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Abstract

All predictive models used in numerical weather prediction involve the treatment of advective
terms. The “unified model” which is employed by the Met Office for numerical weather prediction
includes such terms. It has never been fully tested and, with a proposal to totally revise the
“unified model” including a change of the model’s numerical scheme from split-explicit Eulerian
to semi-implicit semi-Lagrangian, a number of tests are implemented on the possible revisions
of the “unified model”. One such test is that both the current and the proposed new numerical
schemes should be tested against each other and other alternative schemes.

The numerical schemes are tested on the Shallow Water Equations on a suite of standard test
problems. Numerical and graphical results are produced to allow a comprehensive comparison
of the schemes.

Conclusions are drawn as to whether the current Eulerian scheme is the better of the two and
to whether the proposed new scheme will result in an improvement to the numerical solution for

the “unified model”.
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1 Introduction

All predictive models used in numerical weather prediction involve the treatment of advective
terms. The “unified model” which is employed by the Met Office for numerical weather prediction
includes such terms (3], [4].

Present day numerical weather prediction (NWP) involves solving a form of the Navier-
Stokes equations for a fluid on a rotating sphere together with conservation of mass (continuity
equation), an energy equation and a transport equation for water vapour.

The Eulerian equations of motion contain the familiar, non-linear advection terms and ad-
justment terms involving large-scale balance between pressure gradient and coriolis forces.

In major forecast centres such as the UK Meteorological Office, the numerical models have
to be robust and reliable and are run routinely to tight schedules. This necessitates the use of
efficient numerical methods. Similar models used for climate research also need to be efficient
as simulations may be run for thousands of years. The numerical solvers used are generally not
as advanced as those used in other areas of computational fluid dynamics although there is a
growing use of, for example, semi-Lagrangian schemes and TVD or shape preserving advection
schemes.

As part of a programme for improving the UK Meteorological office Unified model, which
is used for operational (daily) NWP and climate research (general circulation models), the nu-
merical schemes used have been tested on a standard set of test problems, [13] designed to show
their performance in solving the solution of the Shallow Water Equations (SWE) on a sphere.
The SWE are outlined in Section 2. The testing requires that the numerical schemes used for
the unified model equations are tailored to the SWE. The SWE are discretised using finite dif-
ferences on the Arakawa B-grid. The main numerical scheme tested is a split-explicit Eulerian
conservative fourth order Heun advection scheme [2]. Lower order advection schemes were also
tested as were, for the simplest test case, a TVD [8] and a semi-Lagrangian [1] scheme. All of
the Eulerian schemes are described in Sections 3.1 to 3.4.

The proposed new scheme is then tailored to the SWE. The SWE are discretised on the
Arakawa C-grid and a semi-implicit semi-Lagrangian scheme applied on the grid. This procedure
is detailed in Section 3.5.

The suite of test problems ranges from pure advection, through steady state solutions to the

SWE and problems with orography to the Rossby-Haurwitz problem and actual observed data.



These are detailed in Sections 4.1 to 4.7.

The results of all the procedures are compared, using the error measures detailed in Section
4.8, and conclusions are drawn as to the viability of the proposed new scheme. The results and
conclusions are outlined in Section 5. The study of the results from the test suite has produced

additional data with which to make a choice of diffusion coefficient for the current scheme.

2 Shallow Water Equations on a Sphere

Consider the SWE on the sphere, which are

Ou u Ou vadu U g Oh
a-i_acosqﬁa_)\-l_ga_qﬂ_(f-l_gtan(b)v—l_acosd)ﬁ—o’ (1)
Oov u Ov  vov u goh
5 T aogan tagg t U+ e)ur Tgp =0 )
together with the continuity equation
oh* .
T V.(h*u) =0, (3)

where h is the height, h, is the height of any orography with A* = h — hs, (A, ¢) are the spherical
coordinates, (u,v) are the velocities in the A and ¢ coordinate directions respectively with

u = (u,v)T, g is gravity and a is the radius of the earth.

