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INTRODUCT ION

In the early 1980's a need was identified at R.A.E. Farnborough for
a method capable of dealing with embedded shocks which was free of
emperical tunning parameters, and could accurately confine a shock on an
aerofoil to within a very narrow region as opposed to smearing shocks
over a few mesh cells as was the case with shock capturing methods.
Shock fitting was then earmarked for research and development work, and
the first codes were produced by Albone [1] in about 1985. Morton and
Paisley [2] then continued this work up to 1987 resulting in a code which
was tested against a fine grid captured solution produced by Pulliam and
Barton [3] and compared with Hall's [4] shock capturing code. The shock
fitting code however was not and is still (in 1991) not entirely robust,
and artificial restraints were required to prevent instability. For two
years since 1987 analytical work was carried out on shock tip structure
by Samuels [5] under an R.A.E. contract, and the contract was then
extended for a further two years in which further research and
development work was carried out by myself. This, the second in this
series of reports, gives details of the work done since October 1990.

Within the aerospace community, shock fitting is unfashionable at
present, the emphasis being directed at conservative finite volume and
flux splitting shock capturing schemes. Whilst good results have been
obtained with these methods, they are not capable of capturing a shock
over the very narrow regions (typical shock width is lO—Smm) required to
predict shockwave/boundary layer interactions, and it is here that shock
fitting holds the most promise.

This report is divided up into 4 chapters. The first deals with the
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Rankine Hugoniot equations, their derivation, simplification and
solution, and is probably the best starting point for the reader, as the
concept of conservation of mass, and momentum through stationary and
moving cells is a theme which is carried right through this work. The
second chapter deals with the shock fitting methods which have been
tried. Some of them were successful, others not. The failures are
logged here to prevent other researchers repeating the same work. The
most important sections of Chapter 2 are Section [2.1] which formulates
an internal flux splitting method based on Roe’s approximate Riemann
solver for a moving cell of zero width across which conservation is
ensured, i.e. a shock. Also Section [2.6] looks at various methods of
approximating the shocks shape and/or angle which influence the stability
of shock fitting. Section [2.4] is also important, not for the method
used, but because of the implications that the differential forms of the
Rankine Hugoniot conditions have for shock fitting schemes. Chapter 3
contains all the results obtained by using the methods described in
Chapter 2 and discusses them, including plots of residuals obtained using
shock capturing and fitting on three increasingly finer grids for the
captured solution and two for the fitted. Chapter 4 draws conclusions

and summarizes the state the work is in at present.
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CHAPTER 1

THE RANKINE HUGONIOT EQUATIONS

1.1 DERIVATION OF RANKINE HUGONIOT (R-H) EQUATIONS

Let us begin by assuming our fluid obeys the 2D conservation law.

du OF 4aG
—+—+— = 0 where u, F, and G are all vector
at dx Jdy

differentiable functions of x, y and t.

Consider an infinitesimal volume moving through the fluid in a direction

aligned to the x axis with velocity S.

du JF &G du
Then —+—+ —=-5— = 0
dt gx Jdy gx

Vo X
e du GJF 4G Gu
and therefore J J —+ —+ — - S— |dxdy = O
% dt Jx Jdy Ix
1. %1
Y2
over any volume y
X
X 2 S
1
Yl X

Now if we compress our volume so that Ax — O then

y
2 % By Xy
S oy j j — dydx = f [G(x.y ,t) - G(x,y ,t)]dx — 0
X X 2 1
1 2 N dy <
1 N1 1




du
If the motion is locally steady in the moving frame

dt
the entire volume, and then integrating with respect to x gives
Yo
J [E(x2,y.t) - F(x;.y.t) - S[g(xz-%t) - g(xl,y.t)]]dy = 0.
Y1
Since this must hold for any interval (yl.y2) then
=> Exxz.y,t) - F(xl,y.t) - S[u(x2.y.t) - u(xl.y,t)] = 0

where

F and u are no longer required to be differentiable with
respect to x.

Hence
N
fuls = [F] where u = [p |, F = |pq
N N
Pq pq + P
T NT
pq pa q
. . . N T
p is the density, P is pressure, and q , q

are the velocities
normal and tangential (previously the x and ¥ directions) to the cell
with speed S.

A shock in the flow field can be thought of as an infinitely

du
within it i = 0,

compressed cell, across which F and u may be discontinuous, and

so that the imbalance in the fluxes (F vector) is
exactly off-set by the shock’'s movement through the fluid, and the shock
speed S obeys

[uls = [F] .
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1.2 SIMPLIFICATION OF THE RANKINE HUGONIOT (R-H) EQUATIONS

Written in full, the Rankine Hugoniot (R-H) equations are:

where

and the

left and to the right of the shock.

assumed to be non-zero.

[ R NR L NL R i
pPdad ~-pq /P -p

.

[ R NRZ R L NLZ2 R NR L NL
(pq +P7) - (pq + PL)] / [p qa -p4q ]

.

( R NR TR L NL TL R TR )l 1)
P9 q9 -~-pq q /lpa -pq

-

superfixes L and R refer to the states immediately to the

Since
R L R NR L NL
(1) = S(p -p) = pq -pq
R TR L TL R NR TR L NL TL
2) = S(pqg " -pa ) = pq a -pqg q
then
TR R TR L TL R TR L TR
(3) - (1) Xq " = Spq -Spq -Spq +S8pq
) R NR TR L NL TL R NR TR L NL TR
= pq q -pgq a -pg q +pq q
L, TR TL L NL, TR TL
So Sp(a " -q7) = pq (¢4 -q )

The denominators in each case are

Equation (3) can be simplified as follows.

(1)

(2)

(3)



Therefore S(qTR _ qTL) _ qNL(qTR N qTL)
Thus if S #q'- gk = &
NL . . :

If S=q 7, then, using equations (1), (2) and (3), it can be shown
that either HF = EB = qTR = qTL or qNL = qNR, PR = PL, pR # pL

TR TL . . o
and q  # q . The last case is in fact a contact discontinuity, where
there is no flow across the discontinuity. If EF = uR, then no

discontinuity is present.
If we are not concerned with contact discontinuities, then we can
safely assume that the tangential component of the flow is conserved

across the shock, i.e. qTR = qTL can be used to replace equation (3).
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1.3 A CASE OF MISTAKEN SHOCK SPEED

The calculation of the shock speed S was based upon the Rankine
Hugoniot (R-H) equations for two-dimensional inviscid flow, including an

energy equation.

du &8F &G

Hence 5;-+ 5§-+ 5; = 0 ; where

u = |p - FE = | pu - G = | pv
pu pu® + P puv
pv puv pv: + P
pE pu[E+P/e] pv[E+P/e]

and an equation of state

P l 2 2
E W+2(u +V).
We also have
[uls = [F]

(the R-H equations, where u, v are velocity components normal and
tangential to the shock respectively).

