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1 Introduction

This compendium of benchmark problems is mainly the result of an ICFD
one day workshop held at Reading University on 27 September 1984. The
views expressed there are embodied in the guidelines and problems that
follow. The framework adopted is split into two sections. The first
contains a 1ist of proposed benchmarks with an annotation to denote
those adopted. The second section is in the form of an appendix and
contains the full details of those benchmarks of which the ICFD has
some experience. Where appropriate, attention is drawn to programs in
the ICFD Software Base (denoted SB) which incorporate benchmark
problems.

The main speakers at the workshop were N.E.Hoskin{AWRE,Aldermaston),
A.G.Hutton(CEGB,Berkeley),P.L.Roe{Cranfield),M.Andrews(I.C.London),
C.L.Farmer(AEE,Winfrith) and P.K.Sweby(ICFD,0Oxford and Reading). The
ICFD is grateful to all the participants at the workshop but
particular thanks must go to Dr Hoskin for his continual advice and
encouragement in this area.

The first section of this report is organised in the following format.
Those benchmarks that are incorporated in the appendix section are
assigned a letter and number. Compressible problems are marked with a
"C#" and incompressible problems with a "D#". Those benchmarks that do
not fall into this catagorisation are absent from the appendix and,
where possible, a source of reference is provided for such problems.
The format used in the appendix section is self-explanatory.

Clearly there is scope for further benchmark problems. For example,
the Industrial Advisory Committee to the ICFD has suggested future
topics to cover might include permeable media flows, two-phase flows
and flows with dominant source terms. Hence where it is considered
there is a need for a benchmark model problem an entry has been made
indicated with a status "? ? ?".

First edition.



2 Guidelines

The concensus of opinion of participants at the workshop was that
there are certain key features underlying the choice of suitable
benchmark model problems. These may be summarised in the following
adopted guidelines:

2.1,

2.2

2.3.

2.4.
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Within a class of problems there is a need to identify
benchmarks that describe simple flow situations. In addition,
model problems should be capable of overtesting troublesome
constraints and highlight the choice of variables and the
statement of the equations.

Particular aspects of model capabilities will depend upon the
type of flow problem. A graduated approach adopting a sequence
of model problems with an increasing scale of complexity is
recommended i.e. (linear - nonlinear),

(scalar - system),

(1-D - 2-D -» 3-D).

Problems should be unambiguously stated in a detailed and
precise manner with all the mathematical and numerical
parameters specified.

Ideally an analytic solution should be available to the model
problem. Failing this there should at least be some analysis
avaijable to establish the behaviour of the solution.

Model probtems should be based upon physically recognisabie
situations.

The numerical scheme/solvers should be tested for:
{a) error growth and stability;

{b) efficiency, robustness and relative cost;

{c} grid convergence.



3 Compressible Flow Problems (C).

3.1 1-D Unsteady Flow.

3.1.1 Plane Geometry : Scalar.

3.1.1.1 Linear constant coefficient advection (C1)

Equation: ut + ux =0
Data:(a) Square pulse.

(b) Sin® pulse. (Many use Gaussian as alternative)

3.1.1.2 Linear variable coefficient advection (C2)

Equation: u,_ + a(x)ux = O

t

Data: as above.

3.1.1.3 Inviscid Burgers' equation {C3)

9 » 2 -
Equation: ug + (172 u )X =0
Data: (a) Shifted square pulse.

(b) Unshifted sin? pulse.

3.1.2 Plane Geometry : systems

3.1.2.1 Euler equations (Conservation form)

e eu
pu + p + eu = 0
e |y ule + p)

X

3.1.2.1.1 Single shock (C4)

Should be tested on both a uniform and a variable grid.

3.1.2.1.2 Single expansion (backward-facing shock data) (C5)

3.1.2.1.3 Open shock tube (C6)

(a) Sod's Problem.

(b) Weak Shock & Strong Expansion.
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3.1.2.1.4 Blast Tube Problem (C7)

3.1.2.1.5 Constant acceleration piston

Ref: Courant and Friedrichs, "Supersonic Flow and Shock
Waves", Springer (1976).