2.1 Differences between the “unified model” and the Shallow Water

Equations

The major differences between these equations and those in the unified model [3], [4] are that
there is no vertical velocity and there is only one h level in the vertical, which means that, as far
as the unified model is concerned, the k subscripts in the documentation can be ignored. The
quantities , virtual potential temperature, and ®, topographic height, do not arise in the SWE.

For clarity the ¢, j subscripts are suppressed. Any physics and chemistry is ignored.

2.2 “Eulerian” and “semi-Lagrangian” methods

Numerical solutions of equations do not give a continuous solution for any variable, but rather

they give values for a variable at a discrete set of grid points. Eulerian schemes depend only on



the data values at these discrete points and so the information needed for a numerical solution
is passed forward from grid point to grid point.

This is different from a semi-Lagrangian scheme where, in order to calculate grid point values,
you calculate where a parcel of fluid would start from to end up at the grid point. (This departure
point is not necessarily a grid point). The value of the variable at the departure point is then
used as the value of the variable at the grid point where it arrives for the next time level. Since
the data values are only held at grid points, to find the data value at the departure point requires
the use of an interpolation procedure. This procedure finds which grid cell the departure point
is in and then using neighbouring grid point values produces a value at the departure point.
The simplest interpolation is bi-linear, which only requires the data values at the corners of the
enclosing grid box. Other more expensive, but more accurate, choices are cubic and quintic

interpolation.

2.3 Grids and Notation

The computational grid used for the Eulerian scheme is an Arakawa "B’ grid (see Figure 1). The
grid axes are in the A and ¢ directions. The grid is Ny by Ny points, giving grid spacings of
AX = 2w /Ny and A¢ = 7/(Ngy — 1) where X € [0,27] and ¢ € [—n/2,7/2], with ¢ = 0 the
equator, ¢ = m/2 the North Pole and ¢ = —r/2 the South Pole. This means that the North
Pole is actually represented by a line of N, points, i.e. the grid line j = 1. The Arakawa B grid
holds the values of the height field at each grid point with the velocity field being held at the
centre of each grid cell. The height field is therefore of array dimension Ny by Ny, whilst both
the velocity components are fields of array dimension Ny by N4 — 1. The grid size used for most
of the results in this paper is 96x73. However some more practical simulations are run on grids
up to a size of 288x217 points.

The semi-Lagrangian scheme is run on an Arakawa C-grid. With this grid the variables are
held at different points than on a B-grid (see Figure 1). The grid spacings are calculated as for a
B-grid. However for the semi-Lagrangian scheme the point ordering has changed and the North
Pole is now represented by a line of Ny points, i.e. the grid line j = N4. The Arakawa C-grid
holds the values of the height field at each grid point with the u component of the velocity held
on a horizontal grid box side and the v component of the velocity held on a vertical grid box

side. The height field, and the u field, are therefore arrays of dimension Ny by Ny, whilst the v



field is an array of dimension N, by Ny — 1. The grid size used for most of the results in this
paper is 96x65.

h® h® h® u’ h®

[ ]
u,v \' \'

h® h® h® u’ h®

Arakawa B-grid Arakawa C-grid

Figure 1: Distribution of grid points.

In the discretisations that follow the notation used for differences and averages is:-

[X(A+ 2AN) = X(A = LAN)]

5 X =
A A)\ »
== 1 1 1
X\ %[X()\ + gm) + X0 - gm)],
e — )
X=X,

The notation X, means that the variable X is evaluated at the departure point d (see Section

2.2) using interpolation.

3 Numerical schemes

In this section the numerical schemes which were tested are presented. The Eulerian schemes are
presented first, followed by the semi-Lagrangian scheme. The first Eulerian scheme presented is

the fourth-order Heun scheme presently used in the “unified model”. This is then followed by a



simplified Heun scheme and a Lax-Wendroff scheme. A TVD scheme is then outlined and finally
the semi-Lagrangian solution procedure is detailed.
For a description of the code logic over one time step, the problems with the initial docu-

mentation for the current scheme and the problems encountered with all the Eulerian schemes,

see [10].

