the problem
(iv) min Y(x)
x € R"
subject to a, < X, < Aj, for j=1,2,..,n. Using condition

(2.1), the solution of problem (iv) can be characterised by the

following

if { Av - b]i > 0 then [v]i= a,,

1

if [ Av - b]i < 0 then [v]i= A, (2.4)

otherwise [ Av - b].

0 and [v].€ [a . ,A ].
1 1 1
SECTION 3. ALGORITHMS.

In this section we present a constrained quadratic
programming algorithm which 1is based on the Conjugate Gradient
(CG) method, a detailed description of which may be found in [ 6].
In order to develop ideas it is useful to give a brief summary of

the CG iterative algorithm.
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3.1 _The Conjugate Gradient_Method.

For the problem

min

Q" ¥(x),
X €

1 T T
> X A X - xb,

where Y(x) =

A is an n X n symmetric positive definite matrix and b

n-vector, the CG iterative method for finding the

cah be described by the following steps

Algorithm_1.

STEP O Choose any X, € R". Let ro = A X ™ b; k = 1
STEP 1 : If e 2= 0 then
X = Xe
stop
endif
STEP 2 : If k = 1 then
Bk =0
else
rlor
k-1 k-1
Bk - T
Ce-2" k-2
endif
STEP 3 a = r, _,* quk_1
ror
STEP 4 : o = ==
K Ty
a.Aa

is a real

solution x
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STEP 5 : x = x -«q; r,=r .-« Ag

k k-1 3 k-1 k 3

STEP 6 : Kk := k + 1; go to STEP 1

It is known that, using infinite precision arithmetic, Algorithm 1
will terminate in at most n 1loops of the iteration [ 6 1.
However, 1in practice, the method 1is used iteratively and the
iterations are terminated when Irk_1| < tol Ibl in STEP 1, where
tol is some small machine dependent tolerance. For each iteration
the method requires 1 matrix/vector product ( Aqk), 2 inner
products, and 3 vector/vector additions. It 1is the matrix/vector
product calculation which requires most attention if the method is
to be used as an effective "sparse"” solver. When using Finite
Elements it 1is usual to set up an element-node “connectivity"
table [ 5]. This can be conveniently used to set up the required
data structure needed to create an efficient sparse matrix/vector
product routine, and requiring the storage of only the nhon-zero

elements of the upper triangle of A.

3.2 Enforcement_of_ essential boundary conditions.

In many Finite Element problems the function ¥ has to be
minimised subject to some of the variables taking on prescribed
values (essential boundary conditions). The usual procedure is to
replace the vector b by b - A ; where ; is a vector containing
the prescribed values 1in the appropriate components and zeros
everywhere else. The matrix A is then "overwritten” with a unit
sub-matrix along rows and columns corresponding to the known

values, and the vector b - A x is overwritten with the knhown

values in the correct positions [14]. This produces a new set of

10
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equations A x = b which are then soived by some method. If the CG
method is being used to solve the problem then this overwriting
precedure can be compietely avoided by using the following

modification of Algorithm 1.

Replace STEPs 0,1 of Algorithm 1 by
STEP O*: Choose any feasible Xg € R" P e T A Xg ~ b; k =1,
STEP 1*: For j = 1 to n

fr. .1, = [r

k-17j 1,xLibl,

k-1
next j

If r . =0 then

stop
endif
A feasible x, is simply a vector containing the prescribed values
written into the appropriate components, and the n-vector 1ib is
defined by
[1b]j= 0o if [x]j is given
[1b]j= 1 if [x]j is free, j=1,2,...,nNn.

STEP 1* has the effect of overwriting the components of e (and

1
hence of qk) with zeros at the positions corresponding to Kknown
values. It is easy to show that this method is equivalent to the
overwriting process, but requires an extra n multiplications per
iteration of the CG method. However it is a useful device since we

have only to change the vector ib to redefine which variables are

fixed and which are free. This idea will be used in subsequent

11
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constrained minimisation procedures.

3.3 A CG_type solver for minimisation with positivity constraints.

Our basic stategy for devising a constrained minimisation
routine around the conventional CG algorithm will be as follows -
1. Apply the CG Algorithm until one or more constraints are
violated.

