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0. Abstract

In this paper we consider a method that has already made its
mark in a number of fields in computational fluid dynamics (CFD)
but has yet to make it in environmental or meteorological flows.
The Taylor-Galerkin finite element method provides the accuracy of
the Lax-Wendroff method, although with fewer of the well-known
problems of that method, together with the flexibility of mesh
refinement associated with the finite element method in general.
Here we will formulate the method in a form suitable for advection
on a sphere and will proceed to demonstrate its power on a test

problem.

1. Introduction

The Taylor—Galerkin method introduced by Donea (1984) and
further expounded by Donea et al (1984, 1987, 1988), for example,
has already proved to be a very powerful method. See Lohner et al
(1986) and references therein for its application to high speed gas
flows.

Basically the Taylor-Galerkin method is the finite element
version of the Lax-Wendroff scheme. The Lax-Wendroff method is
still popular despite its well-known misbehaviour at
discontinuities. For smooth flows Lax-Wendroff is second order
accurate in space and time whilst at shocks artificial viscosity
can help to give a reasonable solution. However, the finite
element approach not only gives us the flexibility of the meshes

that can be used but also improves the phase accuracy, Donea et al



(1987). Although this does not eliminate the problems caused by
strong gradients it does substantially reduce them.

In the rest of this section the Taylor-Galerkin method is
derived in its usual form for a conservation law, followed by the
much more convenient two—stage version. It will then be shown how
the scheme can be written for advection equations of the type that
are of interest to us here.

In Section 2 a test problem for advection on the sphere, due
to Ritchie (1987), is presented and the application of the scheme
to this problem is explained.

Finally, in Section 3, the results are given and analyzed and
we draw our conclusions.

Firstly let us consider the single non-linear conservation law

in one dimension,
u, + F(u)x =0 . (1.1)

A Taylor series in time is now performed, the spatial
discretization being momentarily left aside, with a time-step of
At giving an approximation to u at the new time-level of

ooy e Ae® s l(At)zun + -1—(At)"un + ... . (1.2)
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Into this semi-discretized equation we can substitute for the

temporal derivatives, i.e.
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to second order, where a(u) = dF(u)/du .

This then leads to the semi—-discretized scheme

!un+1 - un! n At n n
I = -F(u )x + —é{a(u )F(u )x)x . (1.3)
From this point we can either apply central differencing to
the right hand side of (1.3) to obtain the Lax-Wendroff method or
we can expand u in terms of some finite element basis functions

and then take the weak form of equation (1.3). That is we write

number of nodes
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where ¢i(x) is the finite element basis function. Throughout
the rest of this paper we will assume ¢i(x) to be the usual
piecewise linear 'hat’ function and we will use ¢e(x) to
represent piecewise constant functions that take a value of 1 on
element e and O everywhere else.

Substituting into equation (1.3) and multiplying through by

¢j we have the second order accurate Taylor-Galerkin scheme
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Here we denote the solution domain by £ and its boundary by T .

If we now let A(Un) or A" denote the Jacobian of F, 1i.e.

dF
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then we can write down the Taylor-Galerkin scheme for the system of

conservation laws

as
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where n is the unit outward normal of the boundary T .
Just as the one-step Lax-Wendroff method is rarely used

because of the expense of calculating the matrix A and of then

aF
multiplying it by the vector aij. a two-stage version of the
J
Taylor~Galerkin method has been developed. Following Lohner et al

Y

(1986) we introduce a new function §P+ which is a piecewise

constant approximation to u at the half time level and is given
by
ar
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To proceed we note that, to within first order accuracy,
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Equation (1.4) can now be replaced by
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where En denotes the outward normal flux and the overbar
represents an element-averaged quantity.

We now specialize this method to advection on a sphere. We
have no boundaries and so equation (1.5b) simplifies somewhat.

A problem though is that we will not in general be solving a
conservation law. This means that the integration by parts used
to transfer the derivative operator from the piecewise constant
EP+% to the differentiable basis function may not be as clear as

before.