Objective: To demonstrate accuracy of shock formation and
subsequent modelling.

1.3 Polar Geometry : systems

3.2

3.1.3.1 Shock reflected from origin (C8)

Both cylindrical and spherical formulation of equations.

2-D Unsteady Flow

.2.1 Plane Geometry : scalar

3.2.1.1 1-D model problems on non-aligned 2-D mesh

3.2.1.1.1 Linear constant coefficient advection

Refer to 1-D problem C1.

3.2.1.1.2 Inviscid Burgers' equation

Refer to 1-D problem C3.

3.2.1.2 Variable coefficient 2-D advection (C9)

(a) Rotating cone.
(b) Rotating key.

3.2.1.3 Inviscid Burgers' equation (C10)

Equation: u

Data: (a) Cone.
(b) Key.

.2.2 Plane Geometry : systems

3.2.2.1 Euler Equations (conservation form)

3.2.2.1.1 1-D model problems on non-aligned 2-D mesh

3.2.2.1.1.1 Single plane shock

Refer to 1-D problem C4.



3.2.2.1.1.2 Single expansion

Refer to 1-D problem C5.

3.2.2.1.1.3 Open shock tube

Refer to 1-D problem C6.

3.2.2.1.1.4 Blast Tube Problem

Refer to 1-D problem C7.

3.2.2.1.2 Mach 3 Wind Tunnel with Forward facing step (C11)

3.2.2.1.3 Double Mach reflection of a strong shock

Ref: Courant and Friedrichs, "Supersonic Flow and Shock
Waves", Springer (1976).

Objective: Representation of shock reflection and
shock/contact discontinuity interactions in 2-D.

3.2.2.1.4 Richtmyer-Meshkov instability problem

Ref: D.L.Youngs, Physics 12 D (1984).
Objective: Representation of non-planar shock.

3.2.2.1.5 Spherical blast wave (Sedov problem) in (x.,y)

Ref:Los Alamos Report, LA-10112-C, "Workshop on Accurate,
Monotonic Methods for Multi-dimensional Rezoners", Asilomar
State Park, Monterey, California, June(1983).

Objective: Representation of shock discentinuity and
maintenance of spherical symmetry.

3.2.3 Polar geometry :systems

3.2.3.1 Propagation of a plane shock through an irregular 2-D
grid

Ref: AWRE Aldermaston (D.L.Youngs).
Objective: Test extension of difference methods to irregular
grids (possibly non-orthogonal).

3.2.3.2 Spherical shell

Ref: AWRE Aldermaston (D.L.Youngs).
(a) Constant applied inward radial velocity.

Objective: To test maintenance of spherical symmetry.
(b) Translational velocity (in (r,8)).

Objective: Test accuracy of 2-D (r,8) calculations.
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3.2.3.3 Spherical blast wave (Sedov problem) in (r,0)

Ref: Asilomar workshop (1983).
Objective: Representation of shock discontinuity and maintenance
of spherical symmetry.

1-D Steady Flow

.3.1 Plane Geometry : systems

3.4

3.3.1.1 Euler equations (conservation form)

3.3.1.1.1 Laval Nozzle problem (C12)

2-D Steady Flow

.4.1 Plane Geometry : systems

3.4.1.1 Euler equations

3.4.1.1.1 Channel flow over a bump (C13)

3.4.1.1.2 Flow over NACA0012 aerofoil

Ref: M.F.Paisley, University of Oxford.



4 Incompressible Flow Problems (D).

4.1 Laminar Flow.

4.1.1 Linear advection of a rotating cone in an incompressible
velocity field(D1)

Equation: m_ + u.vm = 0

t
fluid property (mass) m,
velocity field u (given).

4.1.2 Diffusion-convection transport in an incompressible velocity
field (D2).

Equation: u.vT - Pe 1¥*T = 0

temperature T,
velocity field u (given),

Peclet number Pe.

4.1.3 Shallow water equations.

4,1.3.1 2-D Problems.

Equations: 0, * Viup) = 0
ug + vluu) + fv + v = 0
velocity field

[E=

= (“1’“2)’

velocity field

I<
"

(—uz,ul),
geopotential ¢,

coreolis force f.

