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§1, Introduction

This report describes work carried out in developing various ideas, pro-
posed by P. L. Roe of R.A.E. Bedford, concerning data-dependent, monotonicity
preéerving finite difference schemes for non-linear conservation laws, including
in particular their extension to irregular grids.

Section 2 contains ‘an outline of Roe's original scheme on a regular grid,
along with his general approach to generating finite difference schemes.

Section 3 contains a new proof that Roe's scheme is monotonicity preserving.

In Section 4 a monotonicity preserving scheme on a restricted irregular grid
is derived which is conservative and also second ordér in certain smooth regions
of the flow. Section 5 contains a proof, along the lines of Section 3, showing
that the scheme of Section 4 is monotonicity preserving.

Section 6 describes scalar test cases to which the scheme of Section 4 has
been applied as well as the application to a Shock Tube problem, and references
the graphs of Appendix B.

In Section 7 a possible extension to an arbitrary irregular grid, using 3
parameters, is presented along with various limitations. Section 8 comments on
entropy violation and a possible method of avoiding this. These sections deal
with topics still to be investigated fully. g

Section 9 consists of a brief summary of previous sections.

Appendix A states and generalises an observation made by P. L. Roe on stab-
ility regions, whilst Appendix B contains a listing of the FORTRAN program used

for the test cases along with graphical output.



§2, Roe's Method

Consider first the simple linear scalar equation

Ut au = 0 (2.1)
where a 1s a constant. Discretise the region using a regular grid, with X
values at the nodes x = X, _4* Ax . The interval [xk—1 xk] will be referred

to as the k-th cell.

Equation (2.1) integrated over the k-th cell gives

i

*K
- I udx malu - U, _4) = -abu (2.2)

where for notational convenience u - u _4 = A_u is written as Auk '
uJ is the restriction of u(x) to the grid. (i.e. point values)

A time discretization then gives
*Kk
A I udx} = -aAtAu (2.3)

If u is regarded as a density then the l.h.s. can be thought of as the
change of mass in cell k over time At. Hence if the r.h.s. is distributed
\
with weights summing to unity conservation of mass is maintained. Once the

mass has been allocated, it is converted back to a density by dividing by the

length Ax, and added to u at appropriate points.

A
: . ]kl _{_
Thus we have
X
A J k At
AX . udxyp = g bu, = g, (2.4)

k-1

where By is the familiar quantity used to increment values of u in several



well known algorithms. For example, in first order upwind differencing it is

used to increment Uj if a >0 and to increment Uj-1 if a<0., The not-

ation v = aAt/Ax will be used for the C.F.L. number.

If 8 is used to increment and u_ with weights o, B respectively

Yk-1 k

then these weights can be chosen to give a second order accurate scheme, namely
Lax Wendroff. To obtain second order accuracy it suffices to choose o, B
such that polynomials of degree zero, one .and two are convected exactly, the
exact increments being 0, -aAt, (aAt)? respectively.

i.e. scheme is:

K
Ut o= U toag Lt ng (2.5)

where subscripts denote time level t, superscripts denote time level t+At .

uk will be referred tc as the data, uk as the solution.

W.l.0.g. take xk to be the origin of x
u = -

zero-th order, = const, g's =0 . . zero increment as required

first order, u = x, increment -avAx=-BVvAx = -(a+BlalAt

exact increment -aAt .°. a+B = 1 (note same as for conservation)

-avAx2+BvAx2 = (B-a)abdtAx

second order, Uu = x2, increment
exact increment = (aAt)2 .'. B-a = Vv
giving a = %(1—v] B = %(1+v) (2.6)
\

Alternatively the gk can be distributed to two upwind points. If v >0 this

gives the scheme:

u® Ut gt ng_1 (2.7
Solving the second arder weights using the same procedure as above gives
1 1
Y = é[S-vJ § = 5(v—1] (2.8)
the second order Warming and Beam Upwind Scheme. Similar weights are obtained
for v <0, Other scheme's may be obtained using 3 or more weights, e.g. Fromm,

Roe, Lax-Courant (see [1], [2]).
So for all that has been done is to derive established schemes via a new

approach. Roe now introduces the notion of compatibility [1], namely:



Definition
A given algorithm is compatible, in the sense of Roe, with a given set of
data values {un} if the solution at each point within that set is bounded by

the data values from the interval containing the characteristic through the sol-

uticen point. That is
. n
< <
mln[un_N_1, uyd Su s mEXEUn—N—1, Un—N] .
where N < v <N+,

It i1s easily seen that given an algorithm compatible with monotonic data,
the solution set is also monotonic. That is a compatible algorithm is monoton-
icly preserving. This suggests (and it is borne out in practice) that ¢.arious
oscillations introduced by Lax-Wendroff and other schemes near shaocks will not be
produced by such a compatible algorithm.