These equations can be manipulated to give an alternative form of
the R~H equations (see Appendix 1) which are identical to those found in

Paisley [Ref 2].

V1 = V2
(7+1)M§
PofPy & =————
(w-l)Mi + 2
ul - S
PePL = 5, -8
uy - S 7P1
where M1 = and c? = — and 1=L 2 =R
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However, the model we are using in the present work is based upon
the Euler H system [8], which assumes that the enthalpy H 1is constant

throughout the entire flow field, where

H = E+ P/p.

Now the fourth component of the R-H equations for the full Euler

system is
. plul[E1 + Pl/p1] - p2u2[E2 + P2/p2]
P1EL ~ Poly
= plEl[ul_s] + P1Yy Pl/pl = p2E2[u2—S] + pyluy P2/p2
- E ol PPy . B4 Po/Py
1 p1(u1—S) 2 pl(ul—S)
pau, P./p p,u, P./p
272 2272 -"1"1 "1""1 P
= E1 + Pl/p = E2 + P (0.5 + l/p1
1 171
- T s Polis Po/pg _ Py S Py/p
1 l/p1 2 pl(ul—S)

Hence E1 + Pl/pl can only equal E2 + P2/p2 if

pIS Pl/p1 = Py S P2/p2 = S =0 or P = P

Therefore, we deduce that enthalpy is equal on either side of a

shock when S = 0, or P1 = P2. But our model ensures that enthalpy is

constant everywhere.
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The two viewpoints are inconsistent, and the result is a shock speed
which is inconsistent with all of the R-H equations. In fact, the value
of S given above is used to calculate the normal velocity on the
downstream side of the shock, Uy, via the mass R-H equation. When this
value of U, is put into the momentum R-H equation a completely
different shock speed is produced.

A correct formulation of the shock speed calculation which is

consistent with all three R-H equations is given in Section [1.4].
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1.4 CALCULATION OF THE SHOCK SPEED

In order to calculate the shock speed we must satisfy our simplified

R-H equations (1), (2) and (3) (see §1.2). These can be considered as

NL TL R NR TR

three nonlinear equations in seven unknowns, pL, a9 .9 ,pP.q ,q

and S. To match the number of unknowns with the number of equations it
is necessary to specify four of the unknowns. Using the eigenvalues of

the matrix OJF'/0u' (where u' is orientated with the shock) as a

guide, we update all three quantities on the upstream side, pL, qNL

TL . . R
q ~, and one quantity on the downstream side p . Here we must now

1

arrange the R-H equations so that we can solve explicitly for S using
these known quantities.
2 2
Firstly, in equation (2) we expand [quNR + PR] - [quNL + PL]

to form
L[R_ L], [L)[R,NR® _ L NL*) . (1= [ R TR® L TL?
ol 2 P - |l a Pq il Pq

so that equation (2) now becomes

1 (R L ~+1][ R NR®* L NLZ? 1-v}[ R TR® L TLZ?

S|P PI | =lPa —rPa *iSlPa P

. "" RNR _ L NL )
pq -pq

Now, if we substitute for the denominator from equation (1), we get

1 [R L v+11[ R NR® L NL2 1-v][ R TR® L TL?
T PPt |l lPa - pd u v 1= R A
S = -

]
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Multiplying through by S and using equation (3) to eliminate qTR
gives
[1+1][quNR2_ quNLz]
2 _ 1 [1=] TLZ 2v
. ¥ [ 27]q =

and again using equation (1) to eliminate qNR as

qNR = ES(pR p ) + quNL] / pR gives the term

- pq + 2p7q /p o+ R

L% NLZ2
R NR? L NLZ? R L L NL R L R L NL2
pq =[Sz[p—p] S[p-p]J P 3 g .
P

Substituting this into the new equation (2) gives

1 1- TL2 +1][ R L +1], L NL R [++1] NLZ L, R
st o Lo Bl Bl et st R

and collecting terms in powers of S gives

R L L. _NL 2
2| |+l [p =p"|_ +1|2pq 1 -v| TL |x+1| NL* L 6 R| _
S [[ 21][ X ] 1] ¥ S[[ 27] R ] * {?* Sy)4 TZje P /e =0

~-b i Vé2—4ac

which can now be solved as a quadratic S =

where  a = “ﬂ] {pR—rJL}ll b = [[ﬂ}%ﬁi}

1 1-+] TLZ +1] NL* L, R
and c = L; + [—ﬁg]q - {Iiglq p/p ]
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Both roots of this quadratic will satisfy the R-H equations where

L
qTR and qNR are calculated as qTR = qTL and qNR = Bﬁ [qNL—S] + S,
p
i.e. conservation of tangential velocity and mass. However the positive
root corresponds to qNL, qNR S, so that the fluid enters from the

left-hand side and exits on the right-hand side. The negative root

NL NR
|

corresponds to the exact reverse, i.e. the shock speed is » q
such that the relative velocities of the fluid to the shock are in the
opposite direction, and so conservation of mass and momentum still holds.
In the problem we are dealing with, we expect to find a steady shock

where fluid enters through the left-hand side, consequently the positive

root is selected.
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CHAPTER 2

SHOCK FITTING METHODS

2.1 CAPTURING A FITTED SHOCK

So far, when updating the shocked nodes, the upstream vector of
unknowns EP has been updated using a one-sided form of the finite
volume scheme, equivalent to assuming that the boundary is
non-reflective. The downstream vector of unknowns EB is updated by
specifying one of the unknowns, usually density pR, and then solving
the R-H equations to find qNR, qTR and S. If we were to use a
flux-splitting scheme then we could split the fluxes in one direction
perpendicular to the shock, or ideally perpendicular and tangentially.
In both cases the eigenvectors, the wavespeeds and the a coefficients
are used to update the shock. However, this would essentially involve
mixing a finite volume scheme and a flux splitting scheme around the
shock.

An alternative procedure is described here which does not split the
fluxes around the shock, but rather across the shock itself, and is used
as a correction to the updating of all components upstream and downstream
of the shock by the one-sided, non-reflecting finite volume update.

Consider Roe’s scheme [6], [10] applied to a stationary cell for 1D

flow
fel i Ou . oF Gu GF Au
4omu = gt = ettt Y Tam e

At is restricted by the maximum wavespeed crossing the cell so

At = —. where Ai are eigenvalues of matrix =— = A .