4.1.3.1.1 Grammeltvedt problem

Status: 7 7 ?

Ref: A.Grammeltvedt,"A survey of finite-difference schemes for
the primitive equations for a barotropic fluid",Monthly
Weather Review,V97,no05,{(1969).

4.1.4 St. Venant Equations.
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4.1.4.1 1-D Problems.

Equations: At + Ox =0
2 2
0, + (Q°/A), + gAlh + (0]0])/K*) = 0
total mass flow Q,
cross-sectional area A,

river surface height h,
friction parameter K.

4.1.4.1.1 River Flow problem (D3)

4.1.4.2 2-D Problems.

4.1.4.2.1 Constricted channel

Status: ? ? ?
Ref: P.Samuels,HR,Wallingford.

4.1.5 Navier-Stokes equations

vV.u=20

U, +u.vu - ReIVU - W = f
velocity field u,

pressure field p,

body force vector f (assumed zero),

Reynolds number Re = pUD/p.

4.1.5.1 Driven cavity flow

Ref: T.J.Chung,"Finite Element Analysis in Fluid Dynamics",
McGraw-Hi11,(1978).

Objective: To solve 2-D Navier-Stokes equations for the driven
cavity problem over a range of Re.

4.1.5.2 Plane channel flow over a forward-facing step (D4)

4.1.5.3 Plane channel flow over a backward-facing step (D5)

4.1.5.4 Plane channel flow over a symmetrical step constriction
(D6)
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4.1.5.5 Vortex shedding behind a cylinder

Ref: Gresho et al. I.J.Num.Meth.Fluids,V4,(1984).
Objective: To solve 2-D Navier-Stokes equations for the flow
over a cylinder in a channel for a range of Re.

.1.6 Steady Buoyancy Influenced Flows.

4.1.6.1 Mixed convection.

Equations: v.u = 0

{§ =

1

U.vu - Re VU + Vp = Gr.T

=_> Re
u.vi - Pe "v'T =0
Grashof number Gr = ggzﬁ(T1 - TO)D3/p2,
Peclet number Pe = gchD/k,
T1,T0 reference temperatures.

4,.1.6.1.1 Convection in an infinite slot with transpiration
across a wall

Ref: CEGB,Berkeley (A.G.Hutton).
Objective: Comparison of numerical and theoretical solutions.

4.1.6.2 Natural convection.

Equations: V.u = 0
u.vu - Prv‘u + Vp = RaPrT

u.vT - v’T = 0

Rayleigh number Ra = gB(T1 - TO)D3/(VK),

Prandtl number Pr = v/k,

kinematic viscosity v = p/g,

k/poc_,
E p

Ti,T0 reference temperatures.

thermal diffusivity k

4.1.6.2.1 Natural convection in a square cavity

Ref: G.De Vahl Davis and I.P.Jones, I.J.Num.Meth.Fluids,V3,no3
(1983).

Objective: To solve steady 2-D natura13con¥ect;on g1ow of a
Boussinesq fluid for a range of Ra (10°,107,107,107).
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4.1.6.2.2 Steady natural convection in a porous media in an
annular cavity

Ref: A.Castrejon,Report no.PDR/CFJU IC/9,Comp.Fluid
Dyn.Unit,Imp.Col1. London (1983).

Objective: To solve steady 2-D natural convection flow in
porous media in an annular cavity for Ra (103,104,105,106}.



Appendix I

Details of Specimen Compressible Flow Problems

Cl. 1-D Linear constant coefficient advection.

Equation:

Computational domain:

Mesh spacing:

Mesh ratio, A = At/Ax :

Boundary conditions:

Output time:

Initial data:

Notes:
Initial data
computational
approximation
UO
k
namely
0
Uk =

k
5 I §

Periodic

T=26.12

a) Square pulse:

0
uO = 1
0

b) Sine squared pulse:

X < 0.25
x € {0.25,0.5]
x > 0.5

0 x < 0.25
u =14 sin®m(4x-1.5) x € [0.25,0.5]
L 0 X > 0.5

should be projected on the
grid via the trapezium rule
to

1 X, +Ax/2
u {x) dx

X, ~bx/2 g

X + u {x )
0 k+1/2 0 k-11/2

2Ax
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c2.