Roe naow defines a data parameter 6 = (u_, , - un]/(un- u

n+4

of gradients) and shows that Lax-Wendroff and Warming and Beam (torward ard back-

] (in fact a ratio
n-1

ward) schemes between them provide compatibility over the part of 6-v plane

bounded by the C.F.L. condition |v|< 1 . See Figure 2.1
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Roe then proposes a switching strategy for switching between Lax-Wendroff
and the appropriate upwind schemes which ensure compatibility. This is shown
in Figure 2.2 and is implemented via the shifting of increments ([11).

So far only the linear equation (2.1) has been considered, but the nonlinear

equation
fg % [f(u)]x = 0 (2.10)
can be treated similarly. The equivalent‘uf (2.4) is
A | [%k At At
Bx L e B S T
k-1
= —vKAuK = By (2.11)
Af
where a = ol and v, = a i
k= Aug K kax *

the weights derived above are used, substituting vk for v appropriately, and
although it is not possible to prove the same degree of accuracy, empirical re-
sults suggest that thils is so. Moreover, with the switching strategy, these
results display an absence of spurious oscillation near shocks.

Roe's scheme can also be extended to systems of equations

gt Elw), =0 (2.12)

by decomposing into component waves in the directions of the eigenvectors of the
system using the linear Riemann Problem (see [2]). Roe has used his scheme on
the Euler equations, and has shown it to perform well on various problems. e.g.

Sod's [3] Shock Tube problem.



§3., Monotonicity Preservation

It should be noted that monotonicity &s used here means monotonicity pre-
serving in the sense that, given monotonic data {UK} the solution set (u®}
is also monotonic. This is distinct from monotone schemes, 1.e. ones which are
non-decreasing functions of each of their arguments (see e.g. Harten, Hyman & Lax

4D,

Roe’'s scheme, incorporating his switching strategy can be written as

k —
us = u o e ta (g "8 L. ) )
K K+1°K+1 Sk+1 k+1"°k+1 k+1 sk_1
Y BB * Ble Tg g )
K k
where
A+
_ %k b : .-
\)k = W_X » Sk sgn[\)k] gk vauk
F (3.1)
= 1 - = 1
uk 301 vk] Bk (1 + Vk]
A O R P
1, ) s
5(1 SK] lgkl S lgk‘skl
B =8 lg, | < ng’skl
1 >
2[1 + SK] |g|\| = |gk-skl

To simplify notation consider the linear case (f = au) for which Vv is
constant and we may drop subscripts on v, a, B and s, 1leaving

k = ) - ' -
u=u o vog o+ (g, g, )¢ Bg  +Blg -g ) (3.2)

= vy .
where gk u,
We can now prove algebraically that this scheme is monotonicity preserving
and also gives a lower bound on the gradients of the solution set.
Theorem 1

Given a subset of the data {Uk} which is monotonic then the soluticn set

! produced by (3.2) is



(i} monotonic

(11) such that |g¥] = min{|g, |, lg, g}
provided that the C.F.L. condition |v| €1 4is satisfied.
Proof

First it should be noted that since v is of constant sign, monotonic {uk}
is equivalent to the {gk} being of constant sign. To prove (i) it is therefores

sufficient tc show that if {gk} are of constant sign, then {gk} are of the

same sign.
Now gk = -v[uk N uk_1]
= -v[uK+ 1 Yeq” ik—1)
where u ¥ ik is given by r.h.s. of (3.2)

= B V0B gt B (BT Breqog) T BBt BB By
- ogy o7 (B Bg) T BB qg” BB Bqg))

k - = B
i.e. g = [1+v@-Bllg + vi@, -ollg o~ 8q) -

B
*(B - B - @+ alg .+ ng_1+(Bk_1- Bllg, _4- gk_1_s)} (3.3)
There are two distinct cases, v >0 and v <0
Case I v>0, s =1
(3.3) becomes (remembering that o + B = 1)
g = {1+ v(a, - B - adlgr VLB - G Wg gt Gy (B By)
+(B, 4= BYlg 4 g _p)] (3.4)
Consider first the terms inside the square brackets.
[Bk- &k+ a]gk_1 :- there are two possible cases, corresponding to
switch and no switching
switched: B8,= B, @, = a .". whole term is of same