MAXI)\iI =
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n+l n ~ Au  Ax e
So u -—u = -A Ix =
max |\, | max A, |
i i
and Ag_:ale_1+a2e_2+a3e_3
g~ ok
where a, , e; and — are all composed of Roe averaged values of
Su
u and '\\; i.e
~ R /L
b = R E
~ \/ﬁ u  + L uL
a = p p_
VoR it
Vo SRR L L
/pR . \/pL
We now extend this to a cell moving with speed S. Firstly, the
du du du
differential equation becomes I < 5T + S 5% and Roe's scheme
becomes,
n+l n - A Au S Au
u-u o= &
max [N, ~S|  max|A,-S|
so Bn+1_2n: ml [A—SI]A_L_[_
max |\ -S|
— 1 Lo Ve VI ~o A A ~ne N P ~o L ~s ~s Eal e
RHS = ozl?\le1 + a27\2e2 + a3?\3e3 = alSe1 - a2Se2 - (138e3
max'?\i—SI = — — = — —_
So u™! o gt gy ==l E[X—s]e+$[>\—s]€+&[i—s'é'
— = MAXP\i‘ SI 11 771 212 7}72 33 713
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The direction in which the fluxes are then distributed depends on
the sign of Ai - S, hence the wavespeeds are now relative to the moving
cell. Notice that the update is independent of the cell width Ax. But
of course if the flow is smooth then as Ax — O so does Au — 0 and
the update — 0. However, if our cell contains a shock then Au »» 0 as

Ax — O, and the update may be non zero.

IF
The Roe averaged matrix A = 55 has the following three properties
[6]
(A) X Au = AF
(B) A is diagonalizable with real eigenvalues
~ OF L R
(C) A- 30 smoothly as u ', u —u .

Also the Rankine Hugoniot conditions for a shock are S Au = AF

where S 1is the shock speed,

R L R NR L NL
bu=|p -p . AF = | pq - pTq
R NR L NL R NR® _R L NL? _L
pPa - pgq [pq +P]-[pq +P]
R TR L TL R NR TR L NL TL
pa  -p4q pPa g9 -pqg gq
Consequently, property A implies that A Au = S Au, 1i.e. the shock

speed S and the jump in u, Au, are an eigenvalue, eigenvector pair

of the A matrix.
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To find which eigenvalue, eigenvector pair is appropriate we notice

that
G-l ] = &=|
A2 AB
~T lt
q q
~ - 1+~ [~N ‘/1—’7 "'N2 ~o
where )\2 = [T]q + [Z—]q + a“/~
d VT Fasd b v//iil-NNz + 52/~
an 3 2 2y |4

If either of these eigenvectors is the one with an eigenvalue equal

e

to S, then it must be a multiple of Au, i.e. Au = a 9 Or Au = ags.

s

The R-H equations imply that qTL = qTR = qT so if a = pR - pL
R L R L
then pPr-p =(p -p)1
R NR L NL R L, ~
pPad -pqg ={(p -p)A
R TR L TL R L, T
pPa -pqg =(p -p)a .

Clearly the 1st and 3rd components are satisfied by either eigenvector,
and from the R-H equations the 1lst component gives

L R NR L NL

R
S(p” - p7) = pq -pq

= A2 or AB must equal S .
In Section [1.4] we found that the R-H equations have two possible
solutions for S for a given EF and pR corresponding to two roots

of a quadratic. One root corresponds to fluid entering the shock from

the left hand side (positive root), the other root corresponds to fluid
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entering the shock from the right-hand side (negative root). Numerical

experimentation shows that the shock speed of a shock using the positive

dF
root is equal the eigenvalue AB of 55 . whilst the shock speed of a
. %
shock using the negative root is equal to the Az of ag ,  where £

is the Roe averaged Jacobian matrix for each shock.
Since we choose the positive root shock speed (the negative root is
physically inappropriate), this implies that our eigenvector, eigenvalue

3 Hence we see that fu = a e3 and AB = 8.

pair is x3 and o
(Property (B) ensures that the eigenvectors are linearly independent so

that Au has no components of e or e2)

Implementation

In practice this one-dimensional flux-splitting scheme can be
applied to a shock, since the shock is essentially a cell of zero width,
provided the fluxes are split perpendicular to the shock orientation.

Firstly the one sided finite volume scheme is used to update all
three components of u on both sides of the shock. Invariably the R-H
conditions will now not be satisfied, and so the fluxes are split and
distributed to either side, and the u vectors updated. Usually this
last step needs to be repeated about 100 times using the most recently

updated values of to recalculate the fluxes to be split. After a

9L,R
sufficient number of iterations we find Au = azeq, A3 =S and

a =0y = 0 [in reality a, a, start at =~ 10 ' after the finite

! 2
volume update, and decrease to = 10_17 after 100 iterations]. So by

1

satisfying the R-H equations the update is automatically zero.
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An undesirable feature of this procedure is the estimation of the
shock speed S when the R-H conditions have not yet been satisfied
(This is required for the flux splitting calculation). The value of S
is calculated by specifying EF and pR and solving the R-H
equations. However, we find that the value of S changes as the fluxes

are being split, until it is equal to AB'
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2.2 FLUX SPLITTING VIA ROE'S SCHEME IN ONE DIRECTION, NEXT TO SHOCK

Roe’'s approximate Riemann solver was used to split the fluxes in the
cells immediately adjoining the shock. (The eigenvalues, eigenvectors,
a coefficients, and form of the Roe averaged variables can be found in
Appendix 2.) The flux splitting was applied only to the F vector
whilst a 1st order cell vertex method was used to calculate the
contribution to the update from the G vector.

The algorithm is as follows:-
1) Calculate u in the rotated coordinate frame such that the x axis

is aligned along edge 1-2, i.e. u' for points 1,2,3,4,5 and 6
(see Fig. 1).

2) Calculate Roe averages eigenvalues, eigenvectors and a's for edge

T = ] - ! [ R 1
1-2, where y o=y, and Up = Yy .
3
3) Sum the terms of AF' = 3 A. a.e., those corresponding to
j=1
positive eigenvalues, multiply by - At/Ax and put equal to 6u/

up -

4) Calculate X', Y' and G' 1in the rotated frame.

5) Calculate 8G'/3y' 1in cells A and B using a cell centred finite
volume method, then calculate the area weighted average over cells
A and B, multiply by - At and add to 62&.