1-D Linear variable coefficient advection.

Equation:
Propagation speed a(x):

Computational domain:

Mesh spacing:

Mesh ratio, A = At/Ax :

Boundary conditions:

Qutput time:

Initial data:

Notes:
Initial data
computational
approximation

ul -
° s

namely

[
[=]
n

ug + a(x)ux =0
(1 + x%)7!
[0,1]
0.01
Ax = | 0.02
0.04
0.1
A=1]0.5
0.9
Periodic
T=6.12

a) Square pulse:

0
u = 1
0 0

b) Sine squared pulse:

< 0.25
e [0.25,0.5]
> 0.5

X X X

0 i <0
u, = sin“m(4x-1.5) x e {
0 > 0

xX X X

should be projected on the
grid via the trapezium rule

to
X, +Ax/2
%Y sk u, (x) dx
X, -Ax/2
k
uO(xk+1/2) * uo(xk—1/2)

2Ax

25
.25,0.5]
5
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C3. 1-D Inviscid Burgers' equation.

Equation:

Computational domain:

Mesh spacing:

Mesh ratio, A = At/Ax :

Boundary conditions:

Initial data:

Notes:

Initial data

I -3
L) =
u, + (%) =0
(0,1]
0.01
Ax = 0.02
0.04
0.1
A= 0.5
0.9
Cauchy
a) Shifted square pulse:
-0.25 x < 0.25
u0 = 0.75 x € [0.25,0.5]
-0.25 x > 0.5
Output time: T=0.2&1.4
b) Sine squared pulse:
0 i X < 0.25
u = { sin“m(4x-1.5) x € [0.25,0.5]
0 0 x > 0.5
Output time: T=0.18&0.7

should be projected on the

computational grid via the trapezium rule

approximation
0
Uk
namely
0
Uk =

K
=.A7S

to

1 X, +Ax/2

xk—Ax/Z

uo(x) dx
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C4. 1-D Euler equations: single shock.

Equations:
0 u
pu + p + pu =0
e |y ufe + p) X
Gas constant: y=1.4
Computational domain: [0,1] (1-D shock tube)
0.01
Mesh spacing: Ax = | 0.02
0.04
Geometric grid with initial
spacing above and ratio 1.05
0.15
Mesh ratio, XA = At/Ax: A=
0.30
Boundary conditions: Transparent at both ends.
Output time: T =10.144
Initial data:
1.00000
1.59099 | x < 0.5
3.76563
e
eu =
e
0.26230
0.00000 | x > 0.5
0.25000
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C5. 1-D Euler equations: single expansion.

Equations:
e eu
eu + p + pu =0
e i u(e + p) X
Gas constant: vy=1.4
Computational domain: [0,1] (1-D shock tube)
0.01
Mesh spacing: Ax = | 0.02
0.04
Geometric grid with initial
spacing above and ratio 1.05
0.15
Mesh ratio, A = At/Ax: A=
0.30
Boundary conditions: Transparent at both ends
Output time: T=0.144
Initial data:
1.00000
0,18820 x < 0.5
2.51771
e
Qu = 4
e
0.19307
1.84656 | x > 0.5
0.57916




Appendix I

C6. 1-D Euler equations: Open Shock Tube.

Equations:

Gas constant:

Computational domain:

Mesh spacing:

Mesh ratio, A = At/Ax:

Boundary conditions:

Qutput time:

Initial data:

(a)

(b)

e eu .

eu + p + pu

e J, ule + p) "
(a) y=1.4
(b) y=15/3

[0,1] (1-D shock tube)

0.01
Ax = | 0.02
0.04

Geometric grid with initial
spacing above and ratio 1.05

0.15

0.30

Transparent at both

0.144
0.018

T
(b) T

‘é:

10000.0

0.
0.
0.

ends

.00000
.00000
.50000

.12500
.00000
.25000

00000
00000

00100
00000
01000

0.5

0.5

1/3

173
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C7. 1-D Euler equations: Blast Tube Problem.

