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1. INTRODUCTION

Recent work on the Moving Finite Element (MFE) method at Reading
(Wathen (1882), (1984), Wathen & Baines (1983), Wathen, Baines & Morton
(1984), Johnson (1984)), has shown that, contrary to earlier impressions,
the method is practical and effective, particularly for hyperbolic problems,
and possesses some unexpected properties. The original idea of Miller
{Miller & Miller (1980), Miller (1981)) has been developed by the above
workers without recourse to.penalty functions and good results have been
obtained for scalar hyperbolic conservation laws with shocks and for scalar
convection diffusion problems. Here we review and discuss further the
application of the MFE method to evolutiocnary partial differential equations
of the form

U, = L(u) , (1.1}

where L(u) is an operator involving only spatial derivatives.

A summary of the MFE method is as follows. The object function u 1is
represented by a piecswise linear continuous spline v which can be written
as a linear sum of time dependent linear basis functions o , ones which take
the value 1 at a (moving) node and zero at all other nodes. The time
derivative of this function Vi is a linear sum of the o functions and
related B functions where B = -(Vvla (see Section 2 for more details).

The coefficients of o and B8 1in vt are the time derivatives of the

nodal heights a and nodal positions s denoted by & and & respectively.

The L2 residual

vy = LOD] (1.2)

t
is then minimised over the & and §, giving the MFE equations
Alyly = gly) (1.3}

where y 1is a vector of a’'s and s's, A(y) 1is a symmetric positive

definite matrix with block elements of the form
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<0L ’ 0L> <a: J_B_> _]

T (1.4)

gle> <8 L.e>

and _
|<0LJL[V].>

- 15
gly) e (1.5)

The MFE equations (1.3) are a set of ordinary differential equations
for y and hence a and s. The variation of the function v {and the
mesh) with time is obtained by numerical integration of these equations.

If D is the matrix consisting only of the diagonal blocks of A,
it has been shown that D_1A is exceptionally well conditioned. Moreover

A may be decomposed into the form
A = N'Q CaN (1.5)

where C is symmetric positive definite block diagonal, @ is a
permutation matrix (unnecessary in the one dimensional case) and N is
rectangular block diagonal.
The method was originally used to solve parabolic equations with the
use of additional penalty functions to deal with possible singularities
of A(y). It has also been used without penalty functions to solve
hyperbolic problems with shocks and diffusion problems with steep fronts.
The pattern of the report is as follows. In Section 2 we discuss
in detail the form of basis functions and their time derivatives. Then
in Sections 3-5 we discuss exact and approximate solutions of scalar partial
differential equations of the form (1.1) for certain special L(u),
concentrating first on general results and then specialising to one dimension.
In Section 6 time stepping considerations are discussed including shock
modelling. Section 7 is concerned with boundary conditions while Sections 8
and 9 cover the extensions of the method to systems and to multi-dimensions,

respectively.



Finally, in Section 10, some pointers as to the likely success
and limitations of the model are presented.
I should like to acknowledge useful discussions with several

people at Reading University, particularly Andy Wathen.



2. BASIS FUNCTIONS

The essential additional feature of the MFE representation is the
inclusion of mesh variation with time in the usual Galerkin finite element
approach.

We shall write the finite element approximation in the form
v o= 2 a.o, (2.1)
3 Jl oJ

where aj is the coefficient of the basis function aj. In the case of
fixed finite elements (FFE) aj is a spatial function depending (in a
passive way) on the position of fixed nodes while aj may depend on time t.

This dependence is expressed by writing

vy a;(t)a,(r,s) (2.2)
N

where the position vector r gives the spatial variation and the vector
s gilves the (passive) dependence on the nodal co-ordinates sj.

The extension to moving finite elements is effected by allowing s
to depend on t, viz.

v o= Z aj(t)aj[gjgjt]J ; (2.3)
J

In order to study the solution of svolutionary differential equations

it is necessary to differentiate (2.3) with respect to time. Since t appears

twice in (2.3) we obtain

VY A (t)a,(r,s(t)) + a, (t)d,(r,s(t))], (2.4)

where the dot denotes differentiation with respect to time. Now, by the

chain rule,

90, .
6,(0,8(t)) = ] 8,(t) o= (r,8) = s(t) - Y o, (r.8) (2.5)

J J 3

so that (2.4) becomes (dropping dependent variables)



.Y aa, +) a Zém—i (2.6)
at 373 : i 3 J asj '

By interchanging the order of summation and writing

By = Z 2,V oy (2.7)
1 J
we obtain
av ) .
— =) [d,a, + 5, - B.1 , (2.8)
at § JJ - Eﬂ

where -Ej is a second type basis function dependent not only on
and s but also on a, the vector of nodal coefficients. From (2.7)

and (2.3) we can write

oV
. v v , PR (2.9)
ﬁﬂ -5 Bj asj

We illustrate the form of Ej in the case of piecewise linear basis
functions aj which take the value 1 at node j and zero at all other

nodes. In any element adjacent to node j (with a co-ordinate sj] we

can write the linear function v as

v =a *om, (c. - s.) (2.10)

where Oj is a co-ordinate in the Sj direction and aK is the value of

v at an arbitrary point s in the element. The slope m is given by

k Jjk
a.-a
My = = K (2.11)
J 9 B3
where aj is the coefficient associated with the basis function.
Then

0g.,.-s

a, = 2=~ (2.12)

= s,, and

taking the value 1 at cj



aj—ak -,
B. =V V=Y a + (o, - s8]
4 Y - k
y —SJ SJ K SJ S, J J
(a —ak]
R = (g, - s, )8, (2.13)

(sj—sk)z ] K™ =j

where éj is a unit vector in the direction of increasing Gj' Finally,

using (2.11) and (2.12), we obtain

.= -m 0.8, = |7V a, (2.14)
By 1K 323 [zoj ] %3

in that element. [See also Lynch (1981)1.

Thus in this case the second type basis functian ﬁj has components
which are multiples of qj and have the same support as aj' The result
is true for linear basis functions in any number of dimensions. Diagrams

illustrating o's and Bg's in one and two dimensions are shown in Fig. 2.1.

A AL s

(a) one dimension (b] two dimensions

B

FIG. 2.1 : Basis functions o and B

Consider now a single element k. For each node 1 which is a
vertex of the element, let ¢Ki be the linear function which takes the

value 1 at node 1 and zero at the other vertices. Then the approximation

v = z Z ai0ki (2.15)
k 1

is linear in each element but discontinuous from element .to element in

general, unless the aki's are constrained. Then, using (2.8),

vy = é ; (& 0ks * Seq © Yyyl (2.16)

where, from (2.14),



Yy 77 Mabka &5 7T [V—ski“'] i (21

since ¢Ki is linear in the element k and takes the value 1 at node 1.

Thus
Vi = ) Z [aKi aEEDFRL R .V] Pps (2.18)
k i ki
=) z Weibks ¢ (2.19)
k 1
* =1 5 - ¢ . . N
where Wi T 944 81 v, .v (2.20)
ki
In this case Vt , as given by (2.18), lies in the same space as V.
If a4 is constrained in (2.15) so that v 1is confinuous from

element to element, as is usual, then v can be written

vo=) a0, (2.21)

where uj takes the value 1 at node j and zero at surrounding nodes.
This is the usual nodewise representation which results in a continuous
function wv.

Since the basis function aj is made up of several element basis

functions each of which is linear and takes the value 1 at node j,

Opi”
we have from (2.8) and (2.14)

v, =) [do; + 5+ 8] (2.22)

where

AY;

ﬁ_. = v « ’ B' =R — o . = [2-23)
J oy J J aoj J

Now ﬁj is a different multiple of uj in each element adjacent to node

j, since the gradient of v varies from element to element. Thus, although

the function v 1s continuous, its time derivative vt is discontinuous

and lies in the space S spanned by the basis functions o, and

B hj By

Note that in two or more dimensions the space S is smaller than the space

of

* N.B. wki is called Wki in Wathen & Baines (1985).



S¢ spanned by the ¢Ki although contained in it: this is because in those
cases each element has fewer nodes than a node has surrounding elements (see

Fig. 2.2(b)). With this proviso the form (2.18)-(2.18) can be used for v

L
These results hold generally in any number of dimensions.
‘.¢.-
.4t”1€;>g‘i. o
—a.
o
]
: '
URRLY J
element Kk node j
{a) one dimensional basis functions (b) two dimensions {plan view)

FIG. 2.2 : (a) Nodewise and elementwise basis functions in one dimension

(b) Elementwise and nodewise numbering in two dimensions (plan view)

Specialising now to one dimension, we note here that Su the space

6,
spanned by the aj and Bj (there is only one component of Ej] is of the

same dimension as S¢, the space spanned by the ¢Ki (see Fig. 2.2(al)). This

is special to one dimension and ¢K1' ¢ or uj, Bj are equivalent

k2

alternative basis functions for Vt' It follows that, for a continuous

function v

v = g ajuj = E [ak1¢K1 + ak2¢K2] , (2.24)

say, the time derivative v, can be written, using Bj = -muj from (2.23)

(m is va, in the form

Prq * %2 T MkEkatke T Mkk2fk2!

v, =) (60 + 8,8,) = E &, ,

t :
J

= E [wk1¢K1 + b o] (2.25)

where

W = 4 - m 8
k1 k1 k™ k1 (2.26)

ko T %2 T ™Bke

[mK is m din the k'th element].
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A way of increasing the degree of approximation of v while preserving

continuity is to add to (2.24), in a hierarchical manner, higher order terms

with various continuity properties. For example the basis function

@K = [SKZ - x)(x - Sk1]

may be added to give

vislagbg t et E S oy = XIx = 8y y)
which is piecewise gquadratic with simple continuity at the nodes.
Differentiation of (2.28) with respect to time yields

t " E W@ * Yo%z S T Sk

_— L
1003 bp 7 3 q88 4y

where

That is

= - A - C § = - 2 i
Vg E U q = Bse 8 3y, + T, + 43 o8l

which lies in the same space as V, spanned by the ¢k1’ ¢K2 and Qk'

In the above discussion on piecewise linear basis functions the

gradients are piecewise constant and therefore have low accuracy. We pass

on now to consider the right hand side of (1.1) and special forms of LI{v)

which lie in the spaces already constructed.

(2

(2

(2.

(2

(2

.27)

.28)

29)

.30)

.31)
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3. "EXACT” L(u)

Having considered the form of vt in some detail in Section 2, we

now investigate the form of L(v]), where L 1s an operator which contains
v and its space derivatives but does not contain time derivatives of wv.
Interest centres on forms of L(v) which lie in the same space as

v since there is then the capability of matching L(v) and v in the

t’ t

partial differential equation (1.1) with no error. We call such a correspondence
an "exact” match.

If v is of the form (2.21) v, lies in a subspace Sas of the space

S spanned by the The space S¢ consists of all functions which

¢

are linear in an element but not necessarily continuous across elements.

¢Ki'

We note that any linear function &(v) of v 1lies in S although it is

also continuous across elements.
Moreover Vv also lies in S¢ since it is piecewise constant and
discontinuities across elements are allowed. Any continuous function f(Vv)

of Vv will also have the same property.