K k

sign as k-1

unswitched: ‘k= B, &k= oo and again term is of

same sign as By-1
=



ak+1(gk- gk+1] if « =0 then whole term vanishes. If

ak+1 = ¢ this is the case when |gkl > ng+1|

and hence whole term is of the seme sign as gy

[Bk—1_ BJ[gk_1— gK-Z) If Bk-1 = B8 then the term is zero, if Bk-1 =1

this is caused by |gk_1[ > ng—ZI and since B < 1
whole term is of the same sign as gk_1

Hence expression inside square brackets is of the same sign as either

gk or g ._4 - This leaves the term
{1 + v[ak— B - al}gk
If &k = 0, EK = B we have [1-\)B)gk which, since both B and v are
less than 1, is of the same sign as gK . Otherwise we have

L1 - v(1+adlg,
= - Veaq |
= [1 2[3 v]]gK
= {1 - 31[1 - v)gk which is of the same sign as By for vel0Q, 1] .
Putting the above results together we have that if By and Bi-1 are
of the same sign then gk is also of that sign; hence proving (i) of the theoren
for v > 0.
To show part (ii)
if Bk’ By-q <C <0, we have from (3.4)

g, s {1+ v(&K— Ek— a)]C + v(EK- o, + a)C + two negative quantities

K
i.e, A <C.

Similarly if By 2C=20 then gk >C .

* Bi-1
These combined give
k . i . ; -
lg"] = mln{[gkl, ng_1|} for g, g, of same sign which is (ii)
of theorem for v > 0 .

For the case v < 0, s = -1, the counterpart to (3.4) is

k - o .
= [1 - = 7 = - - B+ 3 8
g = L1 - V(g -d - B)lg - vi(B B+ aKJgK+1+ Br-1(8c" 4]

*la -8 0308 07 8yql) (3.5)



The monotonicity preserving proof is obtained with similar arguments as for

v > 0, 1likewise as is the result
|gk| > mih{lgk+1|. lgk|} .

Thus the proof is complete.

The theorem can be restated to include *he nonlinear equation (2,10) with the
added condition that vk is of constant sign over beth the time step in gquestion
and the spacial regicn. That is the data should be away from sonic points
(f'(u) = 0) 1in both space and time. The proof of this will be demonstrated
from the extended proof to cover irregular grids given below.

From the proof it can be seen that the sign of -gk depends on only the signs
of By and By and hence if the data is piecewise monotonic, with each sect-
ion more than two cells in length, then the solution will also be piecewise mon-
otonic, the lengths of each section being no more than two cells different from

the lengths of the corresponding sections of the data. This can best be seen by

considering the data in Figure 3.1, with v > 0 .

cells A B C D E
Figure 3.1
If the data countinues monotonically at least one cell to the left of A, then
by the theorem gradients of the solution will be non-positive in cells A and B,
and non-negative in cells D andhE; The theorem does not predict the sign of the

gradient in C, but which ever sign it is, the solution is still piecewise mono-

tonic.
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§4, Irregular grids

We now seek a monotonicity-preserving difference scheme on an irregular grid.
Again we start with the linear equation (2.1) and then extend to the nonlinear
equation (2.10]}.

For irregular grids we still have

K

A J udxp = —aAtAuK (2.3)
*k-1

but now the appropriate length, by which to divide to revert to a density at point

k, is %[Axk+ Axk+1] since this is the length 'surrounding' point Kk

k=1 . k . k+1

1
2[Axk+ Axk+1l

Introducing weights Y and Gk‘ the increment at the point Kk 1is now

) 2Yk+1 aAtAuK+1 26K aAtAuK

Axk+1+ Axk Axk+1+ Axk

(4.1)

assuming that the mass from cell k is used to increment points k-1 and k
i.e. a centred. scheme. The weights are also subscripted since it is expected

that they will depend on the grid.
\

For conservation we need need the mass change given by (2.3) to be distrib-

uted exactly, i.e.
Yy + Gk =1 (4.2)

It is convenient to define

)

28X 4q a1 2bx, Sy
+ AX,
K

o E — B =
k+1 Axk+1+ Axk k Axk

X
K (4.3)
+1

so that (4.1) becomes the familar

% eq Braq OBy By (4.4)
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with g, = -vKAuk »oV = a%% (4.5)
K

The conservation condition (4.2) now beccomes

(Ax, 4+ Ax, Ja, + (Ax, + Ax, 418, = 28x, (4.6)
we have uK = Ut @ rq Braq® Bkgk (4.7)
i.e. pictorially °
Bk'gk /’ Iv\ ak+1lgk+1
X1 Ax, XK B, X1

Again we impose exactness when u is set equal to polynomials of degrée

0, 1, 2, to obtain a second order scheme.

