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ABSTRACT

We investigate the use of optimal control techniques for
analysing the praoblem of energy extraction from a simple wave-power
device. A mathematical model of the system is developed, and an
optimal control strategy for power generation is determined. Various
algorithms are considered for solving the problem, and the results
obtained show that it is possible to achieve an increase in the power
extracted from the device by means of a suitable control strategy.

The technigue is applicable to irregular, as well as regular, waves.



1. INTRODUCTION

Methods for the generation of power from renewable sources,
such as wave, wind, tidal, solar and geothermal energy, have recently
received much attention. Investigation has generally concentrated
on the modelling of interactions between the devices and power sources
and on the analysis of energy-absorption under idealised conditions
[Evans (1978}, Count (1982)]. Incorporation of a power-conversion system
into these designs had led to the development of devices which are sub-
optimal from a theoretical point of view - with an energy-capture less than
ideal. 1In this paper we investigate the use of control mechanisms for
improving the efficiency of the power-conversion system in a particular
wave-power device. With such mechanisms the delivered cost of the energy
is reduced, at the expense of a (hopefully) modest increase in capital
investment, and wave-power can be made more attractive.

A simple one-dimensional (scalar) model of a damped oscillatory
device with a harmonic forcing functicon is studied [Budal, Falnes et al
(1882)1, the objective being to control the spring system so as to maximise
the power generated by the device over a given time-interval. It has been
recognised [Budal and Falnes (1978)1 that the explanation for the reduced
energy absorption achieved by early designs lies in the relative phase
difference between the device motion and the wave-exéiting force. For
a small device, with a higher natural freguency than the incident wave force,
the velocity of the device leads the wave in phase. For a single point-
absorber device it has been demonstrated that if the motion of the device is
halted for certain periods of time during the wave-cycle, then a more
advantageous phase-relationship can be obtained, with a subsequent increase
in energy capture [Evans (1976)1. Thus the optimal control is non-linear

with discontinuities at switches which are to be determined. Technigues
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developed by Birkett (1980); Birkett, Count and Nichols (1884) and

Birkett and Nichols (1883) in an inbestigation intoc the use of optimal control
technigues for analysing the problem of energy extraction from tidal flows,
are extended to our problem of wave-power generation.

The problem is formulated mathematically in section Z. The dynamic
behaviour of the device is described by a second-order system of ordinary
differential equations, which determine the motion of the device. A
control variable is introduced to represent the clamping of theddevice.

The problem is to determine the control which maximises the energy produced
by the system, subject to the dynamic equations being satisfied, and certain
constraints on the control. Necessary conditions for the solution are derived
using optimal control theory, and properties of the optimal solution are
developed. The numerical procedures considered for determining the optimal
control strategy are described in Section 3, and the convergence and
stability properties of each are investigated. The results obtained by
implementing each algorithm are presented in Section 4, and finally the
conclusions drawn from this study are discussed in Section 5. It is
demonstrated that, for irregular waves, phase-control of the point absorber
device is feasible and that energy-capture can be significantly increased

by applying a control in the power-conversion system.



2. MATHEMATICAL MODEL

2.1 Problem Formulation

One simple model for a wave-power device is that of a one-dimensional
damped oscillating system with a harmonic forcing function. The main body
of the device consists of a freely floating buoy constrained to move in a
vertical direction on a strut which is fixed to the sea-bed. If uncontrolled,
the buoy oscillates with the motion of the incident wave. However, by clamping
the buoy to the strut during controlled intervals of time, it 1s possible
to obtain maximum amplitude oscillations and, hence, maximum power may be
extracted from the device.

In the absence of hydrodynamic and mechanical damping, the buoy oscillates
with harmonic motion. The vertical displacement, x(t]), of the buoy obeys

the following second-order differential equation:

mx + (k+c) % + p2x = f(t) , (2.1)

k+c
2

with p? > ( ]2. Here f(t) represents the motion of the incident wave,
assumed to be harmonic; m is the mass associated with the system; k and
¢ are the hydrodynamic and energy-associated damping coefficients
respectively and p a spring constant. All constants m, p, k, c are
positive quantities, and for convenience we assume m = 1. Clamping the
device is modelled by applying an additicnal damping force of large magnitude.
The energy, E, which can be extracted from the device over a time
interval [0,T1, 1s given by

T
E = J € %2 dt. (2.2)
0

If we examine the solution to equation (2.1), we can see that the solution
of the homogeneous equation decays to zero in time 1f the damping term
(k+c) dis positive. Thus, if k + ¢ > 0, the periodic sclution to (2.1)

will be equal to the particular integral only. For a harmonic forcing
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iwt

functicn of the form T = e , the periodic solution can be shown

to be

eiwt
x(t) = ’

(p2-w?) + iw(k+c)

and the associated energy functional is therefore given by

cw2T

E . 2 2
2[(p2-w?) + w?(k+c) 1

Clearly, energy-capture will be maximised if the natural device

frequency p 1is equal to the forcing frequency . In this case we
obtain
E:—CT__? N
2(k+c)

which is maximised with respect to d if the device is 'optimally damped’,

(2.3)

(2.4)

(2.5)

that is if the energy-associated damping c¢ is set equal to the hydrodynamic

damping k. The latching problem is then defined as follows :

the partition

of the interval [0,T], which maximises E over all T (for any NJ,

N
subject to
x + (k+c)x + p2x = f(t) for t € [tj’tj+1]’ j €13
and x =0 for t € [t,,t,
33+

where J 1is any subset of the integers {0,1,2,...,N-1}, and where some
initial or boundary conditions are imposed upon the state, x(t).
In order to reformulate the above as a standard problem of optimal

control, we first introduce a scalar control function u(t) and model

the overall behaviour of the system by the single eqguation

Determine

1, 3 £,

(2.8)
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% + ((k+c) + uB)x + p2x = f(t) , (2.7)

where G »>> 1, (k+c), p? and ul(t) €[0,1) Vt. When the control is

'off’ (u=0), the motion satisfies equation (2.1), but when it is ’'on’ (u=1),
the motion is approximately % = 0, with greater accuracy being achieved by

taking a larger value for G. We rewrite the second-order differential

equation as the first-order system:

13

x(t)

vit)

The control problem is thus to

T 7
maximise E = J x Cxdt (2.
subject to X =OA__+ uBx + b (2.
and either (i) x(0} = Xy given (2.
or (ii) x(0) = x(T) , (2.
where T is given and
x| "o 1 0 0] 0 0 0
X = , A= , B = , C= » b=
v | | -p? —[K+CH 0 -G 0 c |;F[t]

Admissable controls are those belonging to the set D of measurable functions

on [0,T] satisfying

v(it) (2.