Taking these two observations together we note that the function

Llv) = f(vvialv) (3.1)
of v lies in S¢. For an exact match, however, it must lie in the
subspace SmB and this is not generally true in more than one dimension.
In one dimension, however, an exact match is possible between Vi and

L(v). As a result expressions for éj and éj may be obtained giving ordinary
differential equations for aj and sj. If these equations can be integrated

exactly in time, exact solutions of the partial differential equation

ug = f(u )& (u) (3.2)
X

may be found for piecewise linear data. As we shall see this can be done

for the equation

U, = - uu . (3.3)
X



To illustrate how far this method can be taken, consider the equation

ut =y f

With v given by (2.24) and vy b

L lwady v Wbyl = L Hagfimd v glm e,

Kk Kk

+ {aKZf[mk) + g[mk)}¢K2]

from which, by exact matching,

Wik T fka T Mk
W2 T %2 T ™Sk2

using (2.26). Dropping the suffix

a, ~ms, = a1f[m]
a, - ms, = azf(m]
Now
a
m:
)

and, subtracting the two eguations

a, - é1 - m(s

11-

[ux] + g[uxl

y (2.25) we have

akqf(mk] + g(mkl

i

asz[mk] + g[mk]

k we have

+ g(m)

+ g(m)

(3.7), we obtain

-5,) = (a, - a1JF(m]

2 2 1 2
which, on division by s, = 84 gives
dm _
d_t = mfim)

Exact integration is possible in a number of special cases of

f. In particular if

flm) =

m.

(3.

(3.

(3

(3

(3

(3

(3.

(3.

4)

5)

.6)

.7)

.8]

.9)

10)

11)



where p # 0, we obtain

J dm
1
mp+

which gives

mP

while if Ff(m} dis constant m

if f(m) = 0 m

_’]2_

=Jdt

i (c
" plc - t)

is an exponential function of t,

is constant for all time.

Returning to the set of eguations (3.8) for all Kk

equations either side of node

where L, R

Eliminating éj

Jj, we have

- msz = ajf[mL] + g(mLJ
= mst = ajF[mR) + g[mR]

a constant)

(3.12)

3. 1))

and taking the two

stand for the left and right elements adjacent to the node

from the equations (3.14) and excluding the case

we have
’ 1 ) F[mL] f[TR) g(mL] g[mR]
m o) o mom | O m om
L 'R L L R L R
dropping the suffix j.
If f(m) = m” where p #0, m is given by (3.13) and
P mp_1\ m_qg[m ) m_qg[m )
. L R L L R R
a = a +
=T ] T
L R L R
Now = 1 1
p-1 _ p-1 P ]
m’ s 1 [CL-tJ = [CR-t]
S N
(e, = 87 = (og - t) |
1 i)
_ 4 1P _ 3P
= o3¢ log |(e - t) (cp - t) ‘
-1
I p -1
= Gt o { P ™ T "R '}

(3.14)

RJ

{3.15)

(3.16)

(3.17)
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so that (3.16) can be written
-1 -1
m g[mL] Mo g[mR]

da a ).
dt [lm—1 _ m—w 1 T (3.18)
L R L R

Again, exact integration is possible in a number of special cases of g,

notably g(m) = m and g(m) = const.

If £ =0, m is constant, and integration of (3.15) gives

m gtm ) - m_ g (m 11
g % |t £ RJt+aD (3.19)

m—/l = m—/I
L R

which, in the special case g(m) = m, becomes

a =a . (3.20)

For other ¥ and g numerical integration is possible.

A different linear combination of equations (3.14) gives

-[mL = mR]é ={F[mL] . F(mRJ}a + g(mLJ - g[mR) (3.21)

which leads to s as a function of t. However, it may be better to use

the relationship
{3.22)
if the a's and m's are already known.

Using the above method exact solutions are obtained for the particular

partial differential equations

u, + wP =0 (a)
t X
u, +ud =0 (3.23) (b)
t X

p —3
u, uu 1 (c)

with piecewise linear data. In the case (3.23)(a) with p =1 the method
is precisely the characteristic method (Wathen (1984}].
Turning now to v's of the form (2.28) we note that here Ve lies

in the same space as v (in one dimension). Since 1in any element v is



quadratic any linear function
Also, since vx

Moreover Vv
XX

L0v)

_/14_

of v

lies in the same space.

is linear, any quadratic function

is constant so any continuous function f[vxxl

q(vx] lies in the space.

lies in the

space. Taken together, the function

L(v) = F(vxx][q(vx] or %(v)) (3.24)
of v lies in the space spanned by the ¢K1’ ¢k2 and @K. An exact
match is then obtainable between and L(v), so that expressions for

t

a, éj and ék can be found and ordinary differential equations solved for
aj, Sj and Cj' Included in this class of partial differential equations 1is
u, =u (3.25)
XX
and u, = (uu ) (3.26)
XX
With v given by (2.28) and vy by (2.31), equation (3.25) becomes
i . . . o 2
E [Oweq = 850800 * My * BiSiB8ip) * 8] ZK S (0hq * 0!
(3.27)
so that, dropping the suffix Kk,
Wy - As 51 = = 2C
w, + As ¢ 8, = 2c (3.28)
é -
from which the local curvature c of the approximation is constant,
g say, and
W, - As g = - 2c
b o (3.29)
w2 + As 0 S, = - 2c
Using (2.26) we obtain, for each element,
&, - (m - c As)s, = - 2c
L . ! . (3.30)
a, - (m + CDAS)SZ = = 2¢
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so that, subtracting,

a, - a, - m(s, - 51] - CDAs[S +3) =0 (3.31)

1 2

Dividing by As and using (3.8) gives

dm _ . .
= 00[52 + 51) (3.32)
leading to m = 00[52 + 51] +my (3.33)

where m is a constant. Then (3.30) becomes

0
a, - (2 c.s, +m)&, = - 2c
! UL i (3.34)
a, - (2 GgS, * mO]s2 = - 20U
which integrates to give the relation
2
cs, ]
a - { -t mDS1J = - 2ct + d (3.35)
in each element.
Consider now the node J and the two equations from the set (3.30)
relevant to that node. Denoting elements to the left and right of node j
by L and R as before, we have
5 ) t + d
= — + = - +
a - leg 5 * My s 2 g 2L
(3.386)
B ) 2 6t +d
= —_ = -
8 - logg 7 * Mygs “oR 1R
Subtraction gives
52
[CUR - GUL] > * (mOR mDL]S + 2[0DR CDL]t [d2L d1R] =0 (3.37)

the solution of which provides s as a function of t. Then (3.36) provides
a as a function of t.
For the right hand side (uu_) of (3.26) we consider wuu_ = uu + u?
X" x X XX X
which in the k'th element has the form
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- - =] 2 = 2 2
20,8401 T 20808 T 2Ry Aoy (m o as)fe,
- R 2
(mK CKAS] 2 (3.38)
so that, as in (3.28)
W, - chAs é1 = - 2::.a,l + {m + cAs)?
0 (3.39)
= - - - 2
W, + chAs s, 2ca,, (m - cAs)
¢ = - Bc?
The last of these eqguations provides
c = —1—_1— : (3.40)
(6t + cy )

which shows that the local curvature c in an element decreases with time,

while the first two equations, in terms of & and S become

é1 - (m + cAs]é1 = - 20a1 + (m + cAs)?
(3.41)
a, - (m - cA5J52 = - 2c:a2 - [(m - cAs)?
At a node
a-{m -c¢cAs)s=-2ca-m -c A 5)?
L L7L L L L™S (3.42)
. ~ - B )
a [mR CRARS]S ZCRa + [mR CRARS]

which gives & and § in terms of a, s and time t.

In higher dimensions where the function L(v) may lie in S but

¢

does not necessarily lie in the appropriate subspace SaB it is not possible

to get a direct match between vy and L(v). But we can minimise the

difference Ve - L(v) in various ways, one way being to project L(v)

into the space SaB containing Vt' This will lead to a set of normal

equations for the & and s.

We follow up this method in the next section.
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4. MINIMISATION OF THE RESIDUAL

For general forms of v and L(v) there will be no match between
the two because they lie in different spaces. In particular this is true
in one dimension when L(v) 1is not one of the forms discussed in Section 3.

For example, if v is piecewise linear and L(v])

vz\/x no match i1s possible,

and again if v 1is piecewise quadratic and L(v) vvX there is no match.

An important case is when v 1s piecewise linear and L(v]) = Vi @s in the
diffusion equation. The treatment of L(v) 1n that case will be discussed

in detail in Section 5.

The approach adopted here is a little different from the standard
approach described briefly in Section 1. We choose an approximate form v
for the object function u and calculate L(v) as usual. But we then seek
a locally linear best fit to L(v) within an element and match it directly
or indirectly to Vt' In one dimension the method is squivalent to that
described in Section 1.

We choose the standard linear approximation (2.21) for v and Vi
is then of the form (2.22). But we shall prefer to use the form (2.18)

with the proviso that the point in the space so obtained may not be

¢ki
in the space spanned by the aj and Ej' This proviso is not needed in one
dimension, however.

With the lipear form (2.21) for v we calculate L(v) which will

generally be smooth within an element but not lie in the space S of piecewise

¢

linear functions spanned by the ¢Ki' We therefore project L(v) 1into the

space S by obtaining some linear fit to L(v). This can be done in any

¢

convenient norm, although the L2 norm has some useful advantages.

Denoting the result of this projection by PL(v) we now try to match
Vi with PL(v). In one dimension this can be done directly and we shall

concentrate on this case now. The extension to higher dimensions (in which

a second projection is propcsed) will be dealt with in Section 9.
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In one dimension, then, within an element Kk we have

. .
PLOVE = B 481 Ckotkz L
whereas Vi takes the form (2.25). Thus, using (2.26), we have a match
between Vi and PL(v) 1if
w o, = a -ms =c
k1 k1 k k1 k1 (4.2)
"2 T %2 T ™2 T k2
which, as with (3.10), can be used to give
dm [ - C
E{K=HI5-2-—:-S—M ’ (4.3)
®2 k1
or, as with (3.14), can be regrouped to give
a, - m, 5, = c,
S (4.4)
&, - m, 5. =c,
i~ MR TR
Provided that mjL # ij we can solve equations (4.4) for
m, . c, - m, GC.
a; - JR %L - mJL IR (4.5)
IR JL
c c,
3, = IR (4.6)
R LR B
having obtained m from (4.3) or directly.
If m = m, = m, say, the pair of equations (4.4) is singular with null

L R

space vector [m 1]T. We may still solve the eqguations by taking a particular
solution, say éj = 4 , éj = 0, and adding an arbitrary multiple of the null
vector chosen to satisfy some external criterion (see Sgctian 10).

Integration of (4.3), (4.5) or (4.6) will depend on c and

jiL” SiR
generally must proceed numerically. Note that the MFE method up to here is
semi-discrete (leading to ordinary differential equations), and that any

numerical time integration making it fully discrete is simply tacked on to the MFE

equations: a fully discrete MFE approach does not appear tractable because of

the complexity of the B basis functions.
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An interesting feature of the MFE methodqgs described above is
its local rather than global nature. The calculation of L(v), projection

into S¢ and the matching with vt are all done within an element. The

k1 k2

information spread only over elements adjacent to node Jj. The method

W, o, W are evaluated within an element and the éj, éj are evaluated from

therefore appears particularly suitable to equations of hyperbolic type with
local characteristics. Of course a procedure for the formation of shocks is
needed for hyperbolic equations but this has already been done by Wathen
and Baines (1985)(see Section B). By the same argument it is less appropriate
to diffusion problems where global properties, such as a maximum principle
apply.