6) Resolve 6u) back into X, Y coordinates and update the u

i
=R
vector on the shock.
A similar process is applied to the downstream side of the shock,
but selecting instead the backward travelling waves in the splitting
method. All non shock nodes are updated using the usual cell vertex

method.
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2.3 RESIDUAL CALCULATION ON A MOVING GRID

It was realised that, during our shock fitting process, all nodes
but particularly those closest to the shock were being moved as the

solution was updated, and therefore to be more accurate the calculation

du du
of 5% should be replaced by a calculation of a% . where
du du du du
— = —+S —+ S —
dt at X ax y dy

Sx' Sy being the velocities in x and y directions respectively.
g
In order to fit in with the rest of the program, Jc Ves calculated

in a cell, where Sx' Sy were taken to be the average of the velocities
of the four cell corners, so that

S
X

average distance moved in x direction / time step

Sy = average distance moved in y direction / time step

and global time stepping was used.

du du
The values of 55 and 55: were calculated at each cell centre

du

using a finite volume approach, and the new cell-based values of a%

were then used as usual to calculate the 1st and 2nd order updates. The

du du
magnitude of the additional terms SX 55 and S 5: were assessed and
dy,
compared with the magnitude of the ET3 term.
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2.4 DRIVING THE SHOCK SPEEDS TO ZERO

The Rankine Hugoniot (R-H) equations may be written

P Pq
AF = SAu where u = NIl E= 2
e = = N
Pq pq + P
or ER - EL = S(gR - gL) pq’ pdq

If we now differentiate this equation partially with respect to
time, we get

aF dF du
and since —_— = — then
at 32 at
ar® gl art  aul st au-
LI L% 4 R L] s
R = =N = S B M R
du" at du” dt gt at

BFR auR OFL ﬂuL
- — - — R L, Os
R S = =T = S| —+ (u -u’) 3¢ -
du dt du at
_ Now assuming that at some time EF and g? are known such that the
oF" oF”
R-H equations are satisfied, then S, R and =y will also be known.
du du

Let us now specify g% so that if S > O then g% <0 and if S <O

then ds > 0.

ds
3t For example, we could use i aS

(e >0) .
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R
8u
It is now possible to solve a linear system of equations for ETRE
62%
provided that we supply 30 °T vice versa. In effect we are
au- o’
specifying one of 3 °T 3T and solving for the other under the

condition that the magnitude of the shock speed is decreasing. In fact,

. . 8s _ds _ _
if the shock is not moved, then 9 - o aS

i.e. the shock speed’'s magnitude will decrease exponentially with time.

auL

In practice the procedure used is to calculate 5%; using our
finite volume scheme on the upstream side of the shock, and to solve the
693
linear system for Tt Then the upstream shock nodes are updated using
the usual one-sided cell vertex method, whilst the downstream nodes are
R

du
updated as g?+1— u = 5%; At , 1i.e. a first order update only. A

correction method is then applied to the updated values of EF and EF
on either side of the shock to ensure that the R-H equations are

satisfied, and to calculate the new reduced shock speed.
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2.5 THE ADDITION OF REAL VISOOSITY TO THE SHOCK TIP REGION

The general approach here is to apply the Navier-Stokes equations to
the region around the shock tip in order to smear out any large flow
gradients or discontinuities which might cause erratic convergence in the
shock tip area.

In the first of this series of reports [8], artificial viscosity was
applied in the shock tip region, without success. It was hoped that real
viscosity would produce the desired smearing and a more stable shock tip.

The Navier Stokes equations for the H system can be written in

du OF G

conservation formas s+ —+ =— =0, where the F and G vectors
gt  Ix 8y  — = =

can be decomposed into inviscid and viscous parts, i.e.

F = F,. +F where F, = pu and F = 0
= —i —i -
2
pu“+P Txx
uv -T
P Xy
and G = G, +G where G, = pv and G = 0
- —i —i —
puv —TXy
pvZ+P -T
Yy
2 (Ldu  dv
where Txx = 3 ReL ~25; 5;]
1 du | dv
Ty = Re [§+5§]
L
2 dv  du
and Tyy = 3 Re. [W—a]
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ReL, the Reynolds number, was varied between 10' and 107, though for
this problem it is typically 10° to 107.

The viscous fluxes Txx' TXy and Tyy' were calculated using a
finite volume approach as proposed by Mackenzie (Ref 7). These were then
simply added to the inviscid flux vectors and the cell vertex method was
then applied as usual.

The viscous fluxes were calculated at the points marked % on the
diagram in Fig. [2]. If the stencil touched on a shocked node then the
upstream or downstream value of u was used in the calculation,
depending on whether the central node in Fig. [2] was upstream or

downstream of the shock. If the point was on the same vertical grid line

as the shock then the average of the shock tip values was used.
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2.6 METHODS FOR APPROXIMATING THE SHOCK SHAPE AND/OR ANGLE

In order to model the shock's behaviour in the flow field, it is
necessary to know the precise location of the shock and the angle which
the shock makes with the coordinate axes. To do this a curve of some
kind is fitted through the shocked nodes, and the angle that the curve
makes with the coordinate axes is then used to calculate the velocity
components normal and tangential to the shock, so that the Rankine
Hugoniot (R-H) equations can then be satisfied.

Clearly there are many different curves which could be used to fit
the shocked nodes, each giving a slightly different orientation angle.
All of the curves however must be constrained to be normal to the solid
wall boundary to satisfy the R-H equations, since the flow is tangential
to the solid wall.

When this work was first begun, the curve used was a weighted least
squares (L-S) polynomial of degree three, which was weighted to fit the
points closest to the shock foot. The shocked nodes were then moved so
that they lay along the line of the fitted curve. Other methods of curve

fitting tried during the course of the contract were as follows.

Least Squares (L-S) Polynomials

These were L-S polynomials of varying degrees but different from the
above, in that the curves were not weighted at all, and they were used
merély to obtain the shock angles. That is, the shock nodes were no
longer moved onto the curve, so that the shock was constrained to be the
shape of the polynomial. Instead the points were allowed to move freely.

Polynomials from degree 2 to a degree equal to the number of shocked
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nodes were tried. These curves were of the form
x = C, + Cy(y-y,) + Caly-y,y)? + C (y-y )"
1 2 0 3 0 T T 0
where Yo =V at shock foot.

Exponential Least Squares

These curves were of the form

x' = Cp o+ c2e(y'*y6) + c3e2(Y’-Y6) o Cnen-l(y’—yé)

where x' and y' and yé were the x and y coordinates in a frame
slightly rotated so that the orientation of the shock foot was aligned to

the y' axis. These curves can also be considered as L-S polynomials in

1
the variable e(y yO).

Cubic Spline

This was a straightforward cubic spline, with the boundary

conditions required at each end being S supplied at the shock foot,

dy
2
such that the spline was normal to the boundary, and b = 0 at the
dy?
. . d®x d®x
shock tip (natural spline), or —= (JMS) = ——;-(JMS—I), where JMS
dy? dy

corresponds to the shock tip and JMS-1 the node below it.

Three Point Angle Approximation

This method is a continuation of some of the methods used in the

first report in this series, ref [8]. The shock angle is approximated by
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the expression x = f(y) and expanded in a Taylor series about the node

in question for the two nodes immediately below it. The expansion is up

to and including the 2nd order derivatives, and the two equations found
dx

are solved simultaneously for E; :

Hence

where AyJ_1 = yJ = yJ_1

Note that the angle at point J 1is approximated by the relative
positions of the two nodes immediately below it. This has the advantage
that movement of the more volatile shock tip will not alter the angles of
the points below it. (At the first node up from the shock foot, it is

necessary to use a centrally expanded difference to obtain 2nd order

accuracy. )

Tangential Velocity Conservation

The R-H equations imply that the tangential velocity components on
either side of a shock are equal. This fact can then be used to
approximate the shock angle.