This gives
T Axk_1 - alAt e Axk+1 + alAt .
k ~ Ax + Ax, " Pk :
k-1 k Axk + Axk+1
or, writing
R - Nk
3 Axk_1
a=1-vk-1,B=Rk+1+vk (4.9)
k 1+ Rk k 1 + Rk+1
Note that
\

The conservation condition (4.8) is equivalent to

Bxpeq™ Bx = Bx - Ax (4.11)

i.e. exact conservation is maintained on a grid where the lengths are linearly

related.
An upwind second order scheme may also be derived, namely

ut o=y o+ Y8y * 6k-1 8y -1 (4.12)

f'"—w BGPTSR

ey g — et 3
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Sk
/_.’_\
I 2
v I
Xk_1 )(k Xk+1

Yy Gk are given by

. - Axk_1 + 2AxK - aAt
k Axk_1 + Axk
' (4.13)
. . aht - Axk+1
k Axk + axk+1 ,
The conservation condition is
Yk[Axk+ Axk+1] + Gk(Axk+1 + Axk+2J = 2Axk (4.14)
(Ax, + Ax ) “(Ax .t Ax )
K k+1 k+1 k+2" _
l.e. (Bx, _,*+ 28% aAt](Axk_1+ Axk]+(aAt Axk+1](Axk  BXgy ) 28x, (4.15)

To ensure conservation the coefficient of aAt in (4.15) must be zero, i.e.

Axk+1+ Axk+2 N AxK + AxK+1
Axk + AxK+1 Axk_1+ Axk
1 + R R + 1
or — k*f - y;*“ —— (4.16)
R+ K :

If we test this with the condition on the central scheme, namely (4.11)

which is equivalent to

Riet * R =2 (4.17)

(4.16) becomes —

1R, ] 14 R,y "
37 Rez 37 Riuq

i.e. Rk = const = 1 (from 4,17) ¥k, a regular grid, so the schemes can only
both be conservative on a regular grid. This means that we cannot attempt to

switch between these schemes to preserve monotonicity, and still have conservation
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Consider now the scheme obtained by switching of the type given by (3.1},
this is equivalent to in cell k, if v > 0, distribute &1 to points
k-1, k with second order weights, then distribute gk-gk_1 with first or sec-
ond order weights depending on whether ng+1| > |gK| or not.
If v>0, and |gk+1| > |gK| > ng_1l point k gets taotal increment:
g Bt By B B T B!

¢ v 2 L e — = (a +’|]g +(B —']]g _ (4.18)
second order weights first order weights St koK k=1

We therefore have a scheme
k

L P R R L
with
ek_= uk+1 + 1 {4.19)
;:Axk+1.+ 2Axk - -aAt
Axk + Axk+1
b = Bran ~
i aAt - Axk+1
BXeq ¥ BXiaz

Note that 6k+ ¢k-1 ==ak+1+ Bk = 1, this first order accuracy condition, so
this scheme is first order, but not second order since the unique 2 parameter
upwind scheme is given by (4.12), (4.13).

The conservation condition is (4.14) with vy,8 replaced by 8,0 . This

gives

aAt - Axk+1+ Axk+1+ 2Axk- aAt = 2Ax

k

which is satisfied without any restrictions on the grid, so the fully switched

scheme is conservative on any grid, but second order only on a regular grid.
Since this type of switching is monotonicity preserving on a regular grid it

is plausible to suspect that it will also do soc on an irregular grid. This is

in fact so, as will be proved in the next section, but if compatibility is
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investigated, there are certain values of v (within linear stability region)
such that the switched scheme is not compatible. However, compatibility is a

stronger condition than monotonicity preservation, and in some cases is undesir-

able, e.g.

Consider data such that Ue_q = Yy but varies inbetween. Compatibility
will ensure that uk is bounded by Uy 1 and uk. i.e. here UK = uk_1 ,hence
clipping the peaks of any maxima or minima. (Figure 4.1)

---- actual solution

— numerical solution

-

time t /A,/r\:\ } time  t+At

Figure 4.1

As shown above, the scheme is only conservative on a particular type of ir-
regular grid, but, if some prior knowledge of the solution is known, this need not
be as restrictive as it at first seems. For instance, if it is known that over
a certain region of the grid Af is zero for the time period.in question, then
two grids may be joined here without loss of conservation, since the mase incre-
ment is zero. Similarly if it is known that ng-sl > |gk| over a region of
the grid for the whole time period, then again two grids may joined withcut loss
of conservation since the scheme will be in effect the Jpwind (4.18), on this part

of the grid, which is conservative on all grids.