If the projection step is chosen to be an L2 projection the standard

MFE method is obtained. For then the ¢ ,, cC in the projection (4.1)

k1 k2
(which are equal to the W g Wi (see (4.2))) are given by
5 (4.7)
k2t e k2t %] [%ke O LD
which also comes from minimising the L2 norm ||vt - L(v) H2 OVer W ,.W, .,
- . T T .
Writing the matrix of (4.7) as CK and [CK1'CK2] = (WK1'Wk2J W this is
Cw =b (4.8)
_ T
where Ek [bk1' bKZ] and
bk1 = <¢k1’ L{v)> ka - <¢K2,L(v]> . (4.9)
To relate Wy to the éj, éj we use (4.4) which in matrix form is
M.Y. = W, (4.10)
Jiﬂ =5
where
M, = [1 -m, (4.11)
J | jL
b "R
. T
g 1= - .12
Yy [aJ 84 (4.12)

and Ww. consists of the two adjacent w's associated with node j.
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Finally, denoting by C the diagonal block matrix with blocks Ck and
by M the diagonal block matrix with blocks Mj we have apart from end
effects

(4.13)

O

B4
1]

=3

My = w (4.14)

T
where Ei = {Wj} , ET = {bk}T and QT

éj,éj . Note that the blocks of

C and of M are staggered with respect to each other.

Now the b vector can be written in terms of the g vector of (1.5)

by making use of the relations

= +
% T LT 4R
(4.15)
| T TR || DA
BJ JL¢JL JR¢JR
(c.f. (2.24), (2.25)), which give
o, ;
; ; EM
=M (4.186)
2] *3R
Then, from (4.9) and (1.5) we have
Mb = g . (4.17)
Combining (4.13), (4.14) and (4.17) leads to
I _ =
MCMy = g (4.18)

as for the standard MFE method (c.f. Wathen & Baines (1985)). These

are the equations obtained by minimising the L, norm fv, - L[v)H2 over

t

a and & when Vi is given by (2.22)(in one dimension). The normal

equations are

1]
o

<a ., Vi T L{v)>
d (4.19)

- L(v)>

1l
o



which leads to

Alyly = gly) , (4.20)

where A(y) 1is as in Section 1.

A consequence of using the L_ norm is that, summing the first equation

2

of (4.18) over all j (or the equivalent ¢Ki equations over all k,1i)

gives
SN+1
[ {vt - L(v)}dx = 0O (4.21)
)
and, if the, s_, s are fixed, this becomes
0 N+1
T e T B T
EE' I vdx B J L(V] dx . [4-22)
g 84

]

Thus, apart from boundary terms, the J N+1 vdx 1is caonserved with time,
]

a useful property to build into the modelling of conservation laws.

Moreover, if the first equation of (4.19) is multiplied by a_  and

J
then summed over Jj, we have
=Y
J N+1 {vvt - vL(v)}dx = 0 (4.23)
°0
and again, if 8q° SN+1 are fixed, this gives
é% J5N+1 V2 dx = 2 JSN+1 vL(v)dx . (4.24)
5y . s
If L is such that <v, L(v)> = 0, then J N*1 2dx 1is constant in the
SN+'] 50

same way as [ u?dx, another useful modelling property.

s
0
Because we have both equations (4.19) satisfied, (4.21) and (4.23) hold

locally, i.e. with s s replaced by s,, s . But (4.22) and (4.24)

0% “N+1 J J+1
do not follow because the local boundaries are moving and "leak” the
conserved quantities.

The L2 norm is essential for forms of the operator L involving

u (see Section 5).
XX
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Non-standard forms of the MFE method are possible, by means of
projections using norms other than L2, although for the reasons above
the L2 norm appears preferable.

One result that comes out of using the L2 norm is on the behaviour

of the slope mK that appears in equation (4.3), which may be written

K 1 1 -1
_ = —— [~ = — [- .25
= s -1 113& 1 s (-1 ’I]CK EK (4 )
k K
s B - S
= [&kajz (-1 1] <¢K1,L(v]>
>
<¢k2,L[vJ,
B B SKZ
= 153817 <IPK,L[V]> T [ wKL[\/)dX (4.26)
k k s
k1
where ¢k = _¢K1 + ¢k2" [Note that (-1,1) is an eigenvector of Cl. (4.27)
Hence, if L(v) =—FX[V)
dmK -6 Skz
= & EFZ_ JS IPK'FX[V)dX . (4.28)
k1
SKZ =
& =B . i
= TNOE E:'FKZ + 'FK,I A s J 'F[V]dX]J
k k 5
k1
_1? — ~
[%ﬂkslz {Fk Fk} (4.29)
_ . . (k2
o 1 PIELE
where Fo=df, + Fo) and  F 5,5 J flvidx . (4.30)
K1
It follows from (4.29) that if f is convex upwards the slope mK
decreases and if f is convex downwards the slope mk increases. If f 1is
dm dm
linear S is zero and if f 1s quadratic It « m?2, as before.

The separation of the stages of the method into a local projection
in the space S¢ together with a further projection also clarifies the
role of matrix singularities, a feature which early workers went to great

lengths to avoid.
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Thus, singularity of C i1n (4.13) depends on singularity of
CK in (4.8). From the fact that CK is gymmetric and positive semi-definite

and a multiple of A,s, singularity can occur only if AKS = 0. The

K
occurrence of this type of singularity will be considered in detail in
Section 6.

Singularity of M in (4.14), which arises through singularity of Mj

in (4.11}), occurs only when m, = m,

5L iR’ which corresponds to collinearity

of nodes or parallelism. In this case the spaces S¢ and SuB spanned
by the ¢Ki and aj,Bj are not equivalent. The projection PL(v]) of
L(v) into S¢ cannot be mapped uniguely into a point of SaB' Roughly
speaking, the solution has a "loose"” point whose position is undefined.

To get round this latter difficulty we can solve (4.10) for & particular
solution i; in the space SaB {with éj = 0, say) and add an arbitrary
multiple of the null space (see Wathen & Baines (1985)). The arbitrariness
can then be eliminated by imposing some external criterion, such as that the
loose point should move at an average speed or should be located after a time
step at an averaged point.

Note that in the case of parallelism there is less information contained
in the vector g of (1.5) than there is in the vector b of (4.13). Thus if

g is calculated, as in the standard MFE method, and (4.18) solved for v
then in the case of parallelism the effort in obtaining a particular solution
i* is greater because of thg lack of eigenvalue clustering of the
elementary spectrum of A*. If, however, we work with b and solve (4.13)
for w (which we can always do provided that AKS # 0) the difficulty of
obtaining 23 reduces to that of finding XE from (4.10), a relatively
trivial matter.

The particular solutiaon obtained by setting éj = 0 1s equivalent
to applying the method with one fixed node. Applying this constraint 1links
the elements to the left and right of the node j and the method loses its

local nature. This may be understood in terms of adjacent elements temporarily
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acting as a single element.

If several, or perhaps most, of the nodes are parallel (collinear)
and are temporarily fixed to obtain a particular solution, the constraints
become more widespread and the local nature of the method is lost, functions
in one element affecting the behaviour of distant elements. The fixed
finite element method has this character: indeed it is the limit of the MFE
method when all the éj = 0.

Although boundary conditions will be discussed in detail in Section 7
we note here that the imposition of a fixed boundary also gives a constraint
on the method. As we shall see, some condition must be imposed at boundaries
to prevent non-unigueness but the constraining effects do not affect the local
nature of the method.

Other kinds of constraints will be considered in Sections 6, 7 and 8
which are concerned respectively with time stepping, boundary conditions and
systems of equations. Next, however, we consider problems of diffusion type
involving second derivatives of u 1in space when the approximating function
is piecewise linear. This causes special problems in the evaluation of
L(v) and of inner products containing this term. It is these that we consider

in the next section.
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5. DIFFUSION OPERATORS

If we attempt to carry through the MFE method with a diffusion equation

of the form

ug = LW =V - (D(u)Vu) (5.1)

with a piecewise linear approximation (2.21) for v, difficulties arise
with the second derivative of v which does not exist except in a
distributional sense.

There are two ways forward here. One, due to Miller (see also
Mueller (1983)) is to use the L2 form of the residual and evaluate the
troublesome inner products using integration by parts, as in the usual fixed
finite element method. Special justification of this procedure is required
when using inner products with the B function; this is done by Miller on
the basis of mollification of the basis functions. Using the S space

aB
the inner products (1.5) for g, the right hand side of (1.3), are

<o,

|

- (DT> -

and <B.,
J

|<a

+ (D(VIVV)> » 8 = {Bj}.

Following Mueller, we use Green's identities and the vanishing of o (except

for boundary nodes) over the border of its support to obtain

<a, ¥V« (B(VIVV)> = - <Va, D(vIVv> (5.3)
and (c.f. (2.23)
<g;r T+ (DOVIIV> = - <a LT I (5.4)
J

av ) 9V

= - J V-[u——- D(V}Vv]dr+<v[a—— ],D[V]VV>
~ Moo, - —{ 30, =

j N

(5.5)

where the first term of (5.5) vanishes for interior nodes.
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Thus
<g;,% + (DT> = <0L2[%%] + & ga, DOIT>
B E (5.6)
5 <uv{§! ], D(vIVv> +<{§¥ ]Vu, D(v)vv>
. aoj = Bcj = =

The second term contains only first derivatives of v while the first is

equal to

) 1 4)2 = i o 2 - 1 2 __3_
IOLD[VJ BTJ. {E(ZV) }dr = J 50, {ED[V] [EV) }dT J z[zv] agj{aD[V)}dT

(5.7)
where, again, the first term vanishes for interior nodes. Thus we are left
with

3

{aD(v] }dz (5.8)

<Bj, v « (B(VIVVI> = <24é— Vo, DIVIVV> - 3 J (vv)2
, 3

J
which contains only first derivatives of v. The result is conveniently
written

<§j,V'[D[v]Zy)> - J [é[v] yfﬁftyq-yyl -3 yy)zyg_ {uD[vJ{}dr « (5.9)
J J
For boundary nodes, extra terms are required whose evaluation depends on the
application of boundary conditions (see Section 7).

The forms (5.3) and (5.9) contain only first derivatives of v and
evaluation of g can proceed in the usual way. Some cholce needs to be made
of the values of Vv at the element boundaries and this must be done in a
manner to be determined: Miller chooses, in one dimension, simple averages of
the left and right slopes (see below).

Another approach, suggested by Morton (1982), is to replace the second
derivative of v where it occurs in (5.2) by the second derivative of an
appropriate "recovered” function W. The recovered function is chosen to be
smoother than v, so that it may be twice continuously differentiated, but
is close to v in some norm. This mapping is a sort of anti-projection guided

by external information and is usually far from unigue. We illustrate the
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possibilities in one dimension where several candidates exist. Une

possible choice is the Hermite cubic WH within each element which is

chosen to match the function v at the end points of the element as well
as matching the average slope of v at the end points. The second

derivative of WH is lipear in each element and piecewise linear over

the whole range, being discontinuous from element to element. Hence

W p o My
= € S¢ although I LD[V]

We follow through the conseguences in the case D(v) = 1. In that

_TSJ E'S¢ in general.

case the right hand side of (5.1), which now takes the form

Bsz
u, = L{u) = e , (5.10)

lies in the space S and there is an exact match within each element

¢

between the left and right hand sides of this equation. Denoting by l"l,l

and M2 the average slopes chosen to match the Hermite cubic at 84 and s,

respectively (see Fig. 5.1), we have

92 W

H_ B _
55T - (heyr (M T My 2mixory .
- 252 251 (5.11)
where = T Bs [Ts]—z [MZ + ZM,]] ETSE) [M’l + 2M2] ,
FIG. 5.1 : Averaged slopes at nodes
which leads to the match (c.f. (3.6))
w, = é1 - mé,I :-TEQT; (M, +m, - 2m)s, * vy
= (5.12)
. . . _68 -
Wy = &y - mé, = qrgye (Mg # My - o2mlsy
Subsequent subtraction gives, as in (3.8) et seq.,
dm _ 6 _
S TagE M M- m (5.13)
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an interesting result since, if the straightforward choice

y z ) (5.14)
M2 = 3(m + mR]
is made (see Fig. 5.1), (5.13) gives
%% = TKST;-(mL Mo - 2m) (5.15)
(a finite difference discretisation of the equation
m_, = 3m (5.16)

on a smoothed out mesh). It is easily shown that (5.15) possesses a maximum
principle, so that m does not rise above initial and boundary values
(at least in the semi-discrete solution).
Indeed, as long as the averaging in (5.14) leads to a convex function
in 6.15) the maximum principle applies (c.f. (4.28)). In particular,
if we choose
1

M =E[m

’ + 5m), M, = %{m + 5m) (5.17)

L 2 R

- an unsymmetric choice - the 3 in (5.1) disappears and the equation for

m 1is precisely that for U (c.f. (3.25)]).
m_ = m , (5.18)
otherwise obtained from (3.25) by differentiation. This form of recovery

appears to give some consistency with the differential equation for m.