F(t) - p2x(t) - [(k+c) + u(t)GIv(it) . (2.

aJ

9)

10)
11)
12)

13)

ultle o = 10,11, ¥t ¢ [0,T] , (2.14)

where Q 1s termed the restraint set. We observe that imposing boundary
condition (2.13) results in a periodic solution.

It is not immediately apparent that the problem defined by (2.10)-(2.14)
is eguivalent to the original problem (2.6), since the control is allowed
to take values over the entire interval [0,11. However, in the following
section, necessary conditions derived for the solution show the optimal

cantrol to be of a "bang-bang” nature, taking values only at the boundaries



e

of the restraint set. Hence the problems are equivalent.

2.2 Necessary Conditions for the Optimal

In order to establish the optimal control for the problem

(2.10)-(2.14) we apply the following Maximum Principle (Pontryagin et al.

[1962]), Lee and Markus [1967]):

Theorem

For a control u, with corresponding state x, satisfying (2.11)-(2.13),

to be an optimal solution, it 1s necessary that there exists a continuous

vector A(t) : [0,T] » TR?, called the adjoint variable, such that 1f the

Hamiltonian, H, is defined by

H=x'Cx +A (A + uBx + b)
then (a) A(t) satisfies
A= - %% = ~2Cx - AT& - uBT&
with either (1) A(m) =0
or (i1} aCo) = a(T) ,

corresponding to conditions (i) and (ii) in (2.12])-(2.13),

and (b) H(x,u,A) = max

H[ﬁ,l],&],

uelo,11]

Condition (b) implies that the optimal control, u, must satisfy

qAT5§ = max
uel0,1]

where )\ = [xq,x2)T, and hence

i 'Bx

Yt € [0,T].

(2.

(2.

(2.

(2.

(2.

(2.

(2

15)

16)

17)

18)

19)

20)

.21)



Thus the optimal control takes values only on the boundaries of the
admissible interval [0,1] - and it is therefore "bang-bang" as required.

A difficulty arises if

.
H, =X Bx = A, 0Gv

g 0

over any finite sub-interval of [0,T1, called a singular arc.
There are two cases for H to be identically zero:
u
either (a) v=0

ar [b] >\2 = 0.

For case (a), differentiating (2.23) and using the state equation (2.9),

we have the condition
f - p?x - [(k+c) + uGlv= 0

along a singular arc. Differentiating again, and applying assumption
(2.23), we obtain the condition

K

0,

necessary along a singular arc. For a harmonic forcing function however,

£ is only zero at isolated points, so that (2.25) cannot be satisfied and,

hence, case (a) can be dismissed. An anomaly seems to arise here - the
formulation of the original problem requires that the device should be
clamped during controlled intervals of time - that is, that v = 0 when

u =1, but we have proved here that v Z 0 over any finite sub-interval

of [0,T]. However, in the mathematical model, the clamping of the device

is represented by the application of an additiocnal damping force of large

magnitude. This modelling is only precise if the damping coefficient, G,

(2.22)

(2.23)

(2.24)

(2.25)

is infinite, and for any value of G less than infinity the device velocity

will be non-zero over controlled intervals. There is, therefore, no

contradiction in this proof.



For case (b) we utilise the additional condition (Bryson and Ho

[1975])

(2.26)

A
o

5 [ d* .7
m {53‘155}

necessary for E(u) to be maximised. Differentiating H, twice with
respect to t, using the assumption (2.24), and the state and adjoint equations

(2.11 and 2.16 respectively), we find that

d® H = 2cGv (f - p2x - [(k+c) + uGlv),
gt?2 ou

and thus, for our problem

__9 d* 3 Tgy - 22 >
U [dtz A 55] 2cG*v? z 0

along a singular arc if (2.24) holds. This contradicts (2.26) if v Z 0,

and it follows that no singular arc may exist in the optimal solution.

2.3 Existence of the Optimal

Existence of an optimal solution to problem (2.10)-(2.14) can be

proved as follows, using Theorem 1 in Chapter 1 of Lee and Markus [1967].

Theorem
Given the control problem consisting of the following:

(a) a differential system

I ~13

X (t) = g (x,t) + h, (x,tlu (t)
i i—= ij —

J

j=1
for 1 =1,...,Nn.

08, 9h. .
g.(x,t), h, (x,t) and L1 (x,tJ), hlJ (x,t) ,
i ij = 8%, axk .
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for kK =1,...,n, all continuous in R" x IR;
(b} a non-empty, convex and (sequentially) compact restraint set g c rP;
(c) the initial point Xg € IR" and the compact target set S(t)c R";

(d) the cost functional

T m
Clu) = JD [go[ﬁjtJ + qu hojtzgtluj[t)] dt

where go(fft) and hOj(Eft] are continuous on IR x IR,
then there exists an optimal control, u, if the state x is

uniformly bounded over the set of admissible controls for all

t €[0,T]; that is, if

max |x(t)] s R<w (2.27)
tel0,T]
where
n 1
| x(8)] = €} x3(e))?
1=

It is clear that the problem defined by (2.10}-(2.12) and (2.14)
satisfies the conditions (al)-{d) of the theorem, since the state equations

(2.11) are linear in x, and u. It remains to prove that the state, x,

satisfies condition (2.27). Integrating both sides of the differential

equation (2.11) yields

t

x(t) = J {Ax(s) + u(s)Bx(s) + b(s)}ds , (2.28)
0

so that

t
x(t) | = J |Ax(s) +u(s)Bx(s) + b(s) |ds
0

Employing the bound on the control, ]u[s]| £ 1, and setting

Q = max{(|A| + |B

), max|p(s)|}>0 ,
(2

where |A] is the matrix norm subordinate to the vector norm [ﬁ[t]

we may write
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t t
|x(t)] < Q‘[' ]5}5]| + 1 ds = Qt + J Q]z}s)]ds .
0 0

Applying Gronwall's inequality (Curtain and Pritchard [1977]), we
obtain

|x(t)] < elt, (2.29)
and hence

max | x[t]l < eQT = R ¢ (2.30)
t€lo, Tl —

and existence of an optimal solution follows.

2.4 Lagrange Formulation

We have shown in the previous section that the solution to the
optimal control problem (2.10)-(2.14) is a piecewise constant control
u, satisfying a non-linear two-point boundary value problem defined
by (2.11) and (2.12) or (2.13) and (2.16) with (2.17) or (2.418), together
with (2.21). The solution can be obtained by an iterative process which is
described in the following section. In order to establish the convergence
of this process, we investigate the Lagrangian functional associated with
the problem and find an alternative derivation of the necessary condition
(2.21), for the optimal.