2. Apply the the CG Algorithm to a sub-problem in which some of
the variables are held on the constraint set boundary.

The main problems in applying these ideas are how to carry on with
the CG method once a constraint has been violated, and how to
bring variables back into a sub-problem once they have been fixed.

We start by looking at the minimisation of Y, subject to
X, 2 0, for j=1,2,..... ,N. Suppose we attempt to use Algorithm 1
to solve this problem. We start at STEP 0 with a feasible X, SO

that [xo]j 2 0 for j=1,2,...,n. A problem may occur in STEP 5

where we compute
= -
Xy X1 k9>
which may render some of the components of X, negative. This can

be prevented by calculating o where

% axs Min o Ix, 10/ Lad;,
g 1 >0
ko
then setting o : = min(« ,x ). In the case that « < o, the
k max k max k

CG algorithm has been modified and we can no longer continue. When
this occurs we must have at least one component of X, equal to
zero. If, 1in addition, the corresponding component(s) of the
gradient vector (rk) is greater than zero then we can fix the

appropriate component of X, at zero and restart the CG algorithm

12
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on the new problem of minimising ¥ subject to
[x]j 2 0, with [x]m= 0 for some of the components m.

If we find that a component of X, is zero but the corresponding

component of o is £ 0 then we can restart the CG iteration

without fixing the component of X, to zero. This 1is because the
first CG iteration 1is equivalent to a classical "“gradient” step
which must improve the value of the functional without violating
the non-negativity constraint since o is always a non-negative

number. These ideas are summarised in the following

Algorithm_2.

STEP 0 : Choose any feasible x, € R".

o = Ax0 - b

I0 = I (the n X n identity matrix)
iflag = 1

k = 1

STEP 1 : If iflag = 1 then

Vi1 T Ik-1 k-1
s = vT
k-1 - Ye-1Ye-o1
B, =0
else
s = vT v
k-1 k-1 k-1
= /
Bk Sy-1"Sk-2
endif
iflag =0

STEP 2 : q = v + B. g

13
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STEP

STEP

STEP

STEP

STEP

STEP 8

STEP 9

flags

It

1ib(J) =

- A =

else

next j

| I,- 1,

If A > 0 then
iflag = 1
endif

k := k + 1 ; go to STEP 1

is noted that, in practice, I

k

0 or ib (j) = 1,

14

as described

in section 3.2.

is stored as a vector of

The
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vector v, is simply the residual for the sub-problem of minimising
Y subject to some of the variables being held constant. We now
show that if Algorithm 2 terminates successfully at STEP 3, then x

is the solution of the constrained minimisation problem,

Suppose at some stage s = 0 in STEP 3, then r

k-1 k-1’ xk-1
must have the following properties
either [r‘k_1]j > 0 and [xk_1]j =0
or [rk_,l]j = Ol
However, e, E A X4~ b =V (Xk-1)’ and hence 8, _,° 0 implies

that X, satisfies conditions (2.3), which are both necessary and

sufficient conditions on the solution x.

SECTION 4.EXTENSIONS.

In this section we present some straightforward extensions to
Algorithm 2.

4.1 Problems with_bounded variables.

Here we consider the problem of minimising the functional V¥
subject to aj < xj < Aj, for j=1,2,....,n, where the aj’s and

Aj’s are given constants.

It is seen that the same ideas used in deriving Algorithm 2
can be applied to the current problem, provided that we change our
notion of a feasible vector, recast STEP 5 so that the updated

approximation x is always feasible, and rework STEP 7 so that

k

variables are fixed or brought back into the CG iteration in line

15
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with condition (2.4). If these tasks are carried out then we get a

CG type algorithm which can be described by the following steps.
Algorithm_ 3.

Complete all the steps of Algorithm 2,

section 3.3, with the
exception of STEP 5 and STEP 7, which are replaced by

X -
STEP 5 :a = min {[xk-i]'

- By i [qk]j<o ; [, 41
j G

i %y if [qk]j>o}
a, ]

If o < a then

o = o«
k
iflag = 1
endif
x R
STEP 7 : for j=1 to n
If [xk]j 3 Aj and [rk] < 0 then
(r,1;, =0
else
(r,d,; =1
endif
If [xk]j = aj and [rk] > 0 then
(I, d;; =0
else
[Ik]jj =1
endif
next j

x . .
It is seen that STEP 7 ensures that Algorithm 3 only terminates

16
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in STEP 3 if x _, satisfies necessary and sufficient conditions

(2.4).