We can be more sophisticated by employing the recovery

l"l,l G.[mL - m) +m

(5.19)

"y

¢[mR -m) +m
where ©,¢ are chosen so as to give consistency with the differential

equation (5.17) differenced on an irregular grid with m taken to be at the

mid-pts. of elements. Then, denoting by O the co-ordinate of a mid-pt. of an
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element, the appropriate §,¢ are

5 = 1 (As)?
3 (o-oLJ(cR—cL]
r (5.20)
b= 1 (As)?
3 [OR’O](GR’OL] J

The choice (5.14) is used by Miller in the evaluation of his inner
products (see above). It has been shown by Johnson (1984) that in the above
case the Miller mollification method and the Hermite cubic recovery method
lead to the same MFE equations. This result shows that the recovery method
is as powerful as the direct method and more flexible.

An obvious alternative recovery is to seek a guadratic function Q(x)
which matches the derivative Vo in a suitable way. By matching @ with
m at the mid point of an element and with M1,M2 at the end points a
different w><x equal to QX, is obtained. The corresponding forms of

(5.12) and (5.13) are

4 1
w, =4, —~-mé, = ——— (M, + M, - 2mls, + v
1 1 1 (As)? 1 2 2 (5.21)
w, = a, - mi, = 2, + M, - 2m)s, + 71
2 2 2 (As)? 1 2 1
and (c.f. (5.13))
dm _ 4 _
ot - (Rs)® (M1 + MZ 2m) (5.22)

showing that the slope decreases more slowly for this recovery. The nodes
will not move in the same way in the two recoveries so there is no
incompatibility.

It can be shown using the above arguments that a recovery of any lower
order gives an unchanging slope which may not be sufficient for a good
representation of the solution,

A different choice of cubic recovery is afforded by the cubic spline

function Ws’ which matches the function v and its first and second
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derivatives at the interior nodes together with special conditions at
the end points. The second derivative of WS is again piecewise linear
but this time is continuous at the nodes. It belongs to the space S¢ .
in fact to the subset Sa of continuous functions in this space.

It follows from matching this second derivative to v in the equation

t
BZWS
- '. . + '- . = [5-23]
Yt ) (aJuJ SJBJ] ax?
BZWS
that, since there are no discontinuities in e
5, =0 Vj . (5.24)

So there is no nodal movement and the method is a fixed finite element
method. This type of recovery indicates that the motion of the nodes
is very sensitive to the precise form of the recovery.

One advantage of the spline recovery is that it links together
information from all parts of the region when evaluating the spatial second
derivatives. It therefore gives , as with implicit finite difference
methods, a means of linking boundary data to interior data to support global
properties like the maximum principle. Equation (5.15), in common with
explicit finite difference methods, fails to give this strong connection.
Thus both the Miller method and the local cubic recovery are susceptible

to instabilities. A mitigating feature is that the diffusion coefficient

3

TYSER in (5.15) becomes very high when the nodes run closely together, giving

high diffusion. Thus the method does not appear to need artificial diffusion.

Returning to the general case (5.1) in one dimension

ug = (D[uJuXJ>< (5.25)

there will be no match between the two sides of the equation for general
D(v) (except perhaps for rather special recoveries), and the minimisation of
the residual (or the best fit) in an appropriate norm will be needed. The

L2 norm is necessary for the Miller-Mueller approach described at the beginning
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of this section although with recovery this is not an absolute requirement.
However, the conservation properties which follow when the L2 norm is used
make this norm a natural choice in diffusion problems (see (4.21) et. seq.]).

In calculating the L2 projection, however, note that it is possible
to project into the space S¢ rather than SaB which gives more information
to the solution mechanism in higher space dimensions,and does so even 1in one
dimension in the case of parallelism.

Alternatively we can use a recovery approach with m replaced everywhere
by D(v)m. This may be the way to deal with the nen-linear case.

We end this section with a study of the model convection-diffusion
Burgers' equation

Up = - uu, * eu (5.26)

which has been studied by Herbst (1983) and Johnson (1884). Herbst
showed that for a solution with a steep front with a shock structure

and Neumann boundary conditions at s s

07 SN+1
SN+
1
2 — [ = 3
€ f u? dx 5 [uN+1 uo) (5.27)
0

holds both for the exact solution and for the finite element sclution, in

which case it takes the form

1
k 7§_[VN+1 - VD]3 " (5.28)

He pointed out that, since the right hand side of (5.37) is fixed, small
g's go with large z m; and, 1f the mesh is equidistant, a sufficiently small
e will require such a large Z m; that the only way of providing it is for

the solution to exhibit oscillations (see Fig. 5.2(al)). If the mesh is
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i
'
b

{a) {(b)

FIG. 5.2 : Representation of a front by linear finite elements for
(a) equidistant points, (b) unequally spaced points.

allowed to be irregular, or to move, however, there is no need for such
oscillations (Fig. 5.2(b)J).
Using the recovery described in (5.41) et. seq. and including the term

-uux of (5.25) in the manner of (3.4) leads to the equations

. . Be

éd, - ms, +a,m= My + M, = 2mls, + c

1 1 1 (As] 1 2 1 (5.29)

a, - m§, + a,m = BE (M, + M, - 2m)s, + C

2 2 2 [As)® 1 2 2
(c.f. (3.7) and (5.12)). Subtraction and division by As gives

dm . . _bBe _

G TE (M, + M, - 2m). (5.30)
How are Mq, M2 to be chosen in this case? If we take the differential
equation for m as a guide, we must differentiate (5.25) with respect to
X giving

2 =

m, *+um  +m EM o . (5.31)
If we regard the é%— operator in (5.30) as a moving operator, equivalent
to é% = g%-+ u g% , (since (5.30) arises from a moving grid differentiation)

consistency with the differential eguation on a smoothed out grid is obtained
as in the pure diffusion case (5.17). Similarly (5.19) and (5.20) give the

appropriate values of M and M2 in the more accurate irregular grid

1

differencing case.

When e = 0 (5.30) has the solution

n % (5.32)
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corresponding to pure convection. If m starts negative at t =0

{c positive)l m then approaches « through negative values. This is
correct for this data since we expect a shock to form. For the convection-
diffusion equation (5.26), however, this is not the expected behaviour.

We do not expect a shock and do not expect m + -« . Rather we expect

a dynamic steady state to be reached where the solution of

uu, = Euxx (5.33)

with its steep front is convected with a steady speed. Hence the recovery
of uXx should eventually be sufficient to match the left-hand side of
(5.33) which will be large for large ux. This is unlikely to be achieved
by a recovery based on polynomial fitting, however, since near steep fronts
polynomial approximation is notoriously suspect. A recovery with a built-in
limiter might be the answer.

Alternatively, if we choose M M to be given by (5.14) when m 1is

1”7 2

small, but choose them to satisfy

o (M, + M, - 2m) = e (5.34)

when m 1s large we obtain the right character of the recovery. This can

be achieved with the recovery (5.19) taking 6, ¢ to be

o ) (Aa)? IR Y (Aa)?
E= mln{ 2 12€(mL-m]}' ¢ mln{ = 125(mR-m)} = s

since these values will reduce the rate of change of m to zero preventing
the shock forming. For very small m ,however,(5.35) will give almost constant
m and no diffusion at all in (5.30), allowing the nodes to move into the
front. As the front gets steeper the rate of change of m 1is reduced to zero

preventing the formation of a shock.



_34_

In the latter part of this section we have used approximate consistency

with the differential equation to determine the form of recovery. The aim is

to build in known features of the problem when the recovery is done rather

than depend on straight averaging which might be expected to work only for

smooth solutions.

Care has to be exercised in using exotic recoveries, however, to make

sure that each M is symmetric from both sides, e.g. (5.14) but not (5.17),

since otherwise conservation properties are lost. A better form of (5.14],

within the family (5.19), is

(As]_ll + (A 8]_1m (ASJ_qm + (A sJ_1m
M = L L M = R R -

i (as) "+ [ALSJ_1 z (as) (ARSJ‘1

while a symmetric version of the recovery corresponding to (5.35) is

_ m ]
M, = =
((As)2m?+(A s)2m?)
1+ {1+ Sl
12€ (m+m, )
I
r
) m + M
M2 =
((As)?m2+(A_s)?m2)
R R
1 + 41 +
12€[m+mR]

Generalisations of these ideas have been made to two dimensionse

(5.36)

(5.37)

We move on now to time stepping considerations and possible strategies

for coping with overtaking nodes, a source of singularity of the method.
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5. TIME STEPPING

As remarked upon in a previous section the MFE method, in its standard
form or any of the variants mentioned here, is essentially a semi-discrete
method which transforms the original set of time dependent partial differential
equations into a set of ordinary differential equations (the MFE equations).

If we can solve the MFE equations exactly (as in some parts of Section 3
above) then the quality of the projection of the function L{v) into S

¢

or SuB is maintained for all times. If however we solve the MFE eguations
by a numerical time stepping procedure the projection will be degraded by the
approximation, the more so for low order integration schemes or large time
steps.

The division of the method into two steps, namely, the projection of
L(v) into a "local” subspace at each instant of time, together with a time
integration of the consequent MFE equations, is practically convenient rather
than natural in any sense. The more satisfactory approach of using moving
finite elements applied fully in both space and time, however, does not seem to
be tractable.

In the original MFE method of Miller and his associates the time stepping
was carried out using a stiff ODE solver, suitably modified. The necessity
for this type of integrator came from the use of penalty functions which
were used to prevent the occurrence of the two kinds of singularity
(\C| = 0 and |M| = 0) mentioned in Section 4. We have already discussed
how singularities arising from |Ml = 0 can be avoided and in this section,
in conjunction with the problem of time stepping, we consider how the |C| =0
singularity may be treated. In this way we avoid the necessity of penalty
functions and therefore of a stiff solver on these grounds.

Before considering the general problem of what scheme tc use, time

step restrictions etc., we look back to Secticn 3 where the MFE equations for the
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one-dimensiocnal praoblem

_ .. 49 .
ug = AuTU (g 0,1) (6.1)

(A constant) were found to be

a. =0, &, = —Aa? (6.2)

((3.16) and (3.21) with appropriate f and gl. These are cases where

an exact solution is possible but, more importantly, the nodes move along the
characteristics for the problem. The characteristics here are straight lines
and u 1is constant along them, so that an exact solution to the characteristic
problem is easy, like the MFE solution. More generally there will be no such
close correspondence but Morton (1982) has shown that the semi-discrete

MFE eguations correspond to transporting the best L2 fit to the exact solution.
This indicates that nodal velocities with components (éj, éj] are tangential
to characteristics.