Assume at some time the R-H equations are satisfied and the
tangential component is conserved. Now if both sides of the shock are
updated using the finite volume scheme by an amount 62% and 623 then
we choose our angle a such that qTL = qTR ., where qT 1is the

tangential velocity component equal to qT = ucosa + vsina
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= (uL + 6uL)cosa + (vL + 6VI.“)sina = (uR + 6uR)cosa + (VR + évR)sina

Il

-
= tana [(vL + 6VL) - (vR + GVR) (uR + 6uR) - (uL + 6uL)]

(uR + BuR) = (uL + 6uL)
o+ ety - (R 4 ady]

= a = tan—1 [

Notice that this technique is different from all the others
described so far in that no account is taken of the positions of the

other shocked nodes.
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CHAPTER 3

RESULTS AND DISCUSSION

3.1 Assessment of Real Viscosity around Shock Tip

These results relate to the addition of real viscosity around the
shock tip area, as described in Section [2.5].

The additional viscous terms, added to the inviscid flux vectors F
and G, proved to be of approximately the same magnitude as the value of
l/ReL. The lower Reynolds numbers (ReL) between 1 and 10° gave the
worst results, i.e. large residuals around the shock tip and large shock
tip speeds, where the residuals were those calculated including the
viscous terms. It is possible that these might have been reduced, had
the viscous terms been applied over a larger area, so that the influence
of the larger derivatives near the shock would have been faded into the
inviscid area more smoothly. For Reynolds numbers greater than 10° the
effect of the additional terms was negligible, and the results resembled
the inviscid case.

A typical Reynolds number for this problem is 10° - 107, hence
realistic amounts of viscosity have a negligible effect, whilst
unrealistically large amounts of viscosity produce poor results when the

application is restricted to a few points immediately around the shock

tip.

3.2_ Assessment of Driving the Shock Speeds to Zero

This technique, as described in Section [2.4], was investigated

using various values of the damping factor a, where g% =-a S, and

different values of the frequency at which the shock was moved.
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By increasing the damping factor, the rate at which the shock speeds
decayed was increased successfully, and the shock speeds could be
decreased indefinitely. However, if too large a value of a was used,
the shock speed would decay to almost zero before the shock had a chance
to manoeuvre itself into the correct position. To compensate for this,
the frequency with which the shock was moved could be increased. In
effect the shock could be made to settle virtually anywhere by adjusting
the damping and frequency parameters.

The best results were obtained using a = 1.0 and frequency of
movement = 5 iterations. This gave shock speeds of < 10—5 after only
1,000 iterations, but the residuals on the downstream side of the shock
were much larger than was usually encountered. This method was thought
to be unusual in that it was the only technique used throughout this
contract that has been able to reduce the magnitude of the shock speed to
any required size. However it is unacceptable because of the arbitrary
use of the damping and frequency parameters, and also because the
residual equations were far from satisfied.

The formulation of the method however raises important points,
namely that not only must the Rankine Hugoniot equations be satisfied

across a shock but so must the time and space differential forms. This

du du

du
has implications for the vectors =—, =— and =— on either side of the
Jt ax Sy

shock.

3.3 Assessment of Use of 1D Flux Splitting via Roe’s Scheme around

Shock,; and Method of Capturing a Fitted Shock

The technique of 1D Flux splitting was performed as described in

Section [2.2], and shall be abbreviated here to external flux splitting.
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The method of capturing a fitted shock was used as described in Section
[2.1], and is abbreviated here as internal flux splitting.

The external flux splitting method was used as an initial guess to
the updates on either side of the shock, and was compared to the usual
one sided cell vertex method. The internal flux splitting was used as a
correction procedure to satisfy the R-H equations, and was compared with
the method of specifying three variables from upstream, density from
downstream, and then solving the R-H equations. The latter shall be
known as characteristic solving.

The methoé of external flux splitting was compared with the one
sided cell vertex method, using both characteristic solving and internal
flux splitting as the correction procedure. Using the same results,
characteristic solving and internal flux splitting were compared with

each other using both external flux splitting and one sided cell vertex

to calculate the initial guess, i.e.

Initial guess at one sided external flux
shock update cell vertex splitting
Correction procedure characteristic internal flux
to satisfy R-H solving splitting
equations

Each of the four combinations above was carried out using three
different values of the shock movement frequency parameter, chosen as 5,

20 and 50 iterations, and the effect was assessed.
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Result of Comparison between One Sided Cell Vertex and External Flux

Splitting

The shock speeds generated using external flux splitting were
slightly larger than those generated by the one sided cell vertex method,
particularly at the shock foot, resulting in a shock that moved further
upstream as the iteration progressed. Comparing external flux splitting
with the one sided cell vertex method when both use characteristic
solving, we found the residuals are approximately twice as large and the
updates 100 times as large in favour of one sided cell vertex. However
when we did the same comparison replacing characteristic solving with
internal flux splitting, we found that the residuals were now twice as
large in favour of external flux splitting, and the updates were thirty
times as large in favour of one sided cell vertex.

Hence, in terms of residuals, external flux splitting works better
only if it is combined with the internal flux splitting routine, but in
terms of updates the one sided cell vertex method is far superior for
both correction methods. In fact there was thought to be a problem with
the external flux splitting method since the updates did not converge,
but actually increased slightly as the iteration progressed regardless of

the frequency of shock movement.

Result of Comparison of Characteristic Solving and Internal Flux

Splitting

Internal flux splitting showed a significant improvement over
characteristic solving in terms of updates and residuals which were both
consistently half the size, provided external flux splitting was used to

calculate the initial update. If however the one sided cell vertex
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method was used to calculate the initial update, then the results were
very similar in all respects during the earlier period of the
calculation. However later on differences began to emerge, namely the
shock foot using characteristic solving departed from the rest of the
shock by moving too far upstream. This in turn caused the shock angles
to change and then the shock speeds and updates became larger than for
the internal flux splitting case. The residuals of both methods were

comparable over the entire calculation.

Result of Varving Shock Movement Frequency

Identical methods were compared after the same number of shock
movements for different values of the shock movement frequency parameter.
It was found that the shock positions, shock speeds and residuals for
each case were very similar. The updates however were smaller for the
shocks that were moved less frequently, since this allowed the iteration
to converge (provided external flux splitting was not used). In effect
then there would seem to be little point in allowing too large an
interval between shock movements since the residuals, shock speeds and
consequently shock positions are sufficiently insensitive to this
parameter. A movement frequency of between 5 and 10 iterations was

found to be sufficiently robust to allow the solution to develop readily.
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3.4 ASSESSMENT OF USE OF RESIDUAL CALCULATED ON A MOVING GRID

The cell based residual approximation was supplemented with
additional terms to take account of the movement of the grid (see
Section 2.3).