%5, Monotonicity Preservation on an Irregular grid

The switched scheme on an irregular grid can be stated explicitly as

k —
TS Ut OaqBanes T Oken(Bran T Braqog )
k+1 k+1
(5.1)
8 Bkgk-sk + Bk[gk B gk-sK]
_ _ At
where S = sgn(vk), v = aK}k
AxK
g = - vAu, R =-—
K K*k* Tk BX
a = 1_:_5525 B, = 5511_:_25 (5.1a)
k 1 + Rk k 1 + Rk+1
* 7] % lg | < lgk-skl
21 - sk] ng| ng-s |
k
B = [ By el < g |
11+ s) g | = g, |
k
(Note Ve T Rkvk]
i.e o8 _. +alg -g.__ ) Big... *Blg -g. __)
k®k Sk k™=K k Sk k=k sK ‘k k Sk
*k-1 Ax, ik
We can extend the scheme to the nonlinear egquation by writing
AT
_ar 2 - - af o Af
vy = Z;k Auk, AuK # 0 1i.e. approximate m by T
.. At
B = T Ax Afk (5.2)
3
If Auk = 0, g, is simply zero (assuming f(x) is single valued), and

The previous

Au # 0 then

known value of v 1is used in the weights. If Af = 0 but

a new estimate for v will need to be taken if followed by Au = 0.
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We now state and prove the following theorem
Theorem 2

Given a region of the grid on which the data {Uk} is monotonic and the
local C.F.L. Vv does not change in sign over the time step At, then the
solution set {uk} produced by (5.1) is

(1) meonotonic

(11) such that |g"| 2 min{lg |, lg .o |}
K

provided the C.F.L. condition |v] <1 is satisfied.

Proof

On such a region of the grid, since v 1is of constant signh we can drop

the subscript on s.

k k k-1
vk(u u )

{

24

"8 T VOBt Ok (Bar T Baqog) * BiBres

* B le Tog) T MBs T % (B T g ) T By B4

- B ley_q ~ B_q-g)?

(using 5.1)

= [1 + vk[ak - Bk]]gk + vk{[ak+1 - ak+1][gk+1_s - gk+1)
5\
" OaqBaq (B T B o v e o By 48y
* g Bg) (Boq T Boqng) ~hoL2)

Take first the case v > 0, i.e. s =1, then

k _ . = =
g ={1+v(a -8 Aak+1)}gk + v 0B - +a ) _,
& ak+1[gk - gk+1] + [Bk-1 - Bk_1][gk_1 - gk_z)] (513]
(using %pq ¥ BK = 1)

As before we use the fact that for monotonic u, the g's are of constant

sign. The last two terms in the square brackets are of the same sign as of k



and By -1 by the definition of Ek+1 and Ek_1. The first term in the

square brackets is either (1 - uk)gk_1 if there is no switch or (1 + ak+1]gk-1

Rk = k-1
0 < o < 1 and hence the whole of [..... ] 1is of the same sign as either gy

if there is. Since <1 (to satisfy C.F.L. condition) we have

or g _4-

Consider now the term in curly brackets. If there is no switch this
becomes 1 - vk[1 - ak], and since both Ve and 1 - @, are <1 the term
is positive. If there is a switch then we have
1 - vk[1 + ak+1)

1 - vk(2 = Bk)

DR (2 + Rk+1 - vk]
k 1+ Rk+1
N F(vK] say.
2[vk - 1) - Rk+1
Now F(0) =1, F(1) =0 and also F'(v, ) = #0
K 1 + Rk+1

in interval [0, 1]; hence F[vk] 20 for v, € [0, 1] and thus the whole

k

r.h.s. of (5.3) is of the same sign as 8o Bx-q proving (i) for v > 0.

Now coneider the case where 8r 81 <K 0. (5.3) giveé

k — - — —
g < [1+ vk(ak Bk ak+1]]K + vk[Bk A fk+1]K + -ve terms

i.e. gk < K

» Be_q 2 L20 we get gk > L.

These two combined give

Similarly if g,

2] > mintlg |, g4}
for v > 0.