Approximate time integration will degrade this property but if the
time step is naot too large we may expect the MFE solution to approximately
follow characteristic paths. One consequence is that the points where
characteristics cross and form shocks will be indicated by the crossing
of nodal paths, i.e. node overtaking. This is consistent with eguation
(4.29) which shows that m increases for convex f and decreases for concave
f. This is also the situation corresponding to one of the sources of
singularity discussed before, namely, that of ICI = 0.

If however shocks are not expected, as in the diffusion problems of
Section 5, node overtaking is a form of instability (effectively oscillations
of the solution in the x (or s) direction). The solution breaks down if
this happens. Special time restrictions are required in this case.

We discuss hyperbolic and diffusion equations in turn.
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For hyperbolic equations there appears to be no case for using implicit
methods, since there is a gualitative ratiocnale for node overtaking. Using
an explicit method, then, we admit time steps which lead to node overtaking,
recognising such an occurrence (in one dimension) as indicative of the
formation of a shock. If, after a time step, node k1 catches up with

node k2, the nodes having amplitudes a and a respectively (see Fig. B),

k4 k2
then AKS = 0 and the matrix CK and the vector Ek in (4.8) are zero,
which makes ﬂk indeterminate. Thus, from (4.10), the two eguations
a. - m, 8, = w,
Jooatd (6.3)
a, - m..S., = W

J JR7J JR

for the node j (the coincidence of the nodes k1 and KkZ with common

co-ordinate Sj = SK1 = SKZ
T

singularity of C and hence of A (see (4.8) and (4.18) where A = M CMic.f.

) are lost. The situation corresponds to

also (1.8)) in the discussion following (4.31).

We seek two replacement equations for (6.3) on the basis that the new
configuration (see Fig. 6.1(b)) moves as a shock, i.e. for the eguation
qt + Fx = 0 there is a common shock speed (from the jump relation)

F(ak2) N F[akq]

5 = § = . (6.4)
i 52 82 7 Fk4 a
k1
A2
|
' ]
%K1 :
) a
k2 L L g R ;
K1 k2 J-1 j=k1=k2 J+1

(a) (b)

FIG. 6.1 : Formation of a shock

Replacing (6.3) by (6.4), we find that since $§ is known only one

k1

equation is now needed in the element L (see Fig. 6.1(b)) to determine the
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w's in that element, and this comes from the other end, namely,

5 : = . BleiS
317 ML T L H6REE

Similarly for the slement R.

Thus with (6.4) and the set of equations (4.10) (without (8.3)) we can
solve generally for éj and éj. The status of (6.4) is that of an internal
boundary condition.

In higher dimensions the situation is more complex and this is described
in Section 9.

An exceptional result occurs when L(u) = g[ux]. In this case
m. = constant for all times (c.f. (3.4), (3.10) or (4.29)) and nodes which

overtake will not cause jumps, even if these are expected. The only way in

which nodes can approcach one another (with m, finite) is by merging, i.e.

K

aK2 T Ay -~ 0 as Sz T Skq + 0. Consequently resolution is lost and
shocks which should appear do not do so.

In this case the pilecewise linear nature of the approximation is too
crude and a case may be made for recovery as in Section 5, for the first time
in hyperbolic equations. The piecewise constant nature of g[VXJ does not
represent the phenomena we are trying to describe in a sufficiently accurate

way and a procedure consistent with allowing g[va to roam the whole of the

S space 1s to perform gquadratic recovery on v>< before substitution into

opB
b or g.

For equations of diffusion type the overtaking of nodes will generally
be indicative of excessively large time steps. Unless the nodal amplitudes

a and a

K1 are equal when overtaking takes place (mergingl) an unacceptable

k2
feature will be created which may make the solution go unstable or substantially
lose accuracy (see below). For this reason the time step has to be controlled.

Using the one-dimensional linear heat eguation as a guilde, the eguation for the

slope m is given by (5.13) which, for an appropriate recovery, is (5.18),



_39_

namely

dm _ _ 1 _
prll WS [mL + Mo 2m) . (6.6)

Simple explicit forward time stepping yields

n+t N At n n _ n
m =Mt TR (m  + my - 2m ) (6.7)

~ 24t n At n n
= {1 TZET?} m ot Tae)? (mL + mR] (6.8)

which is such that m will decrease with time if

At < 3(As)? : (6.9)

As nodes close up As becomes small and the time restriction is
severe, just as for explicit finite difference or fixed finite element methods.
Because the implicit form of (6.8) satisfies a maximum principle, an implicit
approach to (6.6) will lead to decreasing m. Overtaking then cannot take
place unless nodes actually merge together (since m remains finite).

One way of carrying out an implicit time stepping in the standard MFE

formulation is to solve

A ™ - g™ = e g™ (6.10)
by writing z = ¥F+1 > setting up an iteration on z of the form
ALE[K)][EFK+1] ] Mﬁ] s Atg(ng)] (6.11)

and solving this for EFK+1]

using the conjugate gradient method (pre-
conditioning by D_q) as discussed fully in Wathen & Baines (1885)}. The
exceptional eigenstructure of A gives very rapid convergence of the method.

Larger time steps will be possible and the maximum principle operates.
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For the more general equation

g = (D[u]uxlx , (6.12)

where no maximum principle applies in general, we can nevertheless envisage

a split version of the problem in the form

u, = D{ulu R u, = D'(uyluz (6.13)
t XX t . X

and, if D(u) is positive, a maximum principle approach can be used for the

first of these equations. For the second, we find that

d_m_= 3 1t
s m D“ (n) n € [v1,V2J (6.14)
(c.f. (3.7) and (3.8)) so that
1 t
rcdiagr: 3 J DY (n) dt. (6.15)

If Dﬂ (n) 1is small m will not change much, but if D" (n) i1is positive
it will increase.

The effects of the two equations (6.13) on v will often therefare
be contrary to ane other, the interaction being simulated by the splitting.

If D(u) = u, eguation (6.15) gives m = constant in time: here the

nodes may re-adjust but the pattern of slopes will be preserved.

Another possibility for the first of (6.13) is cubic spline recovery of
XX

Moving to the convection-diffusion equation (5.14) we can adapt the shock
strategy described above using (5.15) as a gulde. This equation shows that

z m; is equal to a certain constant, in fact

k 3/2
m o= —a (6.16)

k0 (12e)?

where J is the jump present in the shock structure. Suppose that we carry

out the MFE solution of (5.14) by splitting into

(a) U = -udg (b) U = eu (6.17)
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Suppose also that in solving (6.17(a)) we restrict the time step

to be less than that which would take the solution up to the point where

(6.16) was satisfied. Then, in solving (6.17(b)), using the same time step, let
us yse an MFE method which possesses a maximum principle for m and employ

time stepping implicitly in the manner (6.10)-(6.11].

The effect is to successively steepen and diffuse the solution in such a
way that z m; never exceeds the right hand side of (6.18]), since this
guantity will reduce during the diffusion and be restricted as it increases
during the convection.

So far we have discussed restrictions on time-stepping due to physical
limitations but have not discussed time-stepping for a given accuracy.

This aspect cannot be seen in isolation. We need to embed the problem into
the guestion of how many nodes should be used, how to deploy nodes initially
and when and where to add or delete nodes during the evolution.

In the matter of the initial placement of nodes Herbst (1982) suggested

that this should be done in such a way as to equidistribute the guantity

1
|t |® . (6.18)

The idea comes from truncation error considerations and represents an
equidistribution of this error. An alternative may be to equidistribute the
residual minimised in the MFE method when a best fit to L(v) 1s found for

Vt' The square of the residual concerned is

<vt - L(v], Vi T L(v)> (6.19)

(c.f. (1.2)) or, using (2.19),

vchwﬂ - 2_\/_\JTCE s lLew ) (6.20)

1

with b given by (4.8). Since W= ol b the square root of (6.20) becomes

1

12 - ZETE s e 3 (6.21)

b'c
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and this quantity, being a measure of the error in the differential
equation, is a good candidate for equidistribution. Note that, unlike
(6.18), the measure (6.21) is an elementwise local quantity. It evolves
with the solution and is always associated with a particular element.

A possible strategy for error control is to monitor the gquantity (6.21)
as time-stepping proceeds, both in respect of choosing a time step and,
possibly, in deciding (in combination with other residuals) on the introduction
or deletion of nodes. (See also Section 10).

This procedure is akin to using the truncation error to determine
the time step. To control the global error, the best fit of v to the
exact solution over the whole region, it is necessary to connect the two
errors. Mueller (1984) has made important strides in this direction but in one
dimension only. A more direct error monitoring procedure is to concentrate
attention on the global norm of v, keeping changes in this norm small in
comparison with some tolerance, related to Hu N vll initially perhaps.

Other criteria for the addition and deletion of nodes are related to
boundary conditions, both internal and external. This aspect of node control

is discussed in the next section concerning boundary conditions in general.
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7 BOUNDARY CONDITIONS

This section discusses boundary conditions. Taking the elementwise
approach of Section 4 we have within each element (including those adjacent
to boundaries) that (4.13) holds for the calculation of the intermediate
vector W. Evaluation of y from (4.14) depends on knowing W in adjacent

elements, which breaks down at boundaries. Referring back to (4.4) we see

that, at the left hand boundary 8y, We have the second of (4.4) but not

the first (see Fig. 7.1).

FIG. 7.1 : Boundary nodes

To find &, and &, from the single equation

0 0
ag ~ mDRéO = CgR (7.1)
we need a boundary condition. The simplest to impose is the condition
5. =0 (7.2)

corresponding to fixing the boundary s.. Then a is left free to find its

0 0

own level and the condition models a Neumann boundary condition at s as

0
a natural boundary condition (see Wathen (13984)}).

Another condition easy to impaose is

a, =0 (7.3)

which fixes 2 and allows 54 to find its own position. Such a condition

is useful in modelling free boundary problems (see below). A mixed condition

pi  + Gdy = 0 (7.4)

can also be imposed if the ratio of the constants g/p is not - MR
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A Dirichlet condition is harder to impose in this context because

it overdetermines the system. We may think of fixing the boundary g by

the use of a dummy element to the left of s mirroring S-S Then (7.2) is

0 07 1°
replaced by

a5 * Moy = SR (7.5)
with the same effect as (7.3). But if éO = 0, as in a Dirichlet condition,
this is inconsistent unless COR = 0, IFf CDR is forced to zero then neither

(7.5) nor (7.3) is consistent with (7.1) and this 1s a constraint on the
projection (4.7) for c. Thus we do not expect uniform accuracy from the MFE
method near the boundaries when a Dirichlet condition is to be modelled.

Solid boundaries can be modelled by the technigue (7.5) while transparent
boundary conditions may be approximated by regarding the contribution C—1L sent

rightwards in the dummy element adjacent to the boundary to be null, i.e.

a, -m., s =0 P (7.6)

where My is arbitrary in the dummy element. There are interesting comparisons
here with the cell-based finite difference schemes of Roe (1981) which also make
full use of the flow of information in a cell.

Finally, where the data has compact support and spreads or convects
the method provides new support after a time step. To see this consider
(7.3) where 8y = 0 at the edge of the support SRk After a time step 54 will
move to the new position where ay = 0 giving the new support. In this way
diffusing data can be followed or a moving wave tracked.

Internal boundaries, such as the shock interface in the previous section,
can be tracked by abutting problems with appropriate boundary conditions.