Equations:
e ou
eu + p + pu =0
e i ule + p) X
Gas constant: vy=1.4
Computational domain: [0,1] (1-D shock tube)
0.00500
Mesh spacing: Ax = | 0.00250
0.00125
Geometric grid with initial
spacing above and ratio 1.05
0.015
Mesh ratio, A = At/Ax: A=
0.030
Boundary conditions: Neumann at both ends
Output times: T =0.01, 0.016, 0.026,
0.028, 0.030, 0.032,
0.034, 0.038
Initial data:
1.00000
0.00000 | x < 0.1
2500.00
e 1.00000
eu = 0.00000 |.1<x<.9
e 0.02500
1.00000
0.00000 | x > 0.9
250.000
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C8. 1-D systems, Polar geometry: Shock reflected from origin.

Equations:
o} pu 0
pu +r 2 P p+ U’ = | 2p/r
e |y ule + p) R 0
Gas constant: vy =5/3
Computational domain: [0,1]
Mesh spacing: Ar = 0.01
Mesh ratio, A = At/Ar: A= 0.6
Boundary conditions: Neumann conditions at origin
Dirichlet conditions at r = 1:
e (1+£)%
ou N —(l+t)2
e L(1+t)
Output time: T=0.6
Initial data:
o} 1
pu = =i
e .5
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C9. Variable coefficient 2-D advection.

Equation:

Propagation speeds :

Computational domain:

Mesh spacing:

Mesh ratio, A = At/Ax :

Boundary conditions:

Output time:

Initial data:

ug + a(x,y)ux + b(x,y)uy =0
a{x,y) = -cos(8)
b(x,y) = sin(e)

where 6 = tan '({y-.5)/(x-.5))

[0.1]x[0,1]
0.01
Ax, Ay = | 0.02
0.04
0.1
A=|0.5
0.9
Periodic

T = w/2 and 5n

a) Circular Cone, base radijus
.15, unit height at apex,

centered at (.75,.75) initially

b) Key, unit height, centered at

(.75,.75) initially
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C10. 2-D Inviscid Burgers' Equation

Equation: ut

Computational domain:

Mesh spacing:

Mesh ratio, A = At/Ax :

Boundary conditions:

Output time:

Initial data:

+ v(%|u|?) = 0.

where u = (u,v)”

[0,1]1x[0,1]
0.01
Ax, Ay = | 0.02
0.04
0.1
A=1]0.5
0.9
Periodic

T = n/2 and 5w

a) Circular Cone, base radius
.15, unit height at apex,

I -10

centered at (.75,.75) initially

b) Key, unit height, centered
(.75,.75) initially

at
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C11. 2-D Euler Equations: Mach 3 Wind Tunnel with Step.
Equations:
e eu ) ev
pu p + pu + euv
ev puv p + pv
e Ji ule + p) « vie + p)
Gas constant: vy=1.4
Computational domain:
1.0
f
Yy
0.2 |
0.0
0.0 0.6 3.0
X=+>
.0500
Mesh spacing: A= AX = Ay = .0250
.0125
Mesh ratio, A = At/A: A= .4
Boundary conditions: Neumann on y =1
y= 0,0<x < .6
y=.2, .6 ¢<x <3

Output :
Qutput times:

Initial data:

I

11

Initial conditions (inflow) on x=0

Transparent (outflow) on x=3

Density contours

T=10,1.5,2.0,2.5,3.0,3.5,4.0

0O
OO N N



I -12
Appendix I

Cl2. 1-D Steady Flow : Euler Equations - Laval Nozzle.
Equations: Q * (Qu)x =0

2 -—
(eu)t + (p+pu )x - (p/A)Ax =0
with
p = o/v(1-%(y-1)u?)

where A = A(x) 1is the cross-sectional
area of the nozzle

p, p are the physical pressure and
density multiplied by the
cross-sectional area

Computational Domain: x e [-1,1]

Nozzle geometry: yix)=1 - 0.1(1+cosmx) -1 ¢ x £1

Alx) = my(x)?