If v <0, then s = -1 and (5.2) becomes

k ) - = _ = o
g =01 VK[BK ak BK‘1]]gK VK{[BK_1 BK + ak]gk""]

+ Bk_,I[gK N gk_1) + (ak+1 - “k+1][gk+2 - gk+1]} (5.4)
Both (i) and (ii} follow by similar argumenis as for v > 0 thus completing the

proof.
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§6. Numerical results for the equation Ug * (%uz]x =0

In this section various initial-value test problems are used to illustrate
the performance of the scheme (5.1). These test problems are the same as those
used by P. L. Roe to demonstrate his modified version of MacCormack's Algorithm
[al. The results are presented graphically in Apperdix B. For each example
both grids with increasing and decreasing intervals are used. The grid points

X(I) and grid intervals DX(I) are generated by:

DX(I) = DX(I - 1)+ R
I =23, 4, ivas (6.1)
X(I) = X(I-1)+ DX(I)
where R, DX(2)} and X(1) are given. In the examples chosen x 1is taken in

the range -2 < x £ 2, i.e. X(1) = -2, with

DX(2}

0.01 and R = 0.005 for the increasing grid

and BX(2) 0.2 and R = -0.005 for the decreasing grid.
The problems were as follows:

Problem 1 - Shock wave.

The exact solution of the problem with initial data

ulx, 0) =1 x <0
(6.2)
u(lx, 0} =0 x>0
1 \
is ulx, t) =1 X < it
1 (6.3)
ulx, t) =0 X > Et

The problem was run for At = 0.005 and 0.009 giving a maximum C.F.L.
number of 0.5 and 0.8 respectively. The results are'shown in graphs B1-B4.
As can be seen comparing B1 with B2 and B3 with B4 the irregular grid appears not
to affect the solution. In each case the exact solution is superimposed on the
final timestep for easy comparison, and the profile is reproduced correctly apart
from a one pcint descrepancy. In graphs B5 and BB the unswitched scheme is used,
and as can be seen spurious oscillations soon develop behind the shock, these os-

cillations being absent from the switched scheme.



19

Problem 2 - An abrupt expansion.

The initial data

ulx, 0) =0 x <0
(6.4)
ulx, 0) =1 x>0
has the exact solution
u(x, t) =0 x <0
ulx, t) = x/t 0 <x <t (6.5)
u{x, t) =1 x>t
The results are shown in graphs B7 and B8. The scheme gives satisfactory

results, the greatest deviation being a slight rounding of the right hand 'corner’.
Again the irregularity of the grid appears not to affect the solution, and other

runs with different At's gave similar results. The unswitched scheme is shown
in B9 and B10 where it can be seen that it is again having difficulties with sp-

urious.oscillations which affect the profile of the expansion.

Problem 3 - .A shock-collision.

Consider the initial data

ulx, 0) =1 x <0
u(x, 0) =0 0 < x <1 {6.6)
u(x, 0) = -2 x > 1

The solution for 0 < t < 2/3 is

ulx, t) = 1 x < t/2
Culx, t) =0 t/2 < x < 1-t (6.71]
ulx, t) = -2 x > 1-t

while for t > 2/3 it is

ulx, t) X < 2/3 - t/2

L}
LN

(6.,8)
ulx, t) = -2 x > 2/3

t/2
(6.7) represents two shock waves approaching each other while (6.8) is the
solution when the shock waves have merged lnto one.

Graphs B 11 and B 12 show the results, with the exact solution superimposed
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at times t = 0.5 and t = 1.75. The method using the increasing grid, B11,
resolves the shocks better, with a bne point descrepancy at each shack whereas
the decreasing grid does not perform gquite as well.

Problem 4.

We take now the less simple problem with initial data

ulx, 0) = -2x° -1 <x<0
ulx, 0) = 2x 0 <x <1 (6.9)
ulx, 0) = 2 X < =13 x > 1
The compression between -1 and 0 steepens until at t = % it becomes
a shock wave. This interacts with the expansion and weakens, and then follcws
a curved path in the x-t plane.
i.e. the solution for 0 < t < % is
ulx, t) = 2x/(2t-1) 2t-1 < x <0
ulx, t) = 2x/(2t+1) 0 < x < 2t+1 (6.10)
ulx, t)} = 2 X < 2t-1, x > 2t+1
and for t > %
ulx, t) = 2x/(2t+1) x () < x < (2t+1)
s .
(6.11)
uix, t) = 2 X < xS[t); x > (2t+1)
1
where xs[t] = 1+ 2t - (2(2t+1))°* . 1

As can be seen from B13 and B14 results on the decreasing grid follow the
solution more accurately, although neither is exact in the region of the shock.

Problem 5.

The final example is a combination of Problem 1 and Problem 2. The initial

data is
ulx, 0) = 1 x < -0.5
ulx, 0) = 0O -0.5 < x < 0.5 (6.12)
u(x, 0) =1 x > 0.5

B15 shows the results, the one-point deviation at the shock and the rounding

of the expansion, as seen in Problems 1 and 2, being apparent. The results were
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the same for both grids here and so only one is reprnduced here.

It is not claimed that an irregular grid has advantages where a regular érid
would suffice, but that should an irregular grid be desirable then the scheme
(5.1) gives good results without any spurious oscillations around the discontin-
uities of the solution.