4.2 Problems with ordered variables.

The 1last problem we consider in this section 1is that of
minimising ¥ subject to the ordering constraint
OSX,ISXZS ...... an.
This problem can be recast as an equivalent problem where the

variables are required to be non-negative by a change of variables

as follows:

t
x

Let Y,
Yy 5% T e
so that we get the new problem

. 1T T
min &(y) = - yBy-yd

y € R"
subject to yj 20, for j =1,2,...,n,
where B=D'AD"' d=0D"b,

and D is an n X n matrix describing the change of variables from x

to y given by

1 0 Ouwawwaws 0

D =1 1 Ouwwwanme 0
0=1 10 siuaO]”® (4.1)
0 - 0 -11

The only problem now is to show how to form the matrix vector
product B y 1in such a way as to take advantage of the possible
sparsity of matrix A. This problem 1is easily overcome 1if the

product 1is built up in three stages

17
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(i) z =0y

(i1) w Az (sparse matrix /vector product)

D'iw,

(iii) p
the vector p being the required product. As D is lower triangular
and bi-diagonal then steps (i) and (iii) may be efficiently
implemented using the following algorithms
1

D y) z, =y

(z

(p =D W) p =w

next j
It is seen that the computational overhead incurred is an extra
2n-2 additions compared with the simple product A w

4.3 Other_extensions.

Finally it may be noted that all the algorithms discussed so
far can be very easily modified for use on problems where the
constraints apply only to a subset of the n variables.

4.4 Practical considerations.

In order to implement Algorithms 1,2, and 3 it 1is necessary
to define what we mean by a quantity being < 0, = 0, or > 0 on a
given machine. We illustrate with reference to Algorithm 2 section
3.3. The key places where the use of a machine zero tolerance is

important are in steps 3, and 7. As in the conventional CG method,

18
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step 3 should be replaced by

If |s < tol |b| then x = x_ ,; stop,

k-‘ll k-1’

where tol is a small positive machine dependent parameter. Care
should be taken in step 7 to set a component equal to zero if it
is within a small tolerance of zero and the corresponding
component of the residual vector is positive. This will prevent
the algorithm from setting the restart flag "iflag" each time
through the loop when a component is really zero. We can rewrite
this step as
If l[xk]jl < tol and [r, 1, > O then
[xk]j =0
SECTION 5. APPLICATIONS.

In this section we illustrate the use of the Algorithms
discussed in sections 3 and 4, by applying them to some simple
problems. Unless otherwise indicated we will use one-dimensional
Lagrange quadratic elements [5] on a uniform discretisation of the
unit interval 0 s s < 1., If ¢1(s),¢z(s),...¢n(s) are the Finite
Element basis functions, then we define the stiffness matrix K,

the mass matrix M, and the load vector b as follows

5

[ K ]ij = ¢;(S)¢;(S) ds,
"0 for i,j = 1,2,...n
1
[M] . = ¢ (s)o (s) ds,
ij i J
Y0
1
bl = J ¢.(s) f(s) ds, for i = 1,2,....n,
0

19
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where f(s) is a given function continuous on [0,1]. The matrices K
and M are n X n, real and symmetric. The stiffness matrix K is
positive semi-definite, of rank n-1, and the mass matrix is
positive definite. A1l examples are coded 1in Fortran 77 and run
using double precision arithmetic on a SUN 3/60 workstation. The
machine tolerance, tol, as discussed in section 4.3, is taken to

be 10" '°,

5.1 The Obstacle Problem.

We consider the application of Finite Elements to the problem
of finding the displacement of a uniform elastic string when it is
stretched between two fixed points over an obstacle [4,1t1], and
subject to an external 1load f(s). If g(s) 2 0 1is a given
continuous function on [0,1] defining the upper surface of the
obstacle and u(s) is the displacement of the string at the point s
(fig.1), then the problem can be shown to be equivalent to that of
minimising the elastic energy in the string subject to u(0), and

u(1) being prescribed and the constraint u(s) 2 g(s).

obstacle

Figure 1.