3.1 The Heun scheme

The split-explicit Eulerian scheme in [3] seeks to combine accuracy and efficiency and preserve
the conservation properties required for long-term climate integrations. A Heun scheme, with
Euler time stepping, is used for the advection which allows for 2nd or 4th order accuracy in
space. Various quantities are conserved under the Eulerian schemes outlined.

Rather than treat the complete set of equations in one step, they are split into two separate
parts. This is due to the fact that certain of the terms in the equations can be treated on
different time scales from the others. Those terms whose numerical treatments require a small
time step, due to the CFL condition, are solved more often than those which can use a large
time step.

Before discretisation, equations (1) and (2) are split into an adjustment step and an advection
step. The advection step solves %—I—u.V’u = 0 while the adjustment step solves for the remaining
terms in equations (1) and (2). The adjustment step requires a smaller time step so is carried
out a number of times for every advection step taken.

The elements of the discretised forms of equations (1) and (2) which form the adjustment

step are manipulated to form a pair of coupled equations,

1 9 b
n+l _. .. n . n+1 ny _ n
utt =" 4 8t [QFn(v +v") acos¢6'\h ] , (4)
1 D
’Un+1 = ’Un b 6t [EFn(’U,n-i-l + ’U,n) + %5¢hn)‘] y (5)
where
Fy= f+ “tand and  f=2Qsina (6)
a

Eliminating 4™ from equations (4) and (5) gives

on [1— 8 F2] - & o + BER — LR F, )

n+1 acos¢
(1+2£F)

v fd




while eliminating v™*! from equations (4) and (5) gives a corresponding expression for u"**.
Before the remaining terms in equations (1) and (2) can be employed in the advection step

it is necessary to calculate a new height field, A"*?, which can be found using the time stepping

n . Ot
h+1:h —'CED, (7)

where
A

(Ex@R™) + 5o o5 9) ) )

D=1

cos ¢

gives a numerical approximation to V.(hu).
The treatment of the terms in equations (1) and (2) other than —«.Vu can now be imple-
mented during the advection step. In the advection step a new vector U is defined which is an

averaged height weighted velocity field, namely

f\_]__’i (au,-h_{\d’, av; cos qSh_,-M)) (9)
Ny ’

U=(U,V)=

where N, is the number of adjustment steps.
The fourth order Heun scheme, as implemented in [2], is then used to produce new values

u# and v# for u and v from the equations

PR = R — (10)
A $ 3% ———3¢
At — i ) —z¢ —
3 ((1 + I/)UM) S +(1+ 1/)V/\175 Spu — v 6 — oV Spu )
cos
2E 0t = 2Ry — (11)
— b 3 3¢
— o v —\
= ((l + r/)UM ow + (1 —I—I/)VM bpv — v 6w — vV bgv ) ,
o8
— ¢
_m . 0w hn+1
GZRPFT Pl T yn % (( = ) U.Vu" + U.Vu#) (12)
————)¢
S N n+1
Q2R Yyt — IR g % ((hhn ) U.Vo™ + U.Vv#) , (13)

where v is defined as v = vp(1 — €Z,ax). The choice v, = 0 defines a 2nd order scheme and vy, = é
defines a 4th order scheme. The minimum value for v is zero which gives 2nd order accurate
space advection. The quantity émax is defined as the maximum ¢ along a line of latitude or
longitude as appropriate, with £ being defined by
u?At? vEAL?
£=( Az T 2 2) :
a?AXNcos?p  a?A¢

D=

(14)

6



If required, diffusion of order 2j of any variable, X, may be added into the scheme using
the additional term (—1)/~1D’X where, for example, if j = 3, D°X = D(D(D(X))) and where
D(X) is defined by

DX) = s (1 HED T 6X) + — S8R 01, 9)" cos ¢6¢X)) (15)
with
o O B AN cos ¢ ?
b 9) = A E(08) = hy(h4) (T : ) (16)

and k is a user chosen coefficient where for stability we require

4k’
I <
At(a2 &) <1

These are the main procedures implemented in a time-step of the numerical algorithm tested
here, but there are other procedures mentioned in [3]. The grid splitting mentioned in Section
3.2 of [3] is not implemented since the use of a 4th order advection scheme renders it redundant.
Divergence damping is also not employed, but Fourier filtering is used to prevent the timestep
being undesirably reduced by the short gridlengths used in high latitudes.