The Lagrange functional associated with problem (2.10)-(2.14) is
defined by

T

L(u) = E(u) + f AT'(AK +uBx + b - x)dt , (2.31)
0

where A(t) € IR? 1is a continuous vector of Lagrange multipliers. We
examine the variation in the functional L for any admissible variation,
§u, in the control u. We define the "first variation”, ¢§L(u,su), of the

functional L to be linear in ¢§u, and such that
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L(u + su) - L{u) = gL(u,su) + O(|sul).

It is well known [Gelfand and Fgomin (1963)1 that for an admissible
control, u, to be optimal, it is necessary that 6L be negative for all

admissible variations in the control; that is,
SL(u, w-u) =0 Yw € D. (2.32)

If we define the difference between the states corresponding to admissible
controls u and w = u + 8u, as 8x = x(w) - x(u) , then, since matrix

C is symmetric, the variation in the functional is given by

T T T
L{w) - L(u) = J 6x C 6x + 6x (2Cx(ul) (2.33)
0

+ AT{A§§ + uBdx + SuBx(ul) + SuBsx - §x}dt.
Using integration by parts, and letting A be a continuous function

satisfying the adjoint equation (2.16) and transversality condition

(2.17 or 2.18), we obtain

T T
Llw) - L(u) = Su A Bx(u) dt

/0 -
T T

+ §x C éx dt (2.34)
/0
rT T

+ Su)l B é8&x dt
)0 - -

The first variation, SL(u,8u), of the functional is, therefore, given

by

T T
SL(u,Su) = J Su A B x(u) dt ,
0

and hence for an admissible control, u, to be optimal, it is necessary
that

T
J w- u]lj-B_éhﬂ dt £ 0O YV w €D. (2.35)
0

It is clear, therefore, that an optimal control u must take the piecewise
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constant form, (2.21), previously derived.

Thus, we have now shown that an optimal solution to our problem
exists and we have derived necessary conditions for such a solution to
satisfy. In the following section we describe the numerical methods used

to determine the solution.
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8L NUMERICAL METHODS

In order to solve the optimal control problem (2.10)-(2.14),
an iterative process is used to determine a piecewise constant admissible
control u, of the form (2.21), with corresponding response x and
adjoint A satisfying the state and adjoint equations, (2.11) with (2.12)
or (2.13) and (2.16) with (2.17) or (2.18). 1In this section we describe
three different iterative processes for solving the problem, and discuss
the advantages and disadvantages of each. The first, and most simple,
algorithm cannot be proved to be convergent and so two further methods,
employing the conditional gradient technique [Gruver and Sachs (1880)]
are considered. Both of these algorithms can be shown to be convergent,
however one gives rise to a control which may not be of the required form,
(2.21), at each iteration, whilst the other proves difficult to apply to
the discretized problem. We also describe a discretization of the

procedure and investigate its convergence and stability properties.

3.1 Iterative Methods

Consider the following algorithm:

Algorithm 1

Step 1 Set ED := 0

Set i :=1
Choose u/l € D, piecewise constant, such that uq(tJ =0 or 1,
¥t € [0,T]

Step 2 Solve g} = Aﬁl + u13§ + b, with boundary conditions (2.12)
or (2.13), for 5} = §ﬁul].
Step 3 Solve A = - AlA - u'B') - 2x”, with boundary conditions

(2.18) or (2.17), for ' = alul).



Step 4
Step 5

Step 6

Step 7

It

Set

Set

Go to step 2.

_15_

, T iT .
Evaluate E= := I x'' € x dt.
[ < tol, go to step 7.
u 1T B 5} 5
otherw1se

i:=1+1

i
u:=u and STOP.

Set

0

In the case where boundary conditions (2.13) and (2.17) are

imposed and a periodic solution is required, the result is found by

repeated integratieon of the state and adjoint equations over time-intervals

of length T,

in steps 2 and 3 of the algorithm, until the boundary values

of the solutions are equal to within some specified tolerance.

For either set of conditions, the algorithm generates a seguence of

admissible controls

The sequence -{El } is bounded since the states

therefore,

{ul } and corresponding functionals E*

if we can show that the functionals

i
X

El

- ety

satisfy (2.30) and

are monotonically

non-decreasing, then we can prove (Gruver and Sachs (1880)) that the

iteration process described by the algorithm is convergent.

from (2.31) that,

satisfies the adjoint equation (2.18),

if

Now, it follows

x(t) satisfies the state equation (2.11) and 2 (t)

is equal to the energy functional

have:

then the Lagrangian functional L(u)

E(u), and therefore, from (2.34), we

B

i+

(x

- ﬁi)

dt

- xby gt .

(3.1)
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Defining ui+/I according to step B of algorithm 1, and since the
matrix C is positive semi-definite, the first and second terms on the
right-hand-side of expression (3.1) are guaranteed non-negative. However,
we cannot prove that the third term of the expression is non-negative for
all i, and hence convergence of the iteration process defined by algorithm 1
cannot be ensured. Thus we consider an alternative algorithm, employing

the conditional gradient method [Gruver and Sachs (1880)1:

Algorithm 2

Step 1 Set E  := 0.

Choose u/I € D, piecewise constant, such that uq(t] =0 or 1,

vt € [0,T].
.1 i i i . L

Step 2 Solve X~ = Ax~ + U B x" + b , with boundary conditions (2.12)

or (2.13), for 5} = ﬁﬁull
Step 3  Solve A = -ATé? -t e’ A - 2cx®, with boundary conditions

(2.16) or (2.17), for A" = Alu™),

1 T iT . 4
Step 4 Evaluate E™ := 5_ C x" dt
Step 5 Set U Texlso,
ptherwise

Step 6 If |E « gL” 1 ¢ tol, go to step 9.

Step 7 Define, for o € [0,1]

uleg) := ui + ufai— ul)

Find ot € [0,11, such that

ECula)) 2 ECula)) Vo € [0,1]

Step 8 Set u'T! := ulad).

Set 1 :=1 +1
Go to step 2.

Step §  Set u := u and STOP.



_/|7_

Again, if a periocdic solution is required, the algorithm must be
altered in the same manner as Algorithm 1.