20
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We thus have the variational problem

min E(v), where
v € D

1
E(v) = %J v (s)? - 2 f(s) v(s) ds,
0

D {v€H;(0,1) : v(s) 2 g(s) VY s € (0,1) 1},

and H;(O,1) { v : f;v’zds < ®» and v(0),v(1) given }.
The solution of this problem 1is known to be characterised by the
variational inequality

1
J u' (s)(v'(s) = u'(s)) -f(s)(v(s) - u(s)) ds 2 0 V v € D. (5.1)

0
An obvious Finite Element approximation to this probiem is
min E(uh)

Uy, € Dh

n

where uh(s) = Z uj ¢j(s) and

D = { u: U € D }.

However, this is not very practical since it would be difficult to
find the feasible set of nodal parameters { uj} such that
uh(s) 2 g(s) for s € (0,1). Instead we look at a simpler discrete

problem

min E(u ), where
€ D’ B
h h

D, = { u o uj 2 g(sj) , for j=2,3,...,n=-1 }.

u

In other words the constraint on the Finite Element solution is
only applied at each node sj. Without giving any details, this can

be seen to be equivalent to perturbing the data g(s) into the

21
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Finite Element approximation space.
The Finite Element problem is then
min_  Y(U)
UueR"

subject to uj 2 g(sj) , U u_ given, where

1
Y(u) = 2 UK U - by,

..... ,un)T, K is the stiffness matrix and b is the load
vector. It is interesting to note that inequality (2.1), which
characterises the solution to this finite dimensional probiem, can

be written in this case as

’

1

J uh(s)(vh(s) - uh(s)) —f(s)(vh(s) - uh(s)) ds 20 V v, € Dh
0

which may be compared with condition (5.1) on the exact solution.

As an example we take an obstacle with two "peaks"” defined by
g(s) = sin(2ns)/(1+s) Vse[0,1].
and the fixed points to be

u(o) =

[N

, u(t1) = 0.

The results of a series of calculations using Algorithm 3 from
section 4 are presented 1in Table 1 for a zero 1imposed load
f(s) = 0. As a comparison with the unconstrained CG solver
Algorithm 1 section 3, we also present the number of CG iterations
required to solve the same problem but without the obstacle. For
each calculation the 1initial feasible vector was taken to be
u,= %, u =0, and u, = 2, for j = 2,3,...,n-1. It is seen from
Table 1 that the constrained CG solver requires up to 7 times the

work of a conventional CG solver. A typical set of Finite Element

22
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solutions is presented in Figure 2 for a set of increasing uniform

loads f = 0 (2) 20.

CG tolerance = 10 '°

No. of elements No. of variables No. of iterations NCG
4 9 12 7

8 17 28 15

32 65 246 63

70 141 667 141

150 301 2073 316
NCG is the number of CG iterations needed to solve the uncon-

strained problem.

Table 1. Obstacle problem with zero load.
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Figure 2.
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5.2 Best non-negative_approximations.

The next problem we consider is that of approximating a given
continuous function, f(s), by Finite Elements in such a way that
the nodal values are non-negative. If the Finite Element
approximation is given by

£.(s) = ) F0(s),
1

then the finite dimensional problem is

min Y(F),
F € RrR"
subject to fj 20 for j = 1,2,...,n, where
T
F = (f1’f2"""fn) , and

¥(F) = 2 F'M F - F'b,

and M,b are the mass matrix and load vector respectively.

For the purposes of illustration, we take

1 - 10s , if s = 0.1,
fls) = 0 , if 0.10 < s £ 0.25
2s - ,50, if 0.25 = s = 0.50 ’
f(s-0.50), if 0.50 < s < 1.00

and apply Algorithm 2 section 3 to minimise ¥, Table 2 shows the
number of iterations required to obtain the solution using various
numbers of quadratic elements. The initial feasible vector was
taken as fj =2, j=1,2,....,n, in each case and we again provide a
comparison between the constrained and unconstrained case of
finding the best Finite Element least-squares fit to f(s). It is
interesting to note, 1in this case, that the number of CG
iterations required for the unconstrained solution is almost

independent of the number of variables. This is a reflection of
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the fact that, on a regular mesh, the condition number k2 of the

mass matrix M, where
k, = I1 M I M"nz,

satisfies k, < C, where C is a constant [12]. It is known that
the rate of convergence of the diterative CG method s
directly related to kz. It is also of note that the constrained CG
method seems to depend only weakly on the number of variables in
this case. We therefore speculate that "preconditioning” [6] of
the matrix will benefit the convergence rate of a constrained CG
solver. The only problem is to find a good preconditioning matrix
which preserves the simplicity of the constraints (an example
is a diagonal preconditioning matrix).