The shock interface prescribes § and finds a at the interface but other

conditions are also possible which find & and hence track the interface.
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In higher dimensions boundary conditions are more complex.
The basic idea of augmenting equations equivalent to (7.1} is the same
but since there are at least two variants on the basic method they need
to be discussed in the context of the methods themselves.

For problems of parabolic type with two space derivatives in the
differential equation an extra boundary condition is supplied either at

5 or at the other end s

0 N+1 " Here the simplest case is the imposition

of a Neumann condition at each end although it must be remembered that, if
a recovered function is used, that too must accord with the boundary
conditions.

A typical moving boundary problem would have two conditions,
perhaps Dirichlet and Neumann, imposed at the same moving (but unlocated)
point, s say. Here we may set a, = 0O and locate the boundary as the

0 0

intersection of the new solution with the Dirichlet value.

Finally, we censider a more radical approach to Dirichlet conditions.
The philosophy behind any boundary condition is that the outside world can-
conveniently be modelled at an interface by isolated pieces of information
imposed there. Usually there is a prior assumption that the boundary is fixed.
It may be that in setting up a problem the outside world can as conveniently
(or more conveniently) be modelled by boundary conditions on a moving boundary.
In particular a zero Dirichlet condition at a fixed boundary may be replaced
by an equivalent zero condition at a boundary located by the method. Thus for
moving mesh methods it could be useful to formulate the boundary conditions in
a fresh way.

We turn now to systems of equations in 1-D where, owing to coupling

of variables, special problems may arise in the behaviour of the components.
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8. SYSTEMS OF EQUATIONS

We consider systems of equations of the form

(m) (m)
u

N =L (u) (m=1,2,...,M) (8.1
_ (1) (M. T . ) ]
where u = [u yesesU 1 . 1Included are the linear wave equation written

as a system and the Euler equations for compressible flow, for example.

In extending the MFE ideas to systems we are faced with an immediate
decision. Do we work with separate nodal coefficients and a common mesh or
give each component of the system its own finite element mesh with individual
nodal coefficients and co-ordinates? Where discontinuous features are expected
to occur simultaneously for all components m there is a strong argument
for using a common mesh. However, a nicer algebraic structure (although
a nastier quadrature) is obtained if each component is given its own finite
element mesh. We shall discuss both strategies, here in one dimension.

In the first of these strategies, called method (A), we seek finite

element approximations v[m) to u(m] of the form
v(m] =) agmk. (8.2)
: J J
J
so that
(m) _ v . (m) . ,(m)
Vi = § [aj aj + sij ) (8.3)
where BFm]: -v[m]a. (8.4)
J X J
(c.f. (2.24) and (2.23)). Also
(m) _ (m) (m)
v = E (Weg g * W0 050 (8.5)
A global minimisation of the weighted residual
(m) (m) 2
6 vy - L | : (8.5)

)
m
T (m)

() v[mJ] , over éj and Sj leads to the equations

[v T

where

| <
i
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<ui, vim) - L[m)[l]> =0 (m=1,2,...,M) (8.7)
2 9 <8Fm], v[mJ - L[m][v]> =0 (8.8)
m i t -—
m
(i = 1,2,...,N), the latter alsoc written as
) e <v[m]o¢., vim L(m)[vJ> = 0. (8.9)
m X J its —
m
The system (8.7) with (8.8) can be written
Alyly = gly) (8.10)
~ (1) _(2) (M) ) (1) (2) (M) . T
where now y = la, ",a; ", ..wsay Tas sy Ay T esay »8, ] (8.11)
and A(y) is block tri-diagonal with (M+1) x (M+1) blocks of the form
<a,,o . >T <B.,0.>
i g ™M -1 ]
(8.12)
<o ,08"> <gtMm gty
i’—] i i
_ (1) (M. T ~ (1) (M. T .
where Ei = [Bi ""’Bi 1, Qﬁj = [61Bj ""’eMBj ) and IM is

the MxM identity matrix. The right hand side of (8.10) is the obvious
extension of (1.5).

If the weights Gm are chosen such that ©, =1, & =0 (m # 1) then

1 m
the first component v[1] drives the nodes. In that case the single

component MFE method can be used to find é;qJ, éj and these values fed back

into the rest of (8.10) to obtain é;m] (m # 1), the latter operation
involving a traditional FFE mass matrix.

Some care is needed over the choice of em' For instance, consider

the wave equation written as a system

(1) (2)
u =y

L % (8.
2y _ (1)
u = u

t X

13)
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If 6 =1, 6_ = 0, the first of (8.13) is used to solve for é[1] and s

1 2
(2]
v
X

as a single component MFE system. But in the approximate form of this

equation is piecewise constant, and using e.g. (4.28) it follows that

d (13, _
oy [Vx ) =0 i (8.14)

Now it is possible that u(1) = 0 initially but is driven away from zero

(in the exact solution) by u[Z), as in the case of the solution

(1)
u

(2)
u

cos x sin t

(8.15)

f

-sin x cos t.

Because of (8.14) this will never happen in the approximate solution. For this
reason a weighting which relies on one component is not recommended.
The same difficulty occurs with the Euler equations if the density e 1s used

to drive the nodes, since the density equation

+m_ =0 (8.18)

where m is the momentum, alsc has the form'of the first of (8.13).

An alternative version of method (A) which leads effectively to
an optimal choice of em is based on elementwise considerations and is as
follows. A straightforward application of the elementwise best fit procedure
(see Section 4) gives

(m) (m) (m)

C W = [ (8.17)
(c.f. (8.5) and (4.8) where
bﬁTL <¢|£’1”], Lv)> , big‘]; <¢$), L(v)> (8.18)
and C[m] is the block 2x2 diagonal matrix with blocks
. > . oD

(8.18)

(m) (m) (m) (m)
<¢k2 b ¢K1 > <¢k2 g ¢K2 >_|
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Inversion of (8.19) is trivial in general: the difficulty comes in

retrieving é;m], éj from the resulting information, since the matrix M

of (4.14) is now rectangular diagonal with blocks

1 0] - (v>< JjL
1 a - [VHJJ.R
0 (8.20)
(2)
0 1 (Vx ]jL
B (2)
*G 1 [vx JjR_
(c.f. (4.11)). Thus (4.14) gives sets of four equations for only three
unknowns éF1), é§2], éj . The best solution in the L2 norm is to solve
miMy = MT\l (8.21)

rather than (4.14).

Inversion of (8.21) is easy since the left hand side matrix is block
diagonal with 2 x 2 blocks as in the single component method. Note that
parallelism will generally not occur unless both components go collinear
simultaneously. The overall effect is of a double projection, first that of
L[m]px) into S¢[mJ space, giving wﬁT], Wﬁg) and then that of  into
SaB(m] space (a smaller space), ultimately providing a best approximation

of u[m)

N to Lm(g) in a particular sense. Call this method [A1).

A similar device is used in Section 9 to deal with a mismatch in
dimensions of function spaces when higher dimensional physical spaces are
considered.

Turning now to the other strategy for systems, called method (B), which
uses separate finite element bases for each component, the corresponding
finite element approximation to (8.2) is

V(m] _ z a[m)a(m)
J

(8.22)

so that
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v[m] = z [aEm]aEm) + égm)BFmJ] (8.23)
t : J J J J
J
where
gl g o Imm (8.24)
J X J
Also
(m) (m), (m) (m), (m)
Vt - E [WK1 ¢K * WK2 ¢K ] » [8.25)
different components requiring completely separate bases.
As a result of the isolation of each basis we easily form the MFE
equations
A(m][l[m] ;[mJ - g_[m) ) (8.26)
{(m) (m) B
where A and vy are exactly as for the single component method
for each component m while gFmJ has components
gém] = <aFm], L(v)>
J J (8.27)
(m) _ (m)
g2j+1 N <Bj , Liv)>

Thus the only new feature is the guadrature in (8.27) which 1inks the components
through the evaluation of gFm]. This presents no difficulty in one dimension
since the elements can be subdivided suitably with guadrature over each sub-
element, but in higher dimensions the subdivision is more tricky.

There are no other obvious difficulties in method (B) except when it comes
to shock modelling. A feature of a shock is that every component shocks at
once and, because of the approximations involved (both in space and in time)
this is not guaranteed for the moving element approximation. A device has
therefore to be used to arrange that when a shock appears it is simultaneous
in the appropriate components. This involves some post-processing and
additional approximation.

Methods (A) and (B) have been applied to the well-known Sod problem

(1979) by Baines & Wathen (1985).
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This brings us to the end of this sequence of topics arising from the
MFE method with the exception of phenomena present in higher dimensional
problems. Aspects of these have been touched upon in previous sections but
we now devote a complete section to some of the difficulties

peculiar to the implementation of the MFE method in two dimensions or more.
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9. HIGHER DIMENSIONS

We consider now the form of the MFE method in higher dimensions.
In preceding sections we have often embarked upon a general description of
a particular topic, subsequently specialising to the one-dimensional case.
Thus many of the basic points have already been covered and we merely recall
them here. We shall take examples from two dimensions but the principles
are the same for two or more dimensions.

In Section 1 we stated the basic MFE equations as derived by Miller,
namely (1.3), and noted that they can be written

Alyly = MTCM& NTQTCQNi = gly) (9.1)

where N (= Q~1MJ is rectangular block diagonal and @ 1is a
permutation matrix. In Section 2 several basic formulae were given,
primarily (2.3), (2.4) and (2.14) for v, vy and Ej' respectively.
Taking an elementwise formulation the corresponding formulae in Section 2
were (2.15), (2.16) and (2.17]).

In Section 3 we considered "exact"” solutions of (1.1), i.e. where the

operator function L{v) 1lies in the space SaB containing Vo In

—

particular (3.1) included the right hand side of the generalised inviscid

Burgeré' equation

U = -ud, - uuy (9.2)

and hence an exact match between v,_ and L(v) 1is possible in this case.

t
We obtain from (2.22) and (2.23)
. . . . 1
Y ld,a, + 5.+8.1 =) [4, - 5,V _vla, = - 2[ ]-V va .o,
7 =1 = 2 —] —Oo. 11| —o,
3 J J J 3 J J 3 J 3 j J J

(9.3)

from which it follows that

§ o .
a, =0, §, = ajL1 ] (9.4)
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From an elementwise point of view, consider the generalisation of

(3.4)
ug = uf(vul + g(yu) (9.5)
giving (c.f. (3.5)
Y Yow .o . =) ) {a . f(V_ v +gv Wl . (3.6)
ki kiTki ki ki —oki 04 ki
sa that
Wep T 8y _-Eki.za L i F(yﬁ 'vJ + g(!c _V) (i =1,2,...,I)
ki ki ki
(9.7)
(see (2.20)). Dropping the suffix Kk this reads
a; - Ei.zo.v = aif(ZO.vJ + g[g0 v) . (9.8)

it i i

Take a node i and choose Oi = ¢ to be the co-ordinate along the axis
which is "coplanar” with the axis of a (i.e. v) and the normal to the linear
approximation v. In the (o,a) plane let 6 be the angle, in two

dimensions, shown in Fig. 9.1,

FIG. 3.1 : Gradient angle and elementwise velocity

for which

tan 8 = |V v| (9.9)
—0
with the appropriate sign. Then the component of velocity of the element
corner 1 in the direction normal to v is

V., = &, cos © - &, sin 0 (9.10)
1 1 1
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which, by comparison with (9.8} and (8.9) gives,

<.
i

[aifizovl + g[yov]] cos Gi (9.11)

1

[a.f(V v} + g(V v)1/[1 + (V _v)2]. (9.12)
i o - o

Thus we can deduce from (9.8) the velocities of the element ecerners normal
to the linear solution v. To obtain the nodal velocities we have simply to put
together the element corner velocities from adjacent elements.