Also reproduced in B16 and B17 are the results obtained when Sod's [3]
well known Shczk Tube problem when solved using Roe's second order scheme on a
regular grid and the scheme of Section 4 on an irregular grid respectively. This
demonstrates the straightforward extension to systems of conservation laws of

these schemes.
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(7]
~3

A Three Parameter Scheme

As mentiocned in Section 4, the centred 2nd order scheme (4.7), (4.8) is
conservative, only on arithmetric grids, i.e. grids with a linear relation
between their cell lengths. This is not suprising, since there are three
non-trivial conditions to be satisfied, ‘conservation and first and second order
accuracy, but only two weights. Therefore to achieve second order accuracy
and conservation on a general grid, a minimum of three weights will be needed.

Such a scheme with three parameters will have the form

Kk _
UT Ut B T BB T Y4By (7.1)

The conditions to be satisfied are

first order accuracy

ak+1 + Bk + Yk_1 = 1 [7-2]
~ second order accuracy
_Axk+1ak+1 + Ax B+ [Axk_1 + ZAxk]Yk-1 (7.3)
conservation
(Bx g+ Bxdoy + (Bxy o+ Bxy 3B+ (Bx 4 % B o)y (7.4)

If we solve (7.2) - (7.4) we obtain for the as and Bs

- \
Bxy_q - @bt + (Ax 5 + Bx )Yy )

[0} =
k (Ax, _, + Bx )
k=1 Tk (7.5)
. . Axk+1 + alt - [AxK+1 + 2Axk + Axk-1)Yk-1
k (Ax, + Ax )

k k+1
while for the ys we have a recurrence relation,
(Bxy g * DX )Y = (A g 28X+ A gdy g+ (X o+ A g )Yy

o F2Bx - Xy, (7.8)

= -AX
where Yg* Y4 8Te so far arbitrary.
If this scheme is tested numerically it is soon found that for most values

of Ygr Y4 the solution very quickly becomes unstabile. This can be explained
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by looking at the linear stabiliity of the scheme. The amplification factor is
given by |

[K|2 = 1 + 4v2s*(v2 - 1) + 1Bus*y{2(2y + 1 - vIvs? + 1 - 2v} (7.7)
where s = singéﬁ.

The stability region in the yv-plane:is given in Figure 7.1 and it can be
easily seen that for a general grid it will be extremely difficult to choose
Yg* Y4 so that the recurrence relation (7.B8) keeps Yk in the stability region
Yk. So again the grid is in effect restrircted.

One possible application of this scheme is where it may be desired to inter
face two constant grids. To do this using the two pérameter scheme would nct
ensure conservation unless the join were in a region in which the data/solution
had small or zero gradients.

The small infringement of the conservation condition (4.8) would be amplified
at each stage, giving inaccurate shock locations. However it can easily be
shown that if y 1is constant on one of the grids, then except at the join, Y

is also constant (different) on the second grid.

The relation between these constants is

_ p2
YR =.1__R_+.1_-YL [7-8]
4R2 R?
\
where YL is the constant on lefthand grid, YR the constant on the right hand
Ax

grid and R = Z§5 is the ratio between the grids.

. L

Hence using a graph, such as Figure 7.2, it is possible to choose Yg =Yy
appropriately so as to ensure conservation and linear stability on both grids.

Unfortunately, however, this scheme is not monotonicity preserving, and it
is not apparent how to extend the method used in the above sections to achieve
monotonicity nreservation in this case. The scheme will hence suffer from the

spurious oscillations often found with second order schemes like Lax-Wendroff.
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§8. A Note on Entropy Violatien

The equation

u + flulx = 0, ulx, 0) = ¢(x) {(8.1)

t

can be written in the form

u, + a(u)uX = 0, alu) = — (8.:2)

t

This asserts that u is constant along the characteristics x = x(t) where

el a(u) (8.3)

Since u 1is constant along these characteristics so is a(u) and hence
from (8.3) the characteristics are straight lines, whﬁse slopes depend on the
solution. These lines may. intersect for ncnlinear f, and where this happens
the continuous solution breaks down. Therefore to get existence for all time,
weak solutions, which satisfy

o g
f I [wtu + wxf[u)]dxdt + Jw wix, 0)¢(x)dx = O (8.4)
0 -0 -0
for all continuous w(x, t), of compact support (j.e. only non-zero in a
finite interval), are admitted.