Figures 3 and 4 show some typical fits to f(s) in the

unconstrained and constrained cases.

CG tolerance = 10~ '°
No. of elements No. of variables No. of diterations NCG
5 11 9 6
10 21 11 9
20 41 11 9
40 81 156 7
NCG is the number of CG iterations needed to find the best L2
Finite Element fit to f(s).

Table 2. Best non-negative data fitting.
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5.3 Monotonic_data_fitting.

The next appliciation 1is that of finding the best Finite
Element least-squares fit to a continuous function f(s), subject
to the fit being monotonic increasing. Again it is practical to

apply the constraints node-wise giving the problem

min Y(F),
F e R"
subject to 0 < f1 < fz £ GaaeS f“ , Where
_ T
F = (fi’fz"""fn) , and
Y(F) = 2 F'"M F - F'b,

2

and M,b are again the mass matrix and load vector respectively.
We take the following data

f(s) = 0.95 - e 1°°

+ 0.05 cos(20% s),

and an initial feasible vector fj = j, for j = 1,2,...n. We apply
Algorithm 2 section 3, together with the transformation of
variables discussed in section 4.2. Table 3 gives the required
number of iterations required to solve the constrained and
unconstrained (best least-squares fit) problems. In this case the
constrained CG method needs an unfavourably 1large number of
iterations compared with the unconstrained case. As was remarked
in section 5.2, the mass matrix M is very well conditioned in this
case. However the constrained minimisation is achieved by applying
Algorithm 2 to the functional

®(y) = % y'By - y'd
1 -T

where B=D'AD"', d=0D b,

and D is the n X n matrix given in (4.2).
Therefore the convergence of the constrained CG method is likely
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to be governed by the size of the condition number kz(B), which
can estimated by
T
kz(B) ES kz(D D) kz(M).

As stated previously, kz(M) is almost independent of n, but

( \
2 -1 0 Ouueuas
T -1 2 -1 O...... 0
DD= 0 -1 2 ~-1.eciaias 0 y
Oveansn =1 2 -1
! Ovwmsane O =1 2

4

and a simple calculation reveals here that
T _ 2, T
kz(D D) = cot™( e ),

which grows very rapidly with n, so that the condition of B can be

quite large. Fortunately in this example the matrix M 1is well

conditioned. This approach is not recommended for finding a best

monotonic solution in the case where the matrix describing the

guadratic form is poorly conditioned. Figures 5 and 6 give some

solution curves for the constrained and unconstrained best fits.

CG tolerance = 10 '°
No. of elements No. of variables No. of iterations NCG
5 11 149 9
10 21 164 9
20 41 391 10
40 81 793 10
99 199 1002 10
NCG is the nhumber of CG iterations needed to find the best L2
Finite Element fit to f(s).

Table 3.

30

Best monotonic data fitting.




Inequality Constrained Finite Elements

*Gg e4nblL4

0l 80 9°0 7 0 ¢ 0 00 O 80 9°0 70 ¢0

00

L i | L 1 O.ﬁv | | | | |
L 20
- 40
| Foo

/ = <0
\H\,/<>,>\\.,<~</>\/ SVAVAVAVAVA \V v

114 juawaty 231Ul g pauteJjsuooun 189g (=)3

"sjuawa[j ot1jespenb abueabe7 gy Buysn Burlyry ejep juswa (g BPtruUTy

31

00

- ¢ 0

- v°0

- 80

= 0"l



Inequality Constrained Finite Elements

"9 84nblL4

00 Ul

00

14

juawe [ 3

s1furyd

-gquawe (3 o73wapenb sbuesbe] ppy Buisn Buyiyry erep juswafl a3jur 4

oruojouou

1s89g

-7 0

(8)J

32 |

00

¢ 0

Y0

9°0

80

0l



Inequality Constrained Finite Elements

SECTION 6. APPLICATION TO MOVING GRID METHODS.