In one dimension two element corner velocities from adjacent elements
give two nodal velocity components éi, éi uniquely, but in higher dimensions
this is not so, since generally a node has more adjacent elements than degrees
of freedom. As a result the elementwise approach leads to overdetermined
nodal velocity components and a uniguely determined method can only be obtained
by some form of projection (see below].

In Section 4 we discussed minimisation of the residual of (1.1) in
SaB and projection of L(v) into S¢ and showed that these were the same
in one dimension. By virtue of the above argument we no longer have
equivalence of these approaches in higher dimensions. Let us consider them

in turn. If we take the minimisation of the residual of (1.1) first, we

have as the residual squared

- L)l e

|| v vy - L), v - LEv>

t t

<Vt’vt> - 2<Vt’ L{v)> (9.13)

apart from terms which do not involve V- Using (2.8) we obtain

iT Ay -2y g (9.14)

where we have used the y, A and g of Section 1. Minimisation of (8.14)

over _i yields the standard form of the MFE equatiaons

AV =g . (9.15)
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As shown in Wathen & Baines (1985), this may also be written (c.f. (4.18))

McMy - g (9.18)

where C 1is sguare and block diagonal and M 1is rectangular and similar
to a block rectangular diagonal matrix. The non-sguare nature of M
reflects the non-uniqueness of the elementwise approach, as we shall see
below, and prevents straightforward inversion of MTCM.

Consider now the elementwise approach. We begin by solving (4.13),

namely,

Cw = b (9.17)

which is straightforward since C 1is square block diagonal. The difficulty

only arises when we attempt to solve (4.14), i.e.

My = W (9.18)

since this is an overdetermined set of equations for i, Thus for the
elementwise approach to give a unique solution we must seek a W which
lies in the range space of M.

One option available is to carry out a constrained minimisation of (3.13)
where the solution is forced to lie in the range space of M. Let the columns
of the matrix Z span the orthogonal complement of the range space of M.

Then
ZM=MZ-=20 (9.19)
and the constraint we impose is that

Zw-o . (9.20)

We now use the elementwise residual in the form

_\A_fTr:_\Lv - 2ﬂTb (9.21)

(omitting terms which do not involve th and apply (9.20) as a constraint.
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Taking A as a vector of Lagrange multipliers we have to minimise

%_QTCE = ETE + ATZT_vi (9.22)

which gives

(9.23)
and Z'w =10
which in turn gives (from (9.13))
M (W - b) = 0
(9.24)
ZTﬁ =0
the first of which provides
T e
MCMy = g (9.25)

and brings us to the result of the nodewise approach. This analysis shows
how the projection of L(v) into S¢ has to be constrained so that it lies
in SaE.

Another way of obtaining the same equations is to accept the solution of
(9.17) and do a least sguares projection of equation (9.18) having first

1
preconditioned the equation with the matrix C°®. We then minimise
1 1_1
lcemy - c*c ‘bl (9.26)

in a least squares sense (over i}, giving
2T ccimyy = (ciwmy Vo2
(c*m (c*my = (C*m) C *p (9.27)
or

MCMy = Mb =g , (9.28)

as befaore.
This is an example of applying a general preconditioning matrix P

to (9.18) and minimising in a least squares sense. The minimisation is then of

lpemy - ¢ by || (9.29)

and the result is

T T, -
mplemg = me'c Ty . (9.30)
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If P is I, we obtain alternative MFE equations

MMy =MC b (9.31)

which are readily solved since MTM is a square block diagonal
matrix (3 x 3 blocks im two dimensions).

The difference betwesen solving (9.28) and (9.31) is the difference
between the preconditiocner P = C% and P =1 in (9.29). Since C 1is
block diagonal with the blocks proportional to the area or volume of
the elements, the use of the preconditioner P = C% weights the larger
elements more heavily with the smaller elements playing little part in the
minimisation. (Note that 6_19 in (8.29) is independent of the size of
element).

There is of course no difference in the methods in one dimension
(where everything is square and the preconditioner has no effectl), but in

higher dimensions (9.31) is certainly easier to solve, giving

y = (MTMJ'1MT0_19_ . (9.32)

Note that, as remarked before, the elementwise approach using b gives more
information that the nodewise approach using g 1in these circumstances,
as evidenced from

Mb =g (9.33)

with M not square.

A similar analysis to the above is applicable to the projection argument in
Section 8 where the matrix M in the eguivalent eguation to (8.18) in the case
of a system of equations in one dimension is not square. Different pre-
conditionings prior to a least squares solution of the equation yield different
MFE equations, including both (8.25) and (9.31) (the same as (8.15]).

A technical difficulty, so far ignored, is the similarity
transformation between M and its block rectangular diagonal counterpart
N (see Wathen & Baines (1985)). With the nodewise approach it is not

trivial in higher dimensions to switch from elementwise numbering (to set
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up (9.17)) to nodewise numbering (for (9.18) or its equivalent]). The
permutation matrix needed is called Q here and M uses elementwise

numbering while N uses nodewise numbering (see Wathen & Baines (13885)). With
M = QN (9.34)

it makes sense to use P = Q_1 in (8.29) rather than P =1 since

this immediately gives

. =]
NTNy = NTC b {9.35)

and of course since P is simply a permutation there is no effect on
the least squares minimisation in (9.29).

The MFE equations (9.35) demonstrate that this method is local in
the same way that the one-dimensional method was local, only links with
adjacent elemets playing a part. Had we preconditioned with C%Q-q,

however, we would have had

NTQTCQNQ =g (9.36)

and the rows and columns of C when permutated under the Q's would provide
wider links between different parts of the solution and make for a less
local method. This is likely to be an advantage for diffusion problems, of
course, so the two approaches should perhaps be tailored to the type of
problem.

It 1is clear that the matrix NTN of (9.35) will suffer from the
phenomenon of parallelism in the same way as N. There are substantial
problems with N when it loses rank (see Wathen & Baines (1985)) since
this may happen in different ways. The remedy is the same as in one-dimension,
namely to remove the equations causing the parallelism and solve the resulting
system, re-introducing the absent nodes in a suitable way at the end.

Some care is required with the larger blocks occurring in N (or NTNJ
in higher dimensions: it is safest to transform the local system to upper

triangular form and reduce the system on that basis. This avoids problems
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of ill-conditioning which can arise if an arbitrary equation is left out.
In Section 4 we also discussed conservation properties of the MFE
method. The corresponding properties, for the unconstrained nodewise approach

which gives (8.25), are

= r[vdszlj L(v)d @ (9.37)
LQ J Q

(c.f. (4.22)) and

9 [% J vzdﬁﬁ = f vL{v)dQ (9.38)
9] Q
(c.f. (4.24)), where £ 1s the (fixed) domain involved.
For the elementwise approach the minimisation of vy T L{v]) over

the variables ¢, which leads to Galerkin equations (c.f. (4.1) and (4.7)).

<¢Ki, v - L(v)> = 0, (9.39)

also yields (9.37) and (9.38) since the ¢ki {as well as the aj] are a
partition of unity.

In Section 5 the treatment of second order terms in (5.1) is either
governed by (5.89) or by a generalisation of the recovery technigque discussed
subsequent to (5.9).0ne way of generalising the technigque is to seek a
guadratic function Q1 which. matches Vo (a piecewise constant function)
at suitable points. In two dimensions there are four unknown coefficients
(which is of the form

in Q1

Q,IEx,yJ = ax2 + bxy * cx +d ) : (9.40)

we can take the slope at the centroid together with either the means

of the slopes vx in the elements around each of the three corner nodes

or the means of the slopes across sach of the three mid-points of the sides.
Levine [ 19841 has pointed out enhanced convergence properties for the
latter for fixed elements. Working with a Hermite cubic recovery in the

same situation involves finding a cubic of the form
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Wo(x,y) = ax® + bx2y + cx? + dxy + ex + f (9.41)

with six coefficients. Here we can take the three nodal values and three
values of the slope in either of the two manners above. Spline fits,
either pointwise or in a least squares sense, are also feasible.

In Section 6 an important guestion was the modelling of shocks.

In one dimension this is signalled in a hyperbolic problem by node overtaking
causing the slope of an element to go infinite. In many dimensions the

same criterion of an infinite slope can be used and this will occur when the
size of an element goes to zero after a time step. (In two dimensions a
triangular element stands up on its end). The technigue is discussed in
Wathen & Baines (1985) and here we confine the discussion to general
principles using the elementwise approach.

Except when C is singular the solution of (9.17) for each element
gives the vector W which in turn provides the quantities on the left hand
side of (9.8), i.e. the components of the velocity of the corner nodes of
the element in a direction normal to the element. The use of this information
to drive the nodes is then an overdetermined problem and as we have seen
(9.35) may be used to obtain a least sguares solution. Similarly, with
shocked elements present (together with their specified shocked velocity
compaonents in the direction of the shock movement) the problem of finding the
nodal velocities is an overdetermined one. It is now necessary to preserve
the shock speeds and exclude them from the least squares solution, but in all
other respects (9.35) provides a solution. There are technical problems
of course but the principles are clear.

Initial placement of nodes in higher dimensions may be generalised
from the one-dimensional case as that initial arrangement which equidistributes
the quantity {Vzu}%. How this is to be actually done in practice is not

obvious, however.
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Error control is as discussed at the end of section 6, including the
use of (6.21).

Finmally, on the subject of boundary conditions the main new feature
B.-

(a) (b) (c)

FIG. 8.2 : Boundary and adjacent nodes

in higher dimensiocns is the occurrence of boundaries in the form of a line
or surface. Taking the two dimensional case as example, it is clear that
three components of velocity are needed at every node to determine its

motion (see Fig. 9.2, in which the points 51 52 B3 are boundary nodes and

I1 I2 are interior nodes).
The elementwise MFE method provides two velocities at. B2 in Fig. 9.2(a)

(from the triangles B2 B, I, and 82 B

3 1, Iq) and hence to determine the

1

behaviour of B2 one boundary condition is required. On the other hand,
for the pattern of elements shown in Fig. 9.2(b) three velocities are

provided from the triangles adjoining B., and the behaviour of 82 is

2
determined. No boundary condition is apparently needed in this case !. (but see
below). If a boundary condition is to be imposed in the case shown in
Fig. 9.2(b), or more than one condition is to be imposed as in Fig. 9.2(al,
constraints are put on the elementwise projection.

The cases in which precisely one condition may be imposed are shown

in Fig. 9.2(a), when & is set at the point B, and the nodal co-ordinates

2
are left free, and in Fig. 9.2(c) (which is the same as Fig. 9.2(a) but
with a straight boundary) when one speed is set (perpendicular to the boundary)

and the other movements left free.
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A transparent boundary condition can be conveniently modelled by
accepting that no information on the movement of a node, say B2 in
Fig. 9.2, comes from outside the system. Thus the behaviour of 82 is
determined entirely from elements present in the system. This will in
general result in movement of the node BZ'

The nodewise MFE method gives rather different rules. Here the
quantity a and two speeds (along the axes) are determined by the
algorithm, rather than three nodal corner velocities. If the speeds are
set to zero and & is left free a natural Neumann boundary condition is
modelled. A Dirichlet conditions involves overwriting a and the nodal
positions as in one dimension. With a straight boundary as in Fig. 9.2(c)
one speed (normal to the boundary) may be set and the other allowed to be
determined.