In this algorithm, T"  is chosen to satisfy

JT - it e xt dtz o, (3.2)
0

so that fUl - ulJ is a direction of non-descent, and if we determine

ul+/I by a line-search:

s Gt ot @ - Y, for some ot € (0,10, (3.3)

then u1+1 € D. Now

. dl —-i i i T . R .
;ig E(u +alu au )) - E(u™) _ J Gt - LI1&1T B x dt , (3.4)
0

and hence for some al sufficiently small we have, from (3.2), that

E(u1+1J > E(u’). It is possible, therefore, to achieve ascent at each

iteration, and thus it can be shown that the iteration process described
by Algorithm 2 is convergent.
The calculation of the step-length al in step 7 of the algorithm

i+1]

is based on the Taylor series expansion of E(u about u” up to second

order, namely

T

Eu™ + a0 -u")) = E(UM) +a [ @-uin?t B x* dt
0
oz (T 4T 4. —~i 44T o 4
%% 20x™ CAx™ + (u-u™~ Bax7)dt (3.7)
0
+ 02) ,
where 5 x(ut + A (G -uT)) - x(uh)
AX = 1lim ; (3.8)
- A+ A

Thus, to a second order approximation, we wish to find the maximum over

aec [0,1] of
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ety - el - 48, +°°—22'82 = s@) . (3.9)

Now, by the definition of o in step 5 of the algorithm, we have that

[\

T . .
S =J @ -t extdtz 0 i (3.10)
0

Hence, in order to maximise S(q) over o €1[0,1], we should define o by

o = 1 if 82 > 0,

1 if 82 < 0 and -S,l/S2 > 1 (3.11)

—S,I/S2 if 82 < 0 and —S,I/S2 €[0,1]1.

The term in a2 in the Taylor expansion (3.7) satisfies

T iT i, ~i_ i, 4T i
J 2(px™ Cax™ + (u™-u7)y" B ax7)dt

0 (3.12?

atutaa @-utn Tex cutep @-uty) - A‘[ui)TBf_[uijldt.

T —i i
= [ (U -uJdelim
0 A0 A J

Therefore, a good approximation to S, 1s given by

J h-uhyaatutea@-utn Tex ut+a it -ty ae - S,
5, == , (3.13)

for some small value d > 0 of A, and the accuracy of this approximation
may be measured by the known accuracy of the corresponding approximation

for 81:

L : i, .~ di.. i
[ [Ul_ulll\-lT B x! dt - {E(u +d (U du )) - Elu”) } (3.14)
0

which should be zero to within some small tolerance.
The above analysis also provides an alternative convergence.test for
the algorithm. Truncating the Taylor series expansion to a first order

approximation, we can write
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T

™™ = ewh +ocf @ -t e xtat (3.15)
0
and hence the halting criterion
T i i = gl i
[ J (U - u" A" B x d% /E(U™) < tol (3.18)
0

also gives a measure of the convergence of the process. We note that
algorithm 2 reduces to algorithm 1 if a step-length o = 1 1s taken
at each iteration.

One drawback of this, second, scheme is that step 7 of the algorithm
produces a function u(ai] which 1s a convex combination of two controls,
and which therefore is not necessarily bang-bang at each iteration.

This is not satisfactory since our problem requires a bang-bang
solution (although it is possible that the process will converge to a
bang-bang control at the optimall).

A third algorithm, which guarantees a bang-bang control at each
iteration, is the "Variation of Switching points” method. Again employing
the conditional gradient technigue [Gruver and Sachs (1980)§71, this is a
modified version of algorithm 2 based on the bang-bang principle. The
motivation for thsi method lies in the fact that, due to the nature of our
problem:lii is bang-bang at every iteration in algorithm 2. Therefore,
it we start the process with a bang-bang control u1, and construct the

new control by a combination of the switching points of vt oand T

then u1+’l will also be bang-bang at every step 1i:

Algorithm 3
Step 1 Set EO := 0.
Set 1 := 1.

Choose u1 € D, piecewise constant, such that u1(t) =0 or1,

Yt € [0,1].

Set n := (number of switching points of u1] + 1.
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Step 2 Let u- be a bang-bang control with

m switching points

1_ .4 i1 = ol o
0< tU < t1 < < tm < tm+1 - = tn =T,
1o,y .1 i i, .
and u (t) —-5(1 + (-1)7) for te [tj,tj+1J, J 0,.eu,m.
Step 3  Solve X = Ax" + u'Bx  + b, with boundary conditions (2.12)
or (2.13), for 5? = iiul]
Step 4 Solve - = - AAt - ule"at - 20k}, with boundary conditions
(2.16) or (2.17) for A} = Aﬁul)
i Tt 4
Step 5 Evaluate E= := J x7 C x* dt.
0
Step 6  Set U := {1 if AT Bx> 0,

0 otherwise,

where u- has k switching points:
i i i i
0= 5y . Sy S ... = Sk = Sk 41
{if k > n, replace n by k+1

of switching points of ut

and G- (t) =-%(1 + (-1)9) for t €lst,st
373+

Step 7 If |ET

Step 8 Define, for o € [0,11,
t.la) = tT +alst - t7)
J ] j J
/l
and 5
Compute o> €100,1] such that
Eula™)) 2 Elula))
step 8 set u! i= uieh).
Set 1 := 1i+1.

Go to step 2.

Step 10 Set u := u’ and STOP.

- 777 | < tol, go to step 10.

and complete the vector

by t3 =T for j = n+1,...k+1],

1], 3=0,...,k.

for j=0,...,n,

W) (8) =41 + -19) for te [t.(),t,  (@)), 3=0,...
J J*1

Yo €[0,1].

»N.

This method can be shown to be convergent [D.Q. Mayne and E. Polak (1375)]

and has the advantage over algorithm 2 that a bang-bang control is obtained

at each iteration.

However, difficulties arise in applying this method to
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the discretized problem in cases where step 8 of the algorithm produces
a control wula) with switching points tj(u] lying between mesh points
(see Section 3.2).

We ocbserve that all three algorithms involve the solution of two,
first-order, differential equations, and hence - in order to be able to
implement the algorithms - it is necessary to discretize the problem.

This discretization is described in the following section.