Fourier filtering is implemented to reduce the amplitude of unstable wavelengths in the nu-
merical solution. The solution vector is decomposed into its component waves, each of which
has a certain amplitude. If the timestep is such that the numerical solution is unstable at par-
ticular latitudes, then a criterion is used to determine which wavelengths are unstable, and once
the relevant wavelengths are found their amplitude is decreased by reducing the corresponding
coefficients, or even setting the amplitude to zero (Fourier chopping). The solution vector is
then reconstructed using the modified amplitudes.

The fourth order Heun scheme given in equations (10) to (13) is used in the advection step,
although in the results presented here we not only produce results from the Heun scheme (as given
in [10]) but also those from a simplified version of the Heun scheme and from a Lax-Wendroff

scheme as well (see below).

3.2 Simplified Heun scheme

The simplified Heun scheme requires a new notation for differences, namely

X\ + AX) — X (A — AN)]
2AN

o X =



together with U = (u,v)T.
The same solution procedure as in Section 3.1 is employed but equations (10)-(13) are then

solved using the Heun scheme below.

u¥ =y — e (u™bapu™ 4 v" cos ¢pdagu™) (17)
oF = " — P (u™82av™ + V™ cos Pbagv™) , (18)
; At
n+tl _ . n n #
e (U.Vu" + U .Vu#) (19)
At
nt+l _ . n_ 7% n #
o =0t - (U. Vo + U.Vo#). (20)

In equations (19) and (20) the terms U.Vu™ and U.Vv™ are actually the terms inside the
brackets in equations (17) and (18) respectively. The terms U.Vu# and U.Vv# are calculated

exactly as in equations (17) and (18) but with u™ and v" replaced by u# and v#.

3.3 Lax-Wendroff scheme

The same solution procedure as in Section 3.1 is employed but equations (10)-(13) are then
solved using the Lax-Wendroff scheme as detailed below.

The Lax Wendroff scheme is slightly different in that the velocity values, (u#,v#), are held

on the h grid points. The scheme is:
At

#_ e —AbT P | A A
Ut =u Yacos g (u O u” +v™" cos pdsu ) (21)
oA _ e %f_ots(b (@50 + 7% cos 630" , (22)
un+1 =" — At <u_#)\¢6)‘u#¢ —+ ’U_:""":)\qS COs ¢5¢u#/\> (23)
2a cos ¢
At (b | T F
o = " <u#/\¢5,\v# + o cog ¢5¢v#)\) . (24)
2a cos ¢

3.4 TVD Scheme

Another method tested was a TVD scheme for the treatment of advection. This TVD scheme is
the one documented in [8]. It was set up to use either a superbee or Van Leer limiter and both

were tested.



This scheme was only used for the first test case (see Section 4.1) which tests the advection
scheme only.

Only equation (3) is solved in this case, the velocity fields being set initially and then fixed
and only the height field evolved.