These additional terms were found to vary in magni tude, depending
mainly upon how much grid movement was taking place locally.

Consequently these terms were largest at the beginning of the calculation
when the shock speeds were highest. They also became larger in the areas
nearest the shock where the most movement was taking place.

Typically the magnitudes found varied from 1,000 times smaller than
the stationary residuals, in the areas well away from the shock, to the
same size in the areas around the shock. However, although the movement
of the grid was clearly significant in the residual calculation. the
inclusion of these terms was found to increase the instability of the
code, and the procedure was therefore not permanently incorporated into

the program. The reason for this increased instability is not known.
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3.5 ASSESSMENT OF METHODS FOR APPROXIMATING SHOCK ANGLES

Least squares polynomials of varying degrees were used to

approximate the shock angle as in section [2.6]. The best results were
obtained by the use of a polynomial of degree 3, i.e. a cubic. The L-S
curve of degree 2 was found to be too inflexible, since after taking up
one degree of freedom to ensure that the curve was normal to the wall and
another for the shock to pass through the given foot position, only one
degree of freedom was left. The polynomials of degree 5 and above
steadily became too oscillatory giving rise to sawtooth shaped shocks,
see Fig. [3]. The polynomial of degree 4 gave reasonable results, but
the tip tended to fall backwards, producing large shock angles which then
caused the shock length to shorten because the shock existence criterion
was no longer satisfied. The shock would then move back downstream and
lengthen again, only to repeat a similar action a few hundred iterations
later.

In this problem, with the grid used, the shock was 7 nodes long. A
cubic with 4 degrees of freedom gives a plausible shock shape, but also
has an inflection point near the tip, which keeps the shock angles from
becoming too large and prevents the shock tip from falling backwards as
described above for the least squares quadratic. This phenomenon of the
shock tip falling backwards (upstream) when the shock angle became
greater than about 1.6 radians at the tip was observed frequently when
using other methods. The reason why it occurs is not clear. However in
the more stable cases the phenomenon is almost oscillatory in the way the
shock length shortens and then relengthens, suggesting that an
intermediate shock length would be less oscillatory. Various attempts

were made to alter the shock’s length but none met with success.
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A significant difference in the speed and level to which the shock
speeds decreased was observed when using the least squares cubic to
approximate the shock angles only, as opposed to then moving the shocked
nodes so that they lay on the cubic (as was done in the original method
when this work was started). A comparison of the new and original
methods can be found in Tables 1 and 2, where all except the curve
fitting routines are identical.

In Table 3 there is a history of a much longer run employing this
new method of curve fitting. One can see that the shock speeds decay
rapidly at the beginning of the calculation and reach a minimum after
approximately 3,500 iterations where the shock is virtually motionless
and the updates are tending towards zero. However, after this point the
speed at the shock foot goes through zero and starts to become
increasingly negative; the same thing occurs at the shock tip and then
all the shock speeds start to increase in magnitude again. This type of
instability after an initial period of apparent convergence is not

understood.

An exponential least squares curve of degree 3, where the x and y

coordinates were rotated so that the shock foot aligned with the y axis,
were less convergent in terms of shock speeds than the least squares
cubic, and no other advantages were seen in favour of adopting this

method.

A_cubic_spline was tried with two different boundary conditions for

the shock tip end, as described in Section [2.6]. Both conditions

resulted in a shock shape whose angles gradually became more oscillatory
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as the iteration progressed, until they resembled the curves formed using

the higher degree least squares polynomials.

The three point angle approximation suggested by Moretti [Ref 9] and

described in Section [2.6] resulted in the same type of sawtooth shaped
shocks that were observed using the first order backward differencing and

central differencing described in the first report in this series (see

[8]. Chapter [4]).

The conservation of tangential velocity method of approximating the

shock angle as described in Section [2.6], resulted in a shock whose foot
moved further downstream and a tip which moved further upstream as the
iteration progressed. The shape of the shock would, by comparison with
all methods which are vaguely stable, be regarded as incorrect. However
the shock speeds slowly decreased for all the shocked nodes as the
iteration progressed and the updates around the shock also decreased.
Consequently the method is something of a curiosity. The convergence
history is logged in Table 4. The shock shape and angles are similar to
the result obtained using the assumption that the flow is normal to the

shock (see first report, Table 2).
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3.6 ASSESSMENT OF THE EFFECT OF GRID REFINEMENT ON THE SHOCK CAPTURED

AND FITTED SOLUTIONS

The effect of refining the grid was assessed on 3 increasingly finer
grids for shock capturing, and 2 grids for shock fitting. We were unable
to obtain a fitted result on the 257 x 65 grid, presumably because
adjustments to the background smoothing were necessary. No ad justments
were required to the smoothing parameters for the shock capturing cases.

The smoothing used was of the form

[“o + ul[lRA(p)l + [Rg(p) | + [Ry(p) ] + |RD(p)|]] [UA *ug + UL +ouy - oug

where Uy g cop 2are the relevant components of the surrounding cell

centred values of u, and u, is the vertex value. RA.B,C,D(p) are
the density cell residuals.
Ho = 0.006 and Moo= 0.02 for shock capturing

or By o= 0 for shock fitting .

The results can be found in the plots at the back of this report (in
colour in the master copies). Plots were made of all three components
for

(i) the cell residuals
(ii) the absolute values of the cell residuals

(iii) the LOG10 of the absolute values of the cell residuals.
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Shock Captured Results

It was observed on all the grids that around the shock area the
residuals were much larger than in the smoother parts of the flow. Also
counterbalancing of large positive and negative residuals was taking
place between groups of four cells situated on either side of the shock.

Comparison of the absolute values of the residuals on each grid
around the shock area showed that the density residuals were largest,
followed by the y momentum and then the x momentum. The largest gap
was a factor of 5 to 10 between density and y momentum residuals.
Refinement of the grid caused both the density and x momentum residuals
to approximately double each time, whilst the y momentum residuals
increased only slightly. Far away from the shock all residuals decrease
with grid refinement.

Compared to the other large residuals which occurred at the leading
and trailing edge of the bump, we find the density residuals around the
shock are 5 to 10 times larger on the 65 x 17 grid, and 10 to 15 times
larger on both the 129 x 33 and 257 x 65 grids. The x and y
momentum residuals are 2 to 3 times larger on all grids. Also the
difference between the largest and smallest residuals of the same type is
about a factor of 1 to 10,000 on the 65 x 17 grid and 1 to 100,000

on the 129 x 33 grid.

Density, pressure and Mach number were plotted along the bottom wall
for all three grids.
Refinement of the grid shows the shock resolution improving. The

Zierup singularity is only a slight kink in all three curves after the
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shock on the 65 x 17 grid, but turns into a complete reverse of

direction on the 129 x 33 and 257 x 65 grids.