3.2 Discretization of Scheme

In order to discretize the procedure, the interval [0,T] 1is
partitioned into N steps of length h = T/N, and solutions are determined
at the mesh points tj = jh. The state and adjoint equations are solved using
a finite difference technique, and the energy functionals Ei are
evaluated using a quadrature rule. The trapezoidal scheme [J.D. Lambert
(1973), H.B. Keller (1976)]1 is chosen to approximate the differential
equations on the mesh and the functionals Ei are approximated by the
trapezium rule [Johnson and Reiss (1882)1. The state eguatians are integrated
forward from the initial condition 5}0) = Xgo and the adjoint eqguations
then integrated backward from the final condition A(T) = 0 (or from the
current values of x(0) and A(T) in the case of the periodic problem).
The trapezoidal schemes for the state and adjoint equations, (2.11) and (2.18),

are given by

Xner = Em t 7 U0 ¥ Uneq B Zpeq * By
(3.17)
+ (Ax_+u Bx_ +b ]}
<m =m  —m
and
) h o ,T . T i

Aper =R 77 LOA Ry Uy B A = 28 X )

. . _ (3.18)
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where x_ % x(mh), A = A(mh) and u_=~ ulmh). We observe that since
“m = —n - m
the system equations are linear in x and ﬁf the trapezoidal schemes reduce

to one-step explicit methods which can be written as follows:

s [ -0 =K u
Xowq = I - 5A+u  BI] [T+ (A +u Bllx
h (3.19)
* 7 Gpg By
and
- _ hg,T T,,-1 he T I
A, = I -5A v+ Bl I +5(A +u BIIA
(3.20)
- hC(x + x J}.
-m+1  =m

The differential eguations (2.11) and (2.16) are thus solved
numerically by the repeated application of the recurrence relations (3.19)
{(for m=0,...,N-1) and (3.20) (for m = N-1,...,0). Both of these numerical
integrations are absolutely stable [J.D. Lambert (1973)] since the eigenvalues

of the matrix (A + uB) are given by

— _[_2p -
H = —2* ((k+c) + uB) {/l + l/'] {m] }, (3.21)

K+cl] 2

5 and hence Re(p) < 0 as reguired for absolute

where p? > [
stability. From (3.21) we see that the exact solution of the system equations
contains an exponentially decaying term

x(t) = s Gt ; (3.22)
On the discrete mesh this term gives rise to a relation
-Gh
x[tln+p = e . x[th (3.23)

where tm = mh. Numerically, (3.22) is approximated by applying the

trapezoidal scheme to the corresponding differential equation
%x(t) = - G x(t) , (3.24)

giving the recurrence relation
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1-"7,8
Kl = m X (3.25)
2
as an approximation to (3.23). Thus, in order for our numerical
approximation to accurately model the physical behaviour of the system,
we must ensure that

1 - g-G > 0, (3.26)

or
_T GT
N = F-) > . (3.27)

The trapezium rule approximates the energy functional by

N
Cx, tx,C EN + 2
m

1

.
X
1

1 o~31

Cx )}, (3.28)
_n']

and the discrete values of the control are then determined at each
iteration by
TR I U Sl I
(3.29)
0 otherwise , m=0,...,N.

Convergence is at most second order, but high accuracy may be
achieved by taking a very small step-length since little storage 1is
required.

Experiments were performed by implementing the above numerical
procedures for various choices of the parameters p, K and G, and the
forcing function f(t). The results of these tests are described in

the next section.
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4. RESULTS

Experiments were performed to test the properties of both the
physical problem and the mathematical model. For a simple problem -
taking a forcing function + = sin 27t over a time -interval [0,11],
and with periodicity enforced - the caonvergence properties of the
numerical procedures were examined. Firstly, the convergence of the
different algothms considered was investigated numerically, and then - for
a particular iterative process - convergence of the procedure as a function
of both the step-length h and the coefficient G (modelling the clamping
of the device in the system equations) was explored. Next, taking values
of G and h so as to ensure reasonable accuracy of the numerical technique,
the behaviour of the device was studied - for the more realistic, non-
periodic, solution; Ffor irregular forcing functions; and for various
choices of the spring rate p and time-interval T. In all the experiments,
the initial data for the control was taken to be uq[t) =0 on I[0,T],
so that the value of the energy functional on the first iteration, E1,
corresponded to that for the uncontrolled system.

Tables 1(a) and 1(b) illustrate the convergence of the iterative
procedures described by algorithms 1 and 2 respectively. Both sets of
results are for a simple problem with forcing function F(t) = sin 27t

on a time-interval [0,7] and the following data:

p =12 ; K=c=1 53 G =26400 and N = 3500.

The boundary condition (2.13) is imposed - generating a periodic solution.
The tables show the behaviour of the switching points - which essentially
determine the solution - and the energy functionals, Ei, at a sequence

of iterations. Although we are unable to prove convergence of the simplest
procedure, algorithm 1 does converge in the majority of cases. However,

for more realistic problems, algorithm 2 is more suitable since convergence
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is guaranteed. As mentioned in section 3.1, the "Variation of switching
points" algorithm (in theory the most suitable of the three methods) does
not converge for the cases tested. This may be caused by step 8 of the
algorithm producing a control ul(a) with switch points tj(uJ lying
between the mesh points of the discrete problem. If so, this difficulty
might be overcome by using an irregular mesh, updated at each iteration
so that all switch points lie on mesh points, and using interpolation
to give values of the state and adjoints at the new mesh points. However,
this idea has not been examined.

Thus, the most suitable iteration procedure is that given by algorithm
2, and the following experiments all use this method. The drawback of
this algorithm, as described in section 3.1, is not a problem in practise:
in all the cases considered, algorithm 2 generates a control which becomes
bang-bang as the process converges to the optimal. This is illustrated
in Figure 1 which shows the graphs of the control, device velocity and
incident wave form for the uncontrolled and optimally-controlled systems.
In the uncontrolled device, the velocity of the device leads the wave
in phase, but with optimal control the velocity is brought into phase
with the forcing function - resulting in a fifty-fold increase in energy-
capture.

Convergence of the optimal solution generated by this scheme as
a function of the time-step h and the clamping coefficient G dis illustrated
in Tables 2 and 3 respectively. These results are again for the simple
periodic problem with f = sin 2wt on [0,1], p =12 and K =c¢c = 1,

Values of the energy functional and mid-time displacement at the
optimal, and the number of iterations required for convergence are given

in Table 2 for a sequence of decreasing step-lengths h. In this case
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G takes the value 6400. Therefore, from (3.27), we have the condition
N = T/h » 3200 for the minimum number of time-steps we may consider. Above
this value of N, the method shows convergence of between first and second
order.