In this section we outline the application of constrained CG
methods to moving grid Finite Element approximations, taking as an
example the Moving Finite Element (MFE) method as described by
wWathen, Baines, and Johnson [1,3,7]. We start with a very
brief description of the MFE technique.

6.1 The MFE_method.

Given a well-posed initial value problem
u, = L(u), & boundary conditions (6.1)
u(x,0) = u,(x),
where L is an operator involving only spatial derivatives, the MFE
method may be summarised, for a single space variable scalar

problem, as follows. The solution u is approximated by the Finite

Element spline
n

v(ix,t) = Z uj(t) ¢j(X,Sj(t)),
1

where the basis functions ¢j depend on the space variable x, and
the nodal positions sj(t). At a fixed time t, the norm of the

residual, given by

P vV, - L(v) llz, (6.2)
is minimised with respect to the nodal amplitude derivatives Qj
and the nodal position derivatives éj, leading to a set of

ordinary differential equations

ACy)y = g(y) (6.3)

where yT = (ul,sj,uz,sz, ..... ,un,sn), and A(y) 1is the MFE mass
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matrix. The equations (6.3) are then integrated forward in time by
some time-stepping method. Problems occur in this procedure when
either A becomes singular, or when the nodes sj become disordered.
Wathen and Baines [13] have shown that if (6.1) is a hyperbolic
problem, then both of these difficulties can be effectively
overcome using numerical techniques which detect the onset of the
singularity of A and also recognise the presence of a developing
shock or discontinuity. When (6.1) is a parabolic problem, other
techniques have to be employed to stop the nodes "overtaking".
This 1is because Wathen’s method depends on replacing the
differential equation by shock jump conditions as the nodes come
together. There is no obvious analogue of this idea for parabolic
problems. Instead, a number of ad hoc methods have been employed
to stop the disordering of the nodes. One such method, proposed
by Miller [9], has been to add penalty terms to the functional
(6.2) in such a way as to prevent the nodes from coming too close
together. This process results 1in eqguations (6.3) becoming
extremely stiff, and necessitates the use of computationally
expensive implicit integration schemes for their solution. Another
approach used by Johnson et al. [7], and Moody [10], is to use the
simple explicit Euler time stepping method on (6.3) and restrict
the timestep At" so that, given a set of nodal velocities é?, at
time t", the new nodal positions
s?+1= s? + A" é? ,
at time t"+ At" remain ordered. There is no guarantee with this

method that the sequence of timesteps { At"™} will not have the
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disastrous property

m+ 1

At < a"™st", m=1,2,......
where a 1is a constant such that 0 < a < 1, thus making it
impossible to integrate (6.3) on a fixed time interval [0,T] 1in
the case that a is a small number. It is also noted that the
time-step will in general be constrained by the "worst" part of
the grid. Thus even this method will effectively make (6.3) stiff
if there are very few nodes near the point of "overtaking".

6.2 A constrained nodal movement method.

An examination of the residual in (6.2) shows that if we
constrain all the nodes to be fixed then the MFE method reduces to
the usual Fixed Finite Element method [2]. Allowing complete
freedom for the nodal positions, we arrive back at the MFE method.
We now propose a method which is intermediate between these two
extremes. For simplicity we examine the case of an Euler
time-stepping scheme. That is, if the time derivative parameters

O?, and é? are given at time t", then the new nodal parameters

u?*i, s?’iat time t™'- t"+ At™ are given by
AT oL
! ’ i = 1,2,0.,n
m+1 m

s" s g + A" "
i i
Thus each nodal position s? is moved by a distance At" é? during

the mth

time-step. The square of (6.2), at time t", when written
in full is given by

¥(y) = Y'A(Y)Y - 2 ¥Taly) + g(y) a(y) (6.4)
where y = ym. We can thus apply algorithm 3 of section 4.1 to Y

since we are seeking to minimise (6.4) with respect to the vector
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of derivatives 9. This idea gives rise to the following method for

preventing the nodes from overtaking.

Algorithm 4. At time t" :

STEP 1 : Select any appropriate time-step At".