However, the class of all weak solutions is such that there is no unigueness

for the initial value prob;em (8.1) and hence an extra condition is required

to determine a physically relevant solution. This can be taken as the limit

solutions of the parabolic equation

u, * f(u]x = e[B[u]ux]x Blu) >0 as & - 0+ (8.5)

Oleinik [10] showed, that discontinuities of such solutions can be charac-

terized by

flu) - f[uL) flu). - f(uR]

>SS > - (8.6)
u - ug

l.l"UL

for all u between uL and UR'

discontinuity and Uy, are the states on the left and right of the discon-

where S 1is the speed of propagation of the

tinuity. Thie is called the entropy condition, and weak solutions satisfying
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(8.6) are uniguely determined hy their initial data, see [41], [5]1, [6] and
others.

Consider now the data (see [71)

ulx) = -1 x <0
(8.7)
ulx) = 1 x >0
for the equation Uy (du ]x =0
= = 1 < 1
f[uL) f[uRJ 20 0 < f(u) <3 Y ue [uL. uR]

The left band side of (8.6) is negative while the right hand side is
positive, so clearly the entropy condition (8.6) is violated. (Here S =10

by Rankine-Hugoniot relation f(uRJ - f(uL] = S[uR - uL]]

Now consider any of the schemes mentioned in the previous sections,

Afk = 0 V k and hence at each time step all the increments are zero. Thus
(8.7) is produced as a steady state solution and the schemes do not always
produce entropy satisfying solutions.

This is due to the fact that for the cell in which the discontinuity lies,
the nett increment is zero, whereas if the cell were subdividéd so that the
division was at the point where f'(u) = 0 (the sonic point) then the 2 incre-
ments derived would be equal and opposite and the steady state solution would
be disturbed. N \

This suggests a possible way of overcoming this entropy violation. We
proceed as follows.

If fk =0 but uk # 0 divide the cell k into two at the sonic point
{(obtained by interpolation), calgulate new mass increments for each of these
cells and distribute these increments with first order weights.

If the discontinuity is entropy satisfying (characteristics pointing to-
wards it) then the increments will go to the imaginary point and cancel. If

however the discontinuity is entropy violating then the increments will to to

points Kk and k - 1 and thus disturb the discontinuity.
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It should be noted that this procedure is purely speculzative at present

and has not been tested.
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§8. Summary
A monctonicity preserving algorithm on an irregular grid has besn developed
admest
which is conservativekand, for parts of the flow, second order accurate. There

are restrictions as to the grid, but as is pointed out in Section 4 these are not
as severe as might at first seem. This sckeme may easily be extended tc systems
of conservation laws, using the Riemann problem approach adopted by P. Roe [21,
as demonstrated by graph B17.

The scheme has been run on various test problems and has performed well sup-
pressing oscillations. It may transpire that a pertinant choice of grid will
improve the results further.

Two particular lines of approach to be investigated more fully are the three

parameter scheme (Section 7) and entropy violation (Smction 8).
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Appendix A

An Observaticn on Stability Regions

In a private communication, P.L. Roe mede the following observation.
On regular grids, any centred 2 parameter first order scheme can be written
as

k _
ut =gt lgk + (1 - A)gk+1 (A-1)

where A dis a parameter.
On analysing the stability, the amplification factor K satisfies
IKJ2 =1 - 2v(2x - 13(1 - cos m) + vZ(2\ - 1)2(1 - cos m)?2
+ v2(1 - cosZm) (A-2)

This gives the stability region shown in Figure A1. Roe goes on to observe
that many well-known 2 parameter schemes can be shown as lines on this region,
including Lax Wendroff second order scheme and Richardson's unstable scheme.

Following this lead, it is possible to show 3 parameter schemes on the

stability region shown in Figure (701) reproduced here in Figure (A2).
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Appendix B

A Fortran program to solve u (%Ozlx = (I and graphical results

This program has been included to demonstrate how the somewhat complicated
looking scheme (5.1) can be easily programmed.

Subroutine STEP implements the scheme (5.1) by first allccating the tiown-
ward increment gk-s with second oider weights, then testing the gradients
and finally allocating the difference B " Bk-g with first or second order
weights, whichever are appropriate.

The scheme works in such a way that the effective boundary conditions are
either transparent (i.e. "no boundary”) if the wave is moving inte the boundary
or constant if the wave is moving away from the boundary (for a discussion on
boundary conditions see [8]). There is also a compiling option to have the
unswitched scheme.

Subroutine MESH sets up the mesh and determines the number of points,
ILIM, used. Subroutine INITIAL initialises u with the initial solution
ulx, 0). This subroutine is changed for each problem.

OUTPUT and the other external subroutines are all concerned with graphical

output and in no way affect the operation of the scheme.
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