For - a fixed value of N, the behaviour of the solution as G varies
between 50 and 6400 is shown in Table 3. Taking N = 3500, the upper
limit on G according to condition (3.27) is given by G < 7000. The
solution is described by the energy functional, mid-time displacement
and switching points at the optimal. The coefficient G models the device
clamping in the system equations - approximating % = 0 over controlled
intervals more accurately as G tends to infinity. The relative accuracy
of the solution for G = 50 and G = 6400 is illustrated in Figure 2 -
showing the control, displacement and velocity of the optimally-controlled
system. In the latching problem (for G infinite), the velocity 1s zero
and the displacement constant over the controlled (u=1) periods of the
cycle. Clearly, therefore, taking G = 50 does not give sufficient accuracy,
whilst G = 6400 gives a reasonable approximation to the solution of
the latching problem. We cbserve that the minimum value of G necessary
to ensure a reasonable solution is large relative to the magnitude of
the other system coefficients (p = 12, K = c¢c = 1). From Table 3 we can
see that even at G = 6400 the energy functional has only converged to
2 decimal places.,

From this preliminary analysis we see that for values G = 6400 and
N > Egj, algorithm 2 converges to a reasonably accurate approximation
to the solution of the periodic latching problem for f = sin 24t on [0,11
with p =12 and K =c¢ = 1. The remainder of out experiments use these
values of G and N to examine the response of the system to irregular

forcing functions and for various choices of the time-interval T and

of the ratioc of natural device frequency to forcing frequency.
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The spring-rating coefficient p 1in the system equations gives a
measure of the natural device frequency. The higher the natural freguency
is compared to the forcing frequency, the further the uncontrolled system
will be from resonance, and the greater the scope will be for improvement
by phase-control. This is illustrated in Figures 3(a) and (bJ) which show
the periodic response over [0,1] to incident monochromatic waves of
frequency ® for the optimally-damped (K=c), and a sub-optimally damped
(K > ¢c), system respectively. The energy-capture of the uncontrolled
and optimally-controlled systems is compared for w/p in the range [0.4,1.4].
In both cases, the results demonstrate that for incident monochromatic
waves of non-resonant frequency, the power output of the device can be
significantly improved by phase-control. The effect of this control is
shown in Figure 4 for three distinct values of w/p - 1.05, 0.26 and 0.13
respectively. For a system with lower natural frequency than the incident
wave (figure 4(a)), latching control acts to speed up the system. With
a natural frequency higher than the incident wave, Figure 4(b) shows that
the optimal control slows the device, but for w/p << 1 additional high-
freguency harmonics appear in the optimal solution (Figure 4(c)).

The behaviour of the numerical method in computing non-periodic solutions
can be seen in Figure 5. The graphs show the uncontrolled and optimally-
controlled non-periodic responses to a forcing function F = sin 2wt over
1,2 and 4 periods of the wave-form respectively. A characteristic of
the technique can be seen at the right-hand end of the time-interval in
each graph - where the numerical integration procedure gives rise to ’'spikes’
in the control. However, over a longer time-interval the effect is less
significant, and in the periodic solution disappears altogether. Together

with Table 4 (which compares the uncontrolled and optimally-controlled
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energy functionals for ggch case) the graphs shown how, as the response
is built up from rest, the energy-capture is inc;eased by bringing the
velocity into phase with the forcing function. Figure 5 also illustrates
how a periodic solution is obtained by the repeated calculation of non-
periodic solutions over consecutive unit time-intervals.

The feasibility of phase-control for irregular waves is demonstrated
by Table 5, which shows the energy-capture of the uncontrolled and optimally-
controlled systems for various irregular-forcing functions. The solutions
are non-periodic responses on a time-interval [0,4] for an optimally-
damped device (K = c = 1) with natural frequency p = 12. The exact
form of each function is given in Appendix I, along with the mean freguency
of each spectrum. The device response to the forcing function FA is
illustrated graphically in Figure 6. From these results we can conclude
that for both regular and irregular wave-forms, it is possible to significantly

improve device performance by the application of an appropriate control

strategy.
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i energy, Ei switching points at iteration 1

| I |

1 .00178 | ! i
2 .05110 .00000 | .26914 | .48971 | .76914

| I |
40 06391 .02828 | .29057 | .52829 | .78057
80 .07248 .04629 : .30857 ! . 54629 ! .80857
120 07724 .05771 | .32000 I 55771 | .82000
160 .08131 .06886 ] .33143 ! .56886 : .83143
200 .08465 .08029 : . 34286 y .58029 [ .84286
240 .08718 .08171 ! . 35428 ; .59171 ; .85429
280 .8883 .10286 : .36571 i .60286 : .B86571
320 .08958 11371 | .37857 ! .61371 | ,87857

] i |

i |
340 .08964 . 11657 ! .37943 E .B61657 ! .87943
341 .08865 .11686 " .37943 ' .61686 ! .87943
342 .08965 .11686 | .37971 ' .61686 ! .87971
343 .08965 11714 ! .37971 ! .61714 j .87871

1 | |

Table 1(a) : convergence of Algorithm 1

) 1 |

1 .00178 : ) :
2 .05110 .00000 ! .26814 ! .49871 ! .76914

I | |

[} 1 |
40 .06318 .02686 | .28814 4 .5H2686 ! .78914
60 07211 .04543 g .30771 i .54543 { .80771
120 .07680 .05686 ! .31914 ! .5568686 ! .81914
160 .08103 .06800 ' .33057 ! . 56800 : .83057
200 .08443 .07843 ! .34200 ' .57943 : .84200
240 .08702 .09086 / .35343 X . 58086 ' .85343
280 .08874 .10200 | . 36486 ) .60200 i .86486
320 .088957 .11343 ! .37600 ! .61343 : .87600

I 1 1

[} 1 1
343 . 08964 . 11657 f .37943 : .618657 1 .87943
344 .08865 .11686 | .37943 g .61686 ! .87943
345 .08965 .11686 f .37971 ! .61686 | .87971
346 .088865 L1714 f .37871 : 61714 ; .87871

| 1 1

Table 1(b) convergence of Algorithm 2
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Table 2 : convergence of optimal solution with
number of time-steps N

N energy, E* x(0.5)* i

1200 .08847 .04881 230

1800 .08852 .04882 249

2000 .08956 .04883 243

2400 .083957 .04883 279

2800 .08958 .04883 319

3200 .083959 .04883 358

3600 .08962 .04883 310

4000 .083965 .04883 301

4400 .08965 .04883 315

4800 .083965 .04883 2399

Table 3 : convergence of optimal solution with

clamping coefficient, G
G energy, E* x(0.5)* switching points in [U,.5]+
t1 t2

50 .00932 .01406 07714 i .33343
100 .01918 .02183 .09600 ! .35343
200 .03508 .03038 .10657 ! .36600
400 .05343 .03769 11257 : .37343
800 .0639089 .04289 .11514 : .37686
1800 .07980 .04808 .11514 : .37743
3200 .08614 .04788 11514 : 37771
6400 .08965 .04883 1714 : .37971