Consider the equation
u +L(u) =0 . (1.6)

The first stage of the Taylor-Galerkin procedure goes through

entirely as before in that we write

n+% n At n
fu $,d0 = Ju $d0 - = | L(U )¢ d0 . (1.7a)
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The second stage is now
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the extension to a system being obvious. The velocity field, a,
will be a function of position, x, alone in the example to be
tested later, but will generally be a function of the solution u .
Hence we will consider a = a(x, u) .

Now
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where S is the surface of the element and dS = ndS, where n
is again the outward normal. Given that ¢i is a linear function

1
on each element and that a(x, Un+A)

is most likely to be given as
a piecewise constant (if a function of U) or a piecewise linear
(if a function of x), the surface integral is then very simple to

evaluate exactly.



2. The Test Problem

This problem, due to Ritchie (1987), involves the advection of
a Gaussian hill around a sphere. Although the problem will be
fully defined here the reader is advised to read Ritchie (1987) if
more details are required.

Four co-ordinate systems will be used. First, Cartesian

(x, y. z) and latitude and longitude (A, 8) which are related by

X = cos\ cosf

sinA cosf

<
Il

Zz = sinb .

A second set of latitude, longitude co-ordinates (A', 6') is
then introduced. These are related to the first by defining a new
north pole, P', to be at position (AO, 60) . We then have the

following relationships:—

_ sin(A - AO)
A(N, 6) = tan sineo cos(A - KO) - cosGO tanf
and

6'(\, 0) = sin_l(sine sinGO + cosf cosBo cos(A\ - AO)) .

These co-ordinates will be used to define the velocity field.

The fourth set of co-ordinates is used purely to define the
initial data and to visualize the results. We introduce a plane
which is tangent to the earth’s surface at the new north pole

P . A stereographic projection, true at P', 1is then defined as
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_ 2a cos\' cosB'

X = 1 + sind’ + XP'
2a sin\' cosf'
Y= 1 + sinB’ & YP‘ '

where a is the radius of the earth and (XP., YP.) is the position
in (X, Y) space of the point P’

The velocity field is designed to rotate uniformly around the

displaced north pole P' . That is, in the (A', 8') system
a
dt ~
(2.1)
de'
and F_O’

where w 1is a constant designed to give one complete rotation in
20 days.
In the (A, 6) system it can then be shown that the zonal and

meridional wind components are given by

u = aw[cos8 sinGo - cos(A - Ao)sine cosﬂo]
and
v = aw sin(A - O)cosBO .
If we define u =wa and v = v/a and similarly x, y. z
as x/a, y/a, and 2z/a, then the normalized Cartesian velocity

components are

X = - u sinA - v cosA sinf
’:l ~s ns

¥y = u cosA - Vv sinA sinb
Zz = Vv cosf .
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From equation (2.1) it is easy to see that if we have initial

data uO(A‘. 6') then the solution at time t 1is given by

u(A', 8', t) = uo(k' - wt, 8')

or in (A, 6) co—-ordinates

u(A, 6, t) = uo(k‘(k, 8) - wt, 8'(A, 8)) .
We shall define our initial data by choosing
(Nyr 8y) = (0%, 45%)
with the Gaussian hill centred on the point

(A, 8) = (0°, 09 .
The initial Gaussian hill is given by

2. 2,2
G(r) = 1006 " * /L

where r 1is the distance from the chosen centre as measured in the

(X. Y) plane. L is the wave length of the field for which we

take a value of 10,000 km.

The reasons for the choice of P' and the centering of the

cone are that after half a revolution it will pass directly over
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the north pole. This has traditionally been a stumbling block
when solving on the sphere, usually due to the types of grid being
used which, naturally enough, have been defined in (A, 0) space.
This leads, though, to a great clustering of points around the
poles and hence to much smaller Ax’s there. For explicit
schemes with a CFL limit, as spectral methods usually are, this
leads to a greatly reduced time-step caused by this unnecessary and
unwanted refinement.

The problem of the reduced CFL limit is overcome by the
semi-Lagrangian scheme (see Ritchie's paper or references therein),
because this method has no CFL limit. There is still a problem at
the poles, though, because the accurate calculation of
trajectories, an essential part of this method, is made tricky by
the polar singularity. Some care must therefore be taken with the
semi-Lagrangian method at the poles.