Mesh : 16 or 32 cells, with those at
outflow being 3 times those at
throat

Boundary conditions: subsonic inflow p = (Q/y)Y
subsonic outflow

b= p_ = [LelwiME] Vi

0.4 subcritical

Cases: M

=
1]

0.6 supercritical

Output: Magh number dgstribution M= u/a
(a“=1-%(y-1)u” )

Analytic Solution: Liepmann & Roshko
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C13. 2-D Steady Flow : Euler Equations - Channel flow over a bump.

Equations: ey *+ (gu)x + (QV)y =0
2
(@u)t + (p+eu )x + (guv)y =0
2 -
(ev)t + (qu)x + (p+ov )y =0
with
p = o/y(1-%(y-1)u*+v?)
Computational Domain:
flow tangency
1 ALLLLLL L i ety
subsonic circular arc subsonic
inflow 10% cord outflow

From

o A
0-1 Jfﬂ-’ P 2
flow tangency

Mesh: 64 x 16 cells ratio 1:3 away from
bump
Boundary conditions: subsonic inflow p = (Q/Y)v
v=20

subsonic outflow

) = [k (pl)M2] VY

peo
v=020

flow tangency elsewhere

Cases: Mou = 0.5 subcritical
flow symmetrical

M°° = 0.675 supercritical
flow not symmetric
Output: Mach number distribution M = u/a

a19ng bottom wg112
(a%=1-%(vy-1) (u"+v") )



IT -1
Appendix II

Details of Specimen Incompressible Flow Problems

D1. Linear advection of a rotating cone in an incompressible velocity
field.

(-1,1) (1,1)
cone y
centre
¢
+ X
(-1/2,0)
(-1,-1) (1,-1)

Objective: Accurate numerical prediction of linear advection over a
long time scale in an 12—sense.

Geometry: [-1< x <13, [-1<y <1].
Boundary conditions: Periodic.

OQutput times: After first half revolution and any integral number
thereafter.

Output: Plot fluid property m, with mm and mmin’ and 12—error‘

ax

Initial data: Cone, centred at (-1/2,0) where r = 0, then
(a}linear straight-sided: m =0 for r > 1/4, m = 1 - 4r for r £ 1/4;

(b)Sin®: m = 0 for r > 1/4, m = Sin4Tr for r < 1/4;

(c)Gaussian: m = exp(-20r?) (smooth).
Time step: At = 0.02 (i.e. 50 time steps per revolution).

Mesh choices: Finite element shape functions
(a) 1600 Bilinears on rectangles,
(b) 2048 Linears on triangles,

Ref: A.Priestley and K.W.Morton,"On Characteristic Galerkin and
Lagrange-Galerkin Methods" ,0Oxford University Rep.No.85/9,(1986).
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D2. Diffusion-convection transport in an incompressible velocity
field.

+1 I—iU

»X
-1 t inlet t 0 { outlet +1

Objective: Solve the 2-D transport equation for the passive scalar T
in the rectangular domain.

Domain: [-1¢ x €1,0¢ y <1].

Specified: velocity field u = (ui,uz) as

u = 2y(1-x?) and u, = -2x(1-y°).

Boundary conditions: On all but outlet

T =1+ tanh{a(2x + 1)] ony =0, -1< x €0,
x = -1, O0¢<y <1,

T=1(1- tanha) on {y = 1, 0¢ x <1, where a = 10.
x = 1, 0y «1,

At outlet y = 0, 0¢< x <1 any appropriate treatment e.g. aT = 0.

an
Required: A graphical comparison between the T—pgofi]e agd the
calculated outlet profile for Pe = 10,100,500,10° and 10°. These

results should also be given in tabular form at x-increments of 0.1.
At least one complete set of results should be for a regular mesh.

Ref: R.M.Smith and A.G.Hutton,I.J.Num.Heat Trans.,V5,pp439-461,(1982).

SB Program: PETGAL (Author B.W.Scotney).
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D3. River flow problem.

Cross-sectional view

— B~

1
d
|
h
t
z
}
sea level
" 1
i
I |
I |
I |
0 I h
given | B=5 B =20 | given
inlet } outlet
| I
| |
| l
| (I | ———
L I | | S
] I T I =
0 5 6 10km

Vertical view

Objective: (a) To obtain a solutijon for large f;
(b) To observe the effect of the constriction on the flow;
(c) To capture essence of solution on a coarse mesh.