In discussing systems of equations in higher dimensions the question
of giving each component its own moving mesh or using a common mesh
again arises. The arguments for and against are as in Section 8, except
that there are substantial technical difficulties in carrying out the
right hand side quadratures when several meshes are present. The situation

is sketched in Fig. 9.3, where functions on the dotted mesh have to be

o

FIG. 9.3 : Meshes for two different components

integrated aover elements on the full-line mesh. Since these are non-smooth
functions over such elements some care is necessary over their quadrature.
In the final section of this report we summarise what we consider the

most important points raised in previous sections.
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10. CONCLUSION

In this last section we summarise some of the theory given earlier
and bring together some of the more important results so as to be able to
make recommendations on the use of the Moving Finite Element method or its
derivatives.

The most striking outcome of this study is that the basic method in one
dimension, as described in Section 1, can be built up from the solution of
diagonal matrices with 2x2 blocks. We also note that there is a simple
extension to two dimensions involving diagonal matrices with 3x3 blocks. A
second far-reaching fact is that the nodal velocities can be found from
"element velocities” which arise immediately from straight line best fits
to the (approximate) driving function in the differential equation.

To summarise these results, for the differential equation

u, = L(u) , (10.1)

and the piecewise linear continuous approximation v to u, we evaluate
L(v) and calculate the best straight line fit to L(v) in each element.

Using the L norm this gives in each element an approximation to v

2 £’
namely,

where ) T g b

c, K = [3 8| as | K| = bk1 (10.3)
VK2 g o Y1 k2
6 3
and beq = <¢K1’L[V]> ; bK2 = <¢K2,L[v]> : (10.4)
Inversion of (10.3) gives

= (10.5)

3 -2 3
W1 ol 4 2 bk1
Vg2
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for each element, and to get from (10.2) (over all elements])] to the form

v, = z (ajaj + sjsj] (10.6)

we have to solve

[é, 1 -m. ]é. lw. -
M L%J ol PR B Al AmAEE : (10.7)
e ] i+ %3] 35,1
where a.+,l - a,
m.,1 = '—J—_—J— . (10.8)
R E B

Inversion of (10.7) (when m,

j-3 J+

a, -m, m, -[ W,

il . 1 j*z -z 4.2 ] (10.9)
& = -1 1 W . '

J l_ 1 LTi+s

Combining (10.9) with (10.5) gives the nodal velocities.
Even without the inversion of (10.7) however we can interpret elementwise

pairs of eguations of (10.7), namely,

(10.10)

where m = mj+,, as velocities of the piecewise linear segment in the element
2

j+i as follows. If © is the angle between the solution v and the axis,

FIG. 10.1 : Elementwise corner velocities

from (10.8) we have

m, , = tan & = m (10.11)
L]
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and (10.10) can be written

. . 1
a;, cos® - s, 8in0 = ——— w, 4 1

i /(1emz) T
& cosp - § sing = ———

I I Sy 37E2

The left hand sides of (10.12) are the velocities

V,, V
J

J+1

element only) of the ends of the element in Fig. 10.1 at right angles to

the element.

The complete velocity of a node will be

such element end velocities from adjacent segments.

These end velocities can be written

Vj ] } 1 Yied, 1] _ 1 i bj+§,1
vj+1} (14 m ) Jwgy AsV(1+m2) (-2 4 biry,o
using (10.5) or, by (10.4),
v, 4.1 4 = 26, )
J =—1 < J*zs J+3,2 L) >
2 -
vj+1 Asv(1+m?) t 2¢J+%‘1 * 4¢j+%’2
Subtraction and addition of components gives
V., -V, — 5 <., 5 = b,y qr LOVD>
g 3 as/(1m?) - o
and Viq * V. = —_—t Lt e, L LLVI>
. Joae/remey  dTET T
s,
2 2 ( J+1
= — <1,L(v)> = J L(v)dx.
AsV (1+m? ) AsY(1+m?) /s

(10.17) gives the normal velocity of the mid-point of the segment in Fig.

In particular, if

L(v) = - F
X

(10.12)

(due to the single

a gambination of two

(10.14)

(10.15)

(10.18)

(10.17)

10.1.

(10.18)
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(10.17) yields

1y, o+ v, weaiteee 8l dle AL, LA o0 (10.49)

T Jqemey B Jaemey Be b
Thus the speed of the mid-point of the segment in Fig. 10.1 in the direction
normal to the segment is consistent with the average wave speed in the element.
A more significant companion to (10.17) is obtained by subtracting the

equations (10.10) giving,

H'E' As [wj+1,2 W\]+%,1) [10-20]
- i <¢j+%,2 = by, g0 LOVI> (10.21)
r5j+1(2X -8+, )
+
= f% | ) L{v) dx. (10.22)
Sj J+1 J
If L(v) 4dis as in (10.18) we obtain
i 341
A, o =B (2x - 5. * 5. )f dx (10.23)
dt (As)? Js J g+t x
J
S.
J+1
- o e i
YY) [%j+1 R T v J i e |
°3
='—Z—§— (F - ¥) , (10.24)

s
where f = %[Fj + f£, ), T = 1 J f dx, as in Section 4.
s

Equation (10.24) gives the result that the rate of change of slope
of the solution in an element is proportional to the second derivative of f.
Put another way the solution segment rotates in response to the local convexity
of f.

The results (10.19) and (10.24) go a long way towards explaining why the

method is so good for one-dimensional scalar conservation laws.
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Even in higher dimensions the result (10.17) holds and, if

L(v) = - div f (10.25)

we find that the normal velocity of the mid-point of a linear element is

V —Sine sin 0

k :T lef_d’[‘ = AK FK » ['10.28)
element Kk
where tan o = |Vy| (10.27)

and FK is the inward flux of {f through the boundary of the element.

If that flux were to drive a local wave velocity in a direction coplanar with
the normal to the element then the velocity Vk would be consistent with this
wave velocity.

It appears that a result corresponding to (10.24) for the rate of change
of maximum slope can also be generated but this has not been done here.

Having discussed the central features of the space approximation,
we now summarise some of the other points made.

For certain equations L(v) 4is already a piecewise linear discontinuous
function and the space approximation is exact. This allows certain non-linear
equations to be solved very accurately.

There are two circumstances in which the procedure outlined above does
not go through. 0One is when As = 0 and the matrix C of (10.3) cannot be

K

inverted. The other is when mj_% =MLy and the matrix Mj of (10.7)
cannot be inverted. The former is considered below. The latter is circumvented
by temporarily fixing the node responsible and relocating it in an averaged
position after the approximation has been carried out.

In the elementwise approach, however, the way ip which this is to be done
is not obvious. Clearly the offending eqguation is (10.7) but, whereas in
the nodewise approach the presence of parallelism leads to two equations which

are identical and hence consistent, the pair of equations (10.7) become inconsistent

(different right hand sides) when parallelism occurs. Thus we cannot simply
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system since there is in fact no soclution to (10.7) in this case.

However we can conveniently return to the
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set § =0 to obtain a solution to the reduced

equations (10.3) in staggered pairs giving blocks of the form

"ITIJ.L —mj R’l

where L,R refer to the elements to the left and right of node
As in the nodewise approach in the event of parallelism we keep the first

of these equations and replace the second by éj = 0. This gives

1 1 1 1
A5 Y T TAS Y T T RS YR Y5 8RS YR2 T ByL Y Py
and since now éj =0 and
Mz T8 TSy T A
WR,I = aJ == mRSj = aJ
with m = M, we have from (10.29)
Ipasw +r2as+hrs)a, s 28sm _=pb. #b
68 L° L1 T3 L R%93 "% °R® "Rz T 5L T iR
which yields
. 1 1
= —_ —_— W W .
aj {bjL + bjR ) ALS[ 1t ARS LZJ}/{B(ALS + ARS]}
s, =0
J

as the solution for the

o,B basis by combining the

1 1 W
Tk s A8 O 0 L1

W
1 1 L2

0 0 3 %% g A® ’
| R1
rRz

) 1 1] by
-m. -

m
L | b
J JR L iR

reduced equation for a parallel node.

(10.28)

(10.29)

(10.30)

(10.31)

(10.32)
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The null space is spanned by the vector [m 1]T as betore
(where m = m = mR] and an appropriate multiple of this vector can
be added to satisfy an externally imposed averaged velocity or position.
If several nodes are parallel at once a number of eguations of the
type (10.29) will arise and it may be necessary to solve a tri-diagonal

system for the unknown éj if the relevant Jj's are adjacent to one

another.

Fﬁr diffusion equations L(v) exists only in the sense of distributions
and evaluation of b in (10.4) needs some care. Recovery has been proposed
in Section 5 as a mechanism for evaluation of these quantities. In fact it is
the evaluation of the integrals in (10.17) and (10.22) which are required and
with a recovery mechanism the behaviour of m and E[Vj + Vj+1) can readily be
predicted.

Time stepping in the present method is grafted on to the space
approximation. It is at present the weakest aspect of the method and not
much is known about the choice of time step. Both this aspect and the related
problem of node insertion and deletion need more attention. It has however
been argued in Section 6 that simple explicit time integration is sufficient.
There is one situation where a time stepping strategy is clear and
that is when CK goes singular as a result of node overtaking in a hyperbolic
problem. In this circumstance the differential equation is abandoned in
favour of the corresponding jump conditions which may easily be applied. We
note that, as m - « the average speed of (10.19) tends smoothly to the
shock speed while Cly of (10.24) tends smoothly to zero.

dt

Algorithms for accuracy are not well developed but in view of the
[
simplicity and fast nature of the method we can afford to be generous in

taking a trial and error approach. A possible algorithm is as follows:-
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DELT = DELTO

1 CALL MFE (A,S,DELT) yielding A1, S1
DELT = 0.5*DELT
CALL MFE (A,S,DELT) yielding AH, SH
CALL MFE (AH,SH,DELT) yielding A2, S2

IF |l (A2,52) - (a1,s1)]] <« TOL coTO 2
SET A1 = AH, S1 = SH,GOTO 1
2 DELT = DELTO, A = A1, S = S1,G0T0 1

This algorithm compares the result of one MFE step with that of two MFE

half-steps and continues having the step until the difference between the two

is acceptable.
With the elementwise view of MFE taken here boundary conditions are

imposed in a consistent way which is somewhat different to that of the

traditional approach. In particular a radical view of Dirichlet conditions is

taken and a possible way of doing transparent conditions is proposed in Section 7.
Systems of equations in one dimension (with a common mesh) and the

extension to higher dimensions have a common feature. In each case there is a

mismatch when solving (4.14) between the size of the vector w and that of

i = {(a ,éjJT}. In both cases a least sqguares approach to the solution of

J
(10.7) is proposed, although this takes the method away from the traditional
approach. For systems in one dimension with individual meshes for individual
components the difficulties are those of preserving simultanecus features
such as shocks and the technical problems of carrying out quadrature on
unstructed meshes in many dimensions.

To conclude, we have discussed in some detail in this report recent
advances and some alternatives in the MFE method and sketched its potential
and possible limitations. The elementwise view developed throughout is based
on an observation of Herbst [1982]1 and Morton [1982]. Although there are still
several unanswered questions and more work needs to be dorme to make the method
reliable, the approach here has already shown significant results (Wathen (1884),
Johnson (1984), Wathen, Baines & Morton (1984), Wathen & Baines (1885), Baines &

Wathen (1985)). Moreover in the farm sketched at the beginning of this section
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the program which implements the method in one dimension can be run on
a small micro, which shows in a dramatic way how far the method has come

from its original implementation.
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