Shock Fitted Results

These results were obtained using the usual one sided cell vertex
method to obtain an initial guess to the shock updates, then correcting
this using the technique of internal flux splitting described in Section
[2.1] in order to satisfy the R-H conditions. The curve fitting method
was an unweighted least squares cubic as described in Section [2.6]. The
movement of the shock was ceased after 3,000 iterations, and the
calculation was continued to drive the updates towards zero for a further
1,000 iterations.

Examination of the plots of the absolute values of the residuals
shows that on the 65 x 17 grid the density and y momentum residuals
are comparable whilst both are approximately twice the size of the x
momentum residuals. On the finer 129 x 33 grid all three are
approximately equal.

The effect of refining the grid is to double the size of the density
and x momentum residuals around the shock area, whilst the Yy momentum
residuals only show a slight increase. Away from the shock all three
residuals appear to be approximately the same as the grid is refined.
Compared to the other large residuals which occur around the leading and
trailing edges on the 65 x 17 grid, the density residuals are
comparable, whilst the x momentum residuals are approximately half the
size and the y momentum residuals are approximately double the size. On
the 129 x 33 grid all three residuals are comparable to those at the
leading and trailing edges.

A comparison of the largest and smallest residuals shows that on the
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65 x 17 grid the difference is a factor of approximately 10,000 for all

components, whilst on the 129 x 33 the grid factor is about 100, 000.

Bottom Wall Plots

The finer grid solution shows slightly better resolution of the
Zierup singularity. Also the density and pressure are slightly smaller
immediately upstream of the shock, and slightly larger immediately
downstream, whilst the Mach number displays the opposite result. This

therefore implies that the shock is slightly stronger on the finer grid.

Comparison of Captured and Fitted Results

On both the 65 x 17 and 129 x 33 grids the density residuals
around the shock are more than 10 times larger for the captured solution.
The x and y momentum residuals are however only slightly larger than
the fitted residuals. Also the residuals around the leading and trailing
edges are comparable with each other for fitting and capturing as one
would expect. In general the shock fitted residuals around the shock are
comparable to those at the leading and trailing edges, whilst those
produced by shock capturing are much larger in the case of the density
and slightly larger for the x and y momenta.

This would appear to be because the residuals produced at the shock
by capturing are largely a result of excessive amounts of smoothing used
to smear the shock, whilst those produced by fitting are similar to those
at the leading and trailing edges, and are due to the use of a one sided
cell vertex stencil being applied to a boundary at points where the
boundary is relatively highly curved, and so large truncation errors are

incurred.
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At both the edges and the shock there is the additional complication
of choosing an angle to which the flow must be aligned (in the case of
the leading and trailing edges) or an angle which is used to satisfy the
R-H equations (this mainly affects the downstream side of the shock).
Table 5 shows the size of all residual components immediately upstream
and downstream of a fitted shock, those downstream being on average 3
times larger.

Comparison of the plots of density, pressure and Mach number for the
fitted and captured solutions show that, apart from the shock being

resolved better by fitting, it is also about 15% stronger on both grids.
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CHAPTER 4

OONCLUSIONS

Shock fitting by the methods outlined in this report is now at the
stage where it can be applied to a few specialised problems in which the
shock is embedded and is not too oblique to the flow. An artificial
restriction is however necessary in the form of some criterion to prevent
the shock from moving once the calculation has reached a suitable stage.
For example we could measure the sum of the magnitudes of the individual
shock speeds and restrict the shock as soon as this measure started to
increase. It is in the earlier parts of the calculation that most of the
good work is done, and the shock speed can be reduced to less than 10—3;
after this point, instability may set in as described in Section [3.5].

The cell residuals give us a measure of how well the difference
equations are being satisfied. In this respect, fitting is superior to
shock capturing (particularly for the density residuals). However the
final proof of a method is the validation. The lift coefficient on an
AGARD test case was calculated using the 1987 version of this code by
Morton and Paisley [2]. They found that the lift coefficient was about
2%% higher than the fine grid captured solution produced by Pulliam and
Barton [3] for the M_=0.8 «a =1.25 case, and about 7% higher for
the M = 0.85 a = 1.0 case, and that the captured solution produced
by Hall [4] on an equivalent grid was in slightly better agreement with
Pulliam and Barton’s result.

However since 1987 various minor bugs have been found in the code,
the formulation of the shock speed calculation has been found to be

incorrect (although the error due to this diminishes as the shock speed
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tends to zero), see Section [1.3], and the weighted least squares cubic
by which the shocked nodes were restricted has been replaced by an
unweighted least squares cubic which is only used to approximate the
shock angles and allows the nodes to move freely, see Section [2.6].
Also the arbitrary specification of density from the downstream side of
the shock to solve the R-H equations has been replaced by an internal
flux splitting method, see Section [2.1]. Finally the remeshing
procedure has been improved to minimise grid distortion due to shock
movement .

The visible result of all this work is that the shock speeds can be
reduced to an order of magnitude lower than was possible previously, and
the robustness of the code in terms of constancy of shock position and
length is greatly improved.

The present method can be criticised for the arbitary choice of a
least squares cubic, since this curve might not do so well for other
shocks. Ideally we require a method of approximating the shock angles
which does so for each node independently, or fits a curve which uses all
the degrees of freedom available to it but is not oscillatory. Attempts
were made to find the former via the assumption of normal flow (see first
report [8], Chapter 2), and the conservation of tangential velocity (see
Section [2.6]). A cubic spline was also tried but found to give shock
angles which gradually became more oscillatory. A tensioned spline may
have worked better but then the amount of tension applied would be
arbitrary.

There are also problems with grid distortion. The remeshing
procedure was designed to keep the cells as near to parallelograms as

possible, but in the region of the shock tip where the curvature of the
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shock is greatest this inevitably leads to thin parallelograms adjoining
ones which are not so thin. This problem could be largely overcome by
the use of a grid specifically generated to take account of curved shock
waves, or by the use of an unstructured grid.

Two areas which have not been addressed during this work are the
analysis of the one sided cell vertex stencil on a distorted grid and the

inflow and outflow boundary conditions.
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APPENDIX 1

The full 2-D Euler equations are

du d8F &G
—+—+— = 0
at Jdx Oy
where u = p F = pu G = pv
pu pu® + P puv
pv puv pvZ + P
pE pu[E+P/e] pv[E+P/e]
with an equation of state
= P _ .1l 2,2
E = p(’7_1)+2(u + v7)

where E 1is the total energy per unit mass (kinetic + internal). The
R-H equations are [u]S = [F] where u and v now represent the
velocity components normal and tangential to the shock.