{0.5, 1.0]
= t,l + 0.5
= t2 + 0.5

are given by
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T:

1,2 and 4

energy-capture of non-periodic system
over time-intervals

energy capture
* 1
uncontrolled, E1 opt. controlled, E* E /E
0.00261 0.00804 3
0.00220 0.02042 9
0.00187 0.04061 21
Table 5 energy-capture of non-periodic system

with irregular forcing functions,

s

for device with natural frequency, p = 12.
energy - capture
mean freq. *
b w uncontrolled, opt. controlled, E /E
*
E,1 E
fA 2.5 0.00212 0.01757 8
fB 2.7 0.00086 0.01069 12
fC 2.8 0.00023 0.00593 26
D 4.7 0.00012 0.00230 25
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5. CONCLUSIONS

In this report, we investigate a simple mathematical model of an
ocean-wave-energy device and develop techniques, using optimal control
theory, for maximising the power output of the system. The energy-extraction
problem is formulated as a standard problem of optimal control, and necessary
conditions for an optimal solution are derived, showing the optimal control
to be non-linear with discontinuities at switches which are to be determined.
Existence of such a solution is established, and numerical algorithms
for calculating the optimal are developed. The convergence and stability
properties of each algorithm are also investigated.

Experiments are performed to test the convergence of the numerical
procedures and to examine the improvement in performance possible with
phase-control. Convergence to an optimal solution of two of the three
algorithms considered is observed (despite having no theoretical proof
of convergence for the first method). The third algorithm - in theory
the most suitable of the three - proves difficult to apply to the discretized
problem.

The second algorithm has convergence guaranteed, and generates an
optimal solution with a bang-bang control for all the problems tested.

Using this method, convergence of the optimal solution with decreasing
mesh-length h and increasing damping coefficient G, is also seen.

Experiments are performed for problems with periodic and non-periodic
solutions; regular and irregular forcing functions; and for different
choices of both the time-interval T and of the ratio of natural device
frequency to forcing frequency. The results demonstrate that device performance
can be significantly improved by means of an appropriate control strategy,
with the greatest increases in energy-capture being observed for devices

operating far from their resonant frequency.
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We conclude that phase-control is feasible for the point-absorber
for waves in the complete spectrum. However, implementation of such a
control mechanism requires forward prediction of the wave-exciting-force
in order to compute the optimal control strategy. It is expected that
the acting wave-force can be found from measurements of the system states,
and that a technique using Kalman filtering to estimate the future behaviour
of the wave-force over a short pericd from its recent history can be applied
to obtain the necessary data. Further investigation of these technigues

and of more hydrodynamically realistic models is necessary.
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APPENDIX I

In the results section of this report, Table 5 and Figure 6 show the

system response to various irregular forcing functions of the form

flt) = 2 Ai sin[wit + ¢i]. The four different functions considered are
i

tabled below, together with the mean freqguency, w, of each spectrum,

given by
2 2 —_

Y (A./w,) = () A )/w . (A.1)
1 1 1 1 1

f Al wi ¢1 w
0.2 6.2832 0
0.6 3.1416 0

TA 0.4 2.0944 0 2.4684
0.4 6.2832 1.5708
0.2 3.1416 1.5708
1.0 2.0844 1.5708
0.2 6.2832 0
0.6 3.1416 0

B 0.4 2.0844 0 2.7180
0.4 6.2832 1.5708
0.2 3.1416 1.5708
0.1 2.0944 1.5708
0.2 6.2832 0

fC 0.6 3.1416 0 2.8376
0.4 2.0944 0
0.04 4.147 2.665
0.12 4.084 5.052
0.20 4,398 3.028

D 0.28 4.712 2.570 4.692
0.20 5.027 5.202
0.12 5.341 0.084
0.04 5.655 3.952




Sv 0Sv8

ws1sAs paT1oJluco-ATTewrado

(9), 8In3T

walsAs paTroIauooun

N NI d3LNIdd 3d0HN3 dINODTVD

(B)l 8aIn3T4

[ ol ,—_— ~ - B
, ~
X4 ll .\ /
A Y
1y
\ ./ ,
1 80 4 \ / 10T
A ’ .
L% ’ \
s \ s N .
. \ Y M
\- \ - ra - 1 3 —— / -9
] . / ; o \ k ’ dl
LY 1Y
. [y
’ \ . [ Y /
' ; ¢ \ :
’ \ / - peg- ¢ \ \ 190
7 s A \
. . . _ \
g . \ \
s i s
I ? / 1
\ \ ' 120 3 ,— / 1270
Il
gt 60 80 10 /ﬁd 20 €0 (4] (] a°t é'0 a0 20 90 Wd LA md/ zh 1T
! m L L i3 - 1 L} 1 1 m L L \ L] L} f L L L L
T T T T T T T 0D I T T T T T T U T T [}
f q 1 M \ / 1
' . v [
' ? [§ 1]
| / : : ;
e
/ 2 FE ) Y / HEEL)
. ¢ s L
\ 1] Y 1 ?
L} kY L}
/ . ' \ / '
: \ ;D \ il P Y
/ ! 1 N [
' ’ v ’
) d [y / )
. \ ? [% ?
N / / 199 \ \ / ’ 190
1S H u [} ’
[ \ L \ | i
) 7 LY o
| s . , ;
| / \ ’ < 8D \ b ~/ 187D
Y ¥ 4 AY 4 .
AY ’ Ay ¢
N\ / i 7 \ * \\ /
~ \\ . ’, %
_ " ’ OIF ""\ - al—
R1TOOTBA  em—e— e WIOJ 8ABM JUBPTOUT ————mmmm T0I3U09




AN NI AILNIHd 3d0HN3 dINODTVD

37

SV 0S¥8
00%¥9=9 : (g)z aIn3t4 0G=9 : (B)z 8In3T4
T . pm———— )= T 00
Y \ ./. ’
T
TR / /]
v [
\ ' ]
[ / ]
[
A ‘
\. . ! - 90 9T
v t
[ / ]
1 '
[ _ _
. ] U
p / ! A4 v e 1 v
\ ] _~ \\\ ~
L -
- \ / _... i N / -
e Y ’»”
\ __ 7 4 2D \ . / 3 4z
1 f b o
¥ 1 ! . ar X ’
0l m.c\ B8°0 _. 20 90 S0 70 €90 s.N.u 10 1] 60 D iy 9P—-58— - 50 . (1] zo S/ 1D
1 1 i 1 I LS| 1 1 L L] i 1 0 1 1 1 (ALY ] 1 1 : —_ :
I3 T T v 1 22 T T T T T D I T C s T 5 T T 7 L DD
v _ ! M l.|-.|\ A 7 o’ \_s m—"
i ! b ’
. .. " a4
) H 42D ~ 12D
_— _ -. _............. /\. \
' ] N S _
. . | -~ .
\ 1 Seo =
! ! Sl i S | EA ]
\ g _
1 1
[
_ _— _ ! | 7
‘
_ _— /. _ 19D 7 | - 99
| \ ! [}
| \ '}
_ v
| Voo o : _
kY 5 787D | | 1870
v [ \ | |
_ \ | |
— WL A ] | L.,
|
|
L
juswsoeTdsTp -———-———- TOJ3U0D