The Taylor-Galerkin finite element method suffers from neither
of the above complaints. Firstly, because it is not a Lagrangian
scheme there are no trajectory calculations involved and secondly,
because it is a finite element method, we have a lot of freedom in
the mesh we use as opposed to spectral or finite difference
methods. This means that we can define the grids in Cartesian
(x, ¥y, z) space and the poles require no special attention. The
Taylor-Galerkin method is still subject to a CFL limit, but this
limit is not now drastically lowered by the grid refinement at the

poles.
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3. Results and Conclusions

Three grids will be used. The 3rd refinement has 386 nodes
and 768 elements, the 4th refinement has 1538 nodes and 3072
elements and the 5th refinement has 6146 nodes and 12,288 elements.
The 4th and 5th refinements of the grid, as viewed from infinity,
are shown in Figures 1 and 2, whilst in Figures 3 and 4 we show the
stereographic projections of the 3rd and 4th grid refinements.

The initial data is shown in Figure 5.

The results are all taken after a full 20 day rotation. The
maxima and minima are given to indicate the success of the solution
and an 82 error provides a more objective, comparative measure.
The maximum and minimum should, of course, be 100 and 0 . No
pictures are given of the solution as they only confirm the
impression gained from looking at the extrema, i.e. the solution
was obviously degrading or clearly doing very well. There was no

noticeable phase error. Results are given for various time-steps

and meshes to assess temporal and spatial convergence.

At(secs) Max. Min. 82 error
8000 61.33 -106.5 0.699
4000 72.24 - 28.69 0.289
2000 79.28 - 12.80 0.2
1000 83.62 - 7.87 0.175

500 86.29 - 7.52 0.176
250 87.87 - 10.2 0.185
125 88.74 - 11.95 0.195

Table 1 : Results for 3rd grid
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From Table 1 we see that there is no point reducing the
time-step below 1,000 seconds as the results have time-converged at
that point and to take more time—steps is to invite more projection
error to creep in, as indeed happens. If we subtract off the
purely spatial error, i.e. that error that remains in the
time—converged solution then we can calculate temporal orders of

convergence to be 2.2 and 2.19.

At Max. Min. 82 error
1000 91.59 - 39.28 0.144
500 95.37 - 9.74 0.0409
250 97.61 - 3.93 0.0189
125 98.79 - 1.85 0.01043
62.5 99.4 - 0.963 0.00672
31.25 99.69 - 0.507 0.00508

Table 2 : Results for 4th grid

If again we subtract off what is assumed to be the
time-converged solution we can calculate the order of convergence
to be 1.955, 1.38, 1.37 and 1.7. It is worth noting here that the
4th grid has resolved the Gaussian hill much more adequately than
on the previous grid. This is shown in the vast improvements,
apart from with the very large time-steps, in the maximum and
minimum values. If a strictly non-negative quantity needs
transporting, for example humidity, then it is clear from these
results that, provided the mesh is capable of representing the
solution and a moderate time-step is chosen, then very little
post-processing of the solution will need to be done to maintain

positivity.
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The final grid we shall look at is the 5th refinement.

At Max. Min. 82 error
125 098.77 - 6.77 0.01135
62.5 99.39 - 2.39 0.00482
31.25 99.71 - 1.04 0.00252

Table 3 : Results for 5th grid

Rather surprisingly these results show little further
improvement than was obtained on the 4th grid. This is due to the
fact that most wavelengths present could be adequately resolved on
the 4th grid. Due to the lack of data we cannot give figures for
the spatial convergence rate but we can at least say it is not
slow.

In conclusion, then, we can say that the Taylor-Galerkin
method copes with advection on the sphere very well; the poles
present no problems, as opposed to methods based on Gaussian grids,
and temporal and spatial accuracy are both very good.

It is hoped in the near future to look at problems involving
the solution of the shallow water equations on the sphere and,
whilst the regular grid ably demonstrated there was no need to
treat the poles specially, this is not an optimal way of solving
the problem with finite elements and it is hoped to include

solution dependent adaptivity before long.
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