The third component of the R-H equations simplifies to v, = v

1 2

(see Section 1.2). Written in full, the R-H equations are:

S = [”1“1 - p2“2] 4 [pl - p2] (1)

S = [[plu1 + Pl] [pzu2 + Pz]] / _plul p2u2] (2)

P
1
S = [plul[El + EI} - p2u2[E2 + ——} / [plE1 - p2E2] (3)
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vyo= v
where 1 =L , 2=R.
Therefore, (1) = pl(ul—S) = p2(u2—S)
(2) = plul(ul—S) + P1 = p2u2(u2—S) + P2
(3) = pl(ul—S)E1 + Plu1 = p2(u2—S)E2 + P2u2 .
Now (1) and (2) = pl(ul—S)(ul—S) + P1 =t p2(u2—S)(u2—S) + P2

P
p(¥-1)

and since E = + % (u® + v?)

and v = v; from (4), and p, (u;-S) = po(uy=S)  from (1) ,

(4)

(5)

then this implies that the energy fluxes due to the tangential velocity

on both sides of the shock are equal, i.e.

" v
pl(ul—s) 9 = p2(u2—S) )
so that equation (3) becomes
P u’ P u?
1 1 2 2
Py (u;-S) [5;T¥3TT * '5] ¥ Py = py(uy S)[p2(7—1) * '5] * Pouy
Also (u-8)® = u® + 8% - 28

and P(u-S) = Pu - PS

so that (3) becomes
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P 2
1 _§)2 L _
pl(ul—S) |ipl(7—_1) + %(ul S) + uls 5 ] + Pl(ul S) + PIS
P s s?
- . ) = =1 == =
= p2(u2 S) p2(7—1) + A(u2 S)* + uS - 5| + P2(u2 S) + P2S 5
s s®
Now pl(ul—S) [uls - i—] +PS = p2(u2—S)[u28 - 5—]+ P2S
s® s?
because from (1) pl(ul—S)i— = p2(u2—S)§—
and from (2) pl(ul—S)u1 + P1 = p2(u2—S)u2 + P2 :

Therefore (3) becomes

P

pl(ul—S) EIT;:TT + %(ul—S)z] + Pl(ul—S) =

P
p2(u2—S)[5¥%:TT + h(uy-8)| + Py(uy~S)

and using a change of variable u' = u-S, the full R-H equations in 2-D

become

(1)

(5)

(6)

(4)
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Equation (6) can now be divided through by equation (1) giving

12

R D . (EA N Q

Also equation (1) and (5) can be manipulated to obtain ui and ué

in terms of P+ Poe P1 and P2.

Po |Po™P

PP
} (8) and u, = o [ = 1‘ (9)

Substituting for u! and u! in (7) from (8) and (9) gives

1 2
af ter some algebra
_ 122
P2 1 h [p /pl]
P = . . (10)
1 p /p1 - h
where h? = mis } ;
7-1
1 2
Now defining the relative normal Mach number by M§ . , and
C2
defining C? = 1%
12
gives M§ = p:P ” (11)
Substituting (11) into the momentum equation (5) gives
P, - P. = AP, M2 - ~4P_ M2 . (12)

171 2 72
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Also the energy equation (7) can be rearranged as

[~
|
jor
I

P P

2y 152 1
12 _ ooyt [T = e R 13
2 (4 —uy) (ug + uy) [p2 pl} (13)

and the mass equation (1) and the momentum equation (5) can be combined

to give
= = 1 il = 1
P2 P1 = Py (u1 u2) (14)
and substituting from (14) for (ui — ué) into (13) gives

Py Py

= 1 t
Po = P v F2 il o |Faw Piy
PL Yy T oa-1

7 (ul + u’) = 7= 7 . (15)
1 2 Py P Y

Multiplying through by p, u! = p, u/ and simplifying gives
171 2 2

[ 2| _ o W2 g -
P2[u1 ué h ] Pl[u2 h ul] = 0.

Now substituting in for ui and ué from (11) gives

2 "o 2 ) 5
P1 ™ Po Yo Po Yo Pr Y1

1P, MT h2+P, M2 ~P, M2 h27P1 MT]
Py ! -

Multiplying through again by PL Y = Py Uy gives

2 2 _ 2 2
P, M] [Plh + P2] P, M3 [P2h + P1] . (16)
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Now equations (12) and (16) are simultaneous equation in MT, M2 .

Solving eventually yields:

P
2 y+tlp "2 ~-1
n [ 27] P, " o (17
p
2 _ v+1 _1 ~¥-1
My = [ 27] P, " o (15)

and substituting from (10) for P,/P., into (17) after some algebra gives

2°°1
p (v+1)M7
2 = 1 (19)
P1 (1M + 2
as in Paisley [Ref 2],
2y !
u u u, - S
where MT = oL = M = =L - 1
2
Cl Cl Cl

and finally S = u, - M.C, . (20)
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APPENDIX 2

Eigenvalues, Eigenvectors and Roe Averages of 2D H System

du OF &G

Gtamtay = 9

du aF 62 aG 62
=

a + @ é;- + @ _67 = g
where u = p F = pu G = pv
pu pu’+P puv
pv puv pvZ3+P
oF
@ - 0 1 0
L _ 14+~ u2 1| 2 14~ " 11—
~y 2v o |V ~ ¥ ¥
L — uv v u
oG
— = T
and Bu = 0 0 1
- uv v u
1 1=~} 5 i 1-~ v+1
R R - =




aF
The eigenvalues of )
Kl = u, A2.

91 = v
uv
1 u? v
12 T2
ac
The eigenvalues of EE
Al = v, A2.

- 55 -

are
P d WY
3~ 27
9F
du

are

3G
and the corresponding eigenvectors of 55
gl = u 22 =
1 u’ v2
1t T g
uv
When splitting the F fluxes, the «
3
of Au= 3 a, e, are:
= : i =i
i=1
p ;AV
1 =

v-1

- Y(u2+v?)

V,/ v=1]2 2 a’

t [E] £ e

are
1 ey = 1
>\2 AB
v v
V/ ~-1]% > a®

t [E] * B

are

1 5 98 = 1
u u
x2 AB
coefficients in the expansion
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AB(alv-Ap) + A(pu) - auv

P zN ~s
2‘¢/TI§%} u® + a®/~
513”\7 - A(pu) + X2(Ap - av)

3 2
5 V/T?é%] W+ a’/~

where p, u, v are the Roe averaged values, and aZ = 1 - Lléll (Ez+;2)

ISR
1l

i.e. the Roe averaged sound speed, and A(¢) = <R - -L .

N.B. X2 and XB are the eigenvalues of az/aﬁ_ chosen so that X2
corresponds to the positive root, whilst XB corresponds to the negative
root. If reversed then the sign of 32 and 33 are also reversed.

Also the Roe averaged values of p, u and v used in the

eigenvalues, eigenvectors and a's are

5 - JRST

C SEESE
SRS

. VERSE

V/pR + v/;E
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Shock Captured, Density Residudl, 65 x 17 Grid.
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