A31To0T8A




38

SV 058

[dy L “dyp 0] 3 ™
wchﬂUCﬂUﬂmeohcoocoEowmmcoammhcﬁmEmpm>mUmﬂﬁop#cooc:Ucmumﬁﬁoppcoo%omp:uamo|>wpmcm

wa3sAs padwep-ATTewrido : (Q)g 8IN3T4

sdura sya ut Asuanbaas yitm sanem

wa3sAs padwep-ATTewrado-gns :

A'N NI A31NIHd 3dOHN3 dINODTVD

: ¢ 8an3T4

i (B)g 8IN3T4

-
-
0

0o

-

d
-

g

NS e

- . o P e e

i e e e e e o e
”
-

T 100

1800

/107

T

-
.
-
w
o~
M
-

[} 01 67 8% 27 9D S v

T ====4 007D

D aihainbete bbbttty
/

|
#
-

I
!
I
1
f o 7T 80D
)
I

180D

T 900

¢ ENTY

£ T 600

\ T HD

&~ 1z




39

Lz = m Aousnbsaj yiTtm aABM JUBPTOUT 07
i gy = d (9) ‘vz = d (g) ‘g = d (e) Aousnbaai feanieu yiTtm wslsAs Jo asuodssd : f 8INST

— e e ® \/elOCity

incident wave form

control

controlled

(ii)

(c)

- -
[y, e ._ll-.... T
. e _ Sase
-~ —
- Il.d/ 4= Sea L - l.nl-olu
= S - S ol
Jy o Ill e A..nlllul.l ....II
- o o - s o e [ AN
a — T ———— X — [ ] N
— ——— 1 — ————— . T
4 o e 0 = 1
- y - — - PRE—— ”
) \“\ o te " P [ o — P
e + . + [ &
- c - oy p——— -
3 5 is g 5 e=es —  §3 -
et &) P o TS T —y
T -’ e o e ®
PP o I .-T3 -
“‘ “‘ “‘
\-\\\ — \\\\ —_ \\\\
g el 3 - L 13 2 - 13
\\\\ il e — Phd
(g — 2 — P
. 3 . — . 43
- L2
— -ﬁ o w— — 1 - —  —
4 a n. n e —
fyl - 3 ~ f’!.lt 3 ~ 4...... -3
- -
-~ -~ -
n-..-..- - !..:I - ...Jl I’l.ll-l!n
S a Say &4 e IS
. ~ee T
h”!- Ili.r nnl.llllll.- =~
e " i e — " )
- - - - ~n - - - - - - - - - - - - - - L] - - - - - - - n - - L}
2 3 3 a P) é q q M q 3 s @ 3 3 3 s 9 3 q q 3 2 a8 3 3 s 9 H 7 49 H z
= = L]
Pafy  ~a v g, 1 P,
- . - . -~
....l!!.....l.!llo / ﬂ IIIII / IIII
] -rj.“l/!ou - -3 S=o . -3 Illl
- -
J!y /u Ill /.. Ill
| - S ~. le N ~. L= S
d O ~. 19 . L] ~. T .
) . WY ] ) f.— '
b < 5 -5 ./ \ oy e \
K \ . — o - P — L) . .
\- \t\ m .!,I.. Lot m ll...llo Lt
- - -
r3 e 2 +3 \\\\.v/.. o -3 o /.
\.\-‘l- \\\\ c \\\\ o l\\\
" L= 0 == o L=
N \\.‘. C \\‘l‘“ - C ‘\‘ L .
.\\\\ cC - c .-
\ " 3 Pl - \ g 2 - \
. s -3 P Te N -7 re
\\\\\ | \\\ l\ ] \\\ |\
ol |u — \\ -.“ c\ — | .’ .u“\u\
’
r .l_ _s -\\\\\\ = ] —t"
N « ot '\ - 5 o ' - ’
N - 3 4 i 4
SO\ . ~ - — S
Sel NN s} See” n e
Sl Ls - P 3 = P 3
lll/./*l - Illl o . llll L]
~- -~ \\ -
- i ~ ~a
s i s Pl 5 (W~ i i \ . . . Pt . M N PR ~=~ . . : M
- - - n - - » - - - - l - -~ - - - - - - - - - - - - - - -
s 3 3 3 3 3 3 3 3 + 3 3 8§ 3 3 3 3 F ¥ % 3 = 4 3 4 3 3 J 9 9 3 1

uncontrolled

(i) -

(c)

CALCOMP EUROPE PRINTED IN U.K. 8450 AS



velocity

incident wave form

control

L
P
4

[}
I” _/"""—'—-—'
Y S—.
\‘ e
- —
1 —.
*', ..,_—-—"'/
—"'-
="
o ——
- - —
8 <.
N —— .
L 1 —_—— i 1 i 1 1 L L ']
(-} L -] o < ~N 2 o 5 @ @ =-
.
= 5 3 3 3§ 5 3 3 3 3 3
Q2
ik T . — T <
~’<~-___~
~—. --.._~~-“~
-
--‘:‘ ’-—'_—
‘—_‘mfﬂ:"—{'ﬁ'--
- o 4
' 1.2 ._—-—-")
N e e —
o —"x
~—. ]
iy g
- - —
. + 4 o ——— e
- —_—
- e
- - —
- e ————
‘4' - e e & e & e =
“:‘-""’-‘--..-._
1 L= T e— L 1 I 1 1
(-] «Q A -] - N =2 o~ - o @ (-]
) .
I d d d < d q q # L -

optimally controlled system

Figure 6(b)

uncontrolled system

Figure 6(a)

8450 AS

CALCOMP EUROPE PRINTED IN U.K



_42_

ACKNOWLEDGEMENTS

This work was carried out with the financial support of the SERC and
the Central Electricity Generating Board under the supervision of

Dr N.K. Nichols, Dr B.M. Count and Dr D.A.C. Nicol.