Variables: Total mass flow 0 units m3s'l
cross-sectional area A m?
river breadth B m
river surface height h=z+d m
bottom height z m
depth d m
space variable X km
time t Ks.
Geometry: [0¢ x <10], [0< t <86.4]).
z = B(10-x), with slope B where 0.1<¢ B £4.
B = {5m for 5< x <6, 20m otherwise}.
A = Bd (flat bottom,vertical sided channel).
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Boundary conditions: h = 4m at x = 10.

At x = 0, Q rises Tinearly from 20 to 200m3s'_1 over

(a)12 hours and then falls off over 12 hours,
or (b) 2 hours and then falls off over 12 hours.

Qutput times: Every 2 hours.
Output: Q, h, velocity Q/A.

Initial data: d

0
K®> chosen such that hx + (O|0|)/K2 =0

4 for all x.

20 for all x.

[}

initially and is fixed for all time.

Mesh sizes: (a) Ax
(b) Ax

lkm, At
100m, At

2.4ks (Coarse);
0.3ks (Fine ).

nn

Ref: A.Priestley,"Numerical Approximation of Nonlinear Hyperbolic
equations” ,MSc Dissertation,University of Oxford, (1984).
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D4. Plane channel flow over a forward-facing step.
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Objective: To find a steady-state solution of the Navier-Stokes
equations for Taminar flow over a forward-facing step.

Boundary conditions: A fully-developed laminar flow profile is assumed
at the inlet (A). Any appropriate outlet boundary condition may be
applied.

15 fixed. S variable.
1.0 and h = 0.5.

Geometry: L
H

Reynolds Number: defined as Re = pU__ _H/u.

max

Required: Profiles at x = 5,10,15,20,25 for Re = 50,150,500.

Ref: R.M.Smith,"Report on VI Meeting IAHR Working Group on Refined
Modelling of Flows",Kernforschung,Karlsruhe,March(1983).
CEGB,UK Rep.Nos. TRRD/B/PS/271/M83,TPRD/B/PS/292/M83.

SB Program: FDVORST (Author M.F.Webster).



II - 6
Appendix II

D5. Plane channel flow over a backward-facing step.

A [ max l’} |
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Objective and boundary conditions: Similar to D4.

Geometry: L
1

= 3 fixed. S = 19 fixed.
(a) H=1.0and h = 0.5, (b) H=1.5and h = 1.0.

Calculations: Cases (a) and (b) for Re = 50,150.
Reynolds Number: defined as Re = gUmax(H—h)/u.

Required: At steady-state
(a) streamline plots, with enlargement in recirculation zone;
(b) pressure level plots;
(c}) max and min us along lines x = 0.8,2,4,8,12;

(d) wall shear stress Ty and SSTWdX at x as in (c);

(e) state computer type, storage required, CPU and real time used,
and number of unknowns;

(f) indicate increase of computational effort required to improve
accuracy e.g. present results for two different computational
grids that are compatible with the physical probiem.

Ref: GAMM Workshop,"Notes on Numerical Fluid Mechanics",Vieweg-Verlag
Series,Nice,Jdan.(1983).

SB Program: FDVORST (Author M.F.Webster).
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D6. Plane channel flow over a symmetrical step constriction.

Objective: Similar to D4.

Boundary conditions: Similar to D6 with the additional symmetry
conditions on the channel centreline.

Geometry: L
H

2, S = 2.
1.0 and h = 0.5.

Mesh sizes: Ax = Ay = {1/10,1/20,1/40,1/60,1/80}.

Reynolds Number: defined as Re = pU H/p.

mean

Required: Streamline plots for Re =0,10,50,100,500,2000.

Ref: S.C.R.Dennis and F.T.Smith,"Steady flow through a channel with a
symmetrical constriction in the form of a step",Proc.R.Soc.Lond.,
A372,pp393-414,(1980).

SB Program: FDVORST (Author M.F.Webster).