STEP 2 : for j = 2 ton - 1
R_l m o m _
dsj = 5 (sj+1 s, ) e/2
L _ 1 m_m _
ds = g (s; - s, ) - &2
next j

dsL = dsR = dsL = dsR =0
1 1 n n
STEP 3 : minimise ¥(y") subject to the constraints

L R
ds ¢ g™ ¢ 9=

Atm J Atm

STEP 4 : for j = 1 to n

uT+1= ub + A" a
J i

ST+1= s" + At" g"
j i

next j

tm-t~1= tm+ Atm

m = m+ 1

STEP 5 : If t" < T then go to STEP 1

In STEP 1 the time-step At" may be selected on the basis of
accuracy, stability, or some other criterion. The constrained
minimisation in STEP 3 finds the smallest value of the residual

(6.3) such that, in the worst case, the nodes get no closer than a

user defined tolerance ¢ apart (fig. 7)
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Figure 7.
Nodes 1 and n are assumed fixed here, though the method may be

easily modified to cause any of the n nodes to remain fixed, or
indeed to allow the end nodes to move 1if the boundary is in
motion. In the case of (6.1) being a hyperbolic problem we may
choose € = 0. The useful properties of the method described can be
summarised as follows

(i) The time-step At" can be selected without regard to the
motion of the nodes.

(ii) Any of the nodes can be fixed at any point during the time
integration.

(iii) There are no penalty terms, so the egquations (6.3) can never
get any stiffer.

(iv) There are very obvious generalisations to problems with more
than one space variable.

(v) The method is suitable for moving boundary problems where
the velocity of the boundary nodes is prescribed.

(vi) In the case that either all nodes are fixed or all nodes are
free then the minimisation routine reduces to the ordinary CG

method and hence the approximations reduce to either the FFE
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method or the MFE method.

Of course, we still have to show that the constrained
minimisation procedure, which has to be done at each time-step, is
an efficient and practical method. However we note that the matrix
A(y), describing the quadratic form in ¥ 1is symmetric, positive
definite and well conditioned in most cases. If it 1is also
remembered that the minimisation occurs in a time-stepping scheme,
then we see that the solution from the last time-step can be used
as a good starting value for the next minimisation. Preliminary
results of using Algorithm 4 applied to a diffusion problem are so
far encouraging and it is hoped that a report on this work will
appear in the near future. A typical set of solution curves for a

1-D diffusion problem using a constant time step are given in

figures 8,9.
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SECTION 7. CONCLUSION,

Analogy is a useful concept in Numerical Analysis. We replace
a stable system of initial value problems by a stable system of
difference problems; an integral equation with symmetric kernel by
a symmetric system of algebraic equations. The finite dimensional
anhalogy of a variational problem 1is thus a problem in
optimisation; an idea that is apt to be overlooked as we piunge
headlong into solving an approximation to the Euler equations for
a given variational problem. Taking a "step back"” to the original
problem of minimising an integral leads us to questions of how to
minimise an approximate integral, rather than trying to solve
everything with a linear algebra package. A rather ironic result
of this report is that we have applied a "linear solver” to
several awkward problems with some success. The key reason for
this success is that the CG method is a natural extension of the
“gradient method", a well known but inefficient procedure for
minimising functionals. A simple strategy has been employed here,
namely : apply the CG method as much as possible, otherwise take a
step of the gradient method.

It has been shown that, for many examples, the algorithms
described are effective, particularly when the symmetric matrix A
describing the quadratic form is well conditioned. One rather
glaring omission is that we have performed no analysis to indicate
how many operations our procedures require. The only defence is to
say that this work is 1in hand and that if no one ever used a

method until they knew precisely how many "flops" are to be
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incurred, then Newton’s method for solving hon-linear algebraic
equations would be the least, instead of most widely, used method.
The analogy between Newton’s method and the methods described in
this report is not drawn at random, since 1in all cases it is
possible to say conclusively whether or not the given method has
solved the given problem.

Although the applications discussed here are rather simple,
they are a radical extension of (and hence include) the problem of
finding unconstrained stationary points of functionals, using
methods that are particularly suitable to the Finite Element

approach. It is hoped that the ideas presented here will have many

more applications.
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