The procedure is as follows:-

1. At point (A + %, @) calculate a%é,\h

2. If u? > 0, subtract B from & at (), ) and (mm 6\h — B) from h at (A + A, ¢) where

acos¢

Vxyar A (hx+ar — hy)

_ 2 4 240
B = B|+5 (1= |vlyy02) woosd (25)
Vaoax AN (hx — ha-an)
2 i 2 (1_|V|)‘_%) acos ¢ '

If w* < 0, subtract B from h at (A + A), ¢) and (Z2L8,h — B) from h at (), ¢) where

acos¢d

S LAY (harar — ha)
B o= B[R S0 o) A (26)
Vap2ar A (has2ax — hagan)
2 + 2 (1= |V|’\+%) a cos ¢

where v = ﬂ‘i’% is calculated at the appropriate A and

B(bl,bg) - mea,X(bl/b2, 1) if % < bl/bz <2
= 0 if by/by <0 (27)
= 2bymin(by/bs,1)  otherwise

3. Perform similar calculations at (), ¢ + 42 ) using i:—&;,h.

The time step is split up, on each row, into a number of smaller steps which do not violate
the CFL at any grid point on that row. This is necessary due to small grid lengths on rows near

the pole causing a need for smaller time steps there than on rows near the equator.



3.5 The semi-implicit semi-Lagrangian scheme.

These equations are rewritten in the form of the equations in [4]. Following the notation of that
working paper the shallow-water algorithm is written as follows.

The scheme is basically a predictor-corrector scheme. In the first step the wind field at
the next time step is predicted and the increments from the current time step to the next are
calculated and stored. The correction comes from the continuity equation and results in the
formulation of a Helmholtz equation, with respect to the increment in the height field. Then the
wind fields are corrected to give final values for all the variables.

The predictive increments to the wind field are calculated in two parts, S; and Sy, which
are the increments due to the forcing terms in the dynamics and Ry and R,, which are the full
increments.

The first estimates to these wind field increments are given by

Ry = u? + 2QA([(1 — 1) sin @a + 1 7¥ sin ¢) — g—f—t([(l — a3)cizh¢]d + agci;h(b) —u™ (28)
with

5 = 208K((1 - ay)*sin dla-+ e sin )~ L25([(1 - a) Ll 00 25, (29)

Ry = v? — 2QAH([(1 — )@ sin ¢y + cu @’ sin ¢) — g?([(1 — a3)84h]q + azbgh) —v™  (30)
with

Sy = —20A([(1 — o1 )u*? sin ¢lg + 1@ sin ¢) — %f([(l — a3)84hlg + asbsh),  (31)

where the metric terms are implicit in the finding of the departure point in the semi-Lagrangian
scheme.

In the full three dimensional equations the equation of state is used as the basis for forming
the Helmholtz equation, whilst in the SWE the continuity equation is used. The Helmholtz

equation is derived as follows.

Assume that the continuity equation holds at time level n 41

ah* n+1

=t V.(uk*)™ =0 (32)

10



and define b’ = k"1 — b with similar definitions for u' and v'. Equation (32) is thus

B .
o+ V(o w)( + ) =0 (3)

which when expanded and with the quadratic term in u'h’ neglected gives

-Z—t +V.(h4 4 uh') = —V.(uh"). (34)

To obtain the Helmholtz equation in terms of one unknown, k', we need to write u’ in terms
of &' and the variables at time level n. Equations (1) and (2) are linearised with respect to the

corrections, giving

—10u g O
_ 9% 9 -
u — ay At( 2 99 +20sin¢)v = Ry — asAtacos¢ o (35)
+ usin on’
alAt(—osgé—¢ + 2Q sin qS)u +0 = Ry — agAtg TS (36)
v is eliminated from equation (35) and u' is eliminated from equation (36) giving
ok’ —10u oh'
Ju = Ry — aSAtacf)sqS 7 + alAt(_a_¢ + 2Qsin @) (R, — ongtg 3¢) (37)
) oh' % | usin , oh'
0= Ra = oo g — e MO 4 20in (R — st ST (39
where
—10u 5% + usin ¢ :
_ 9 5 2= OU fopiy AUST (7
J =1+ o] At%( PRl 20 si ¢)( GEoi 20 sin ¢). (39)
Discretising the resulting equations gives

' _ g—7)¢

W = Ryt - T Al ¢6Ah +F, (R — azatdsT ) (40)
a

/ TPy A6 T

v = RoJ "t — J asAt=6,h — F, | By" — asAt o\h (41)
a a cos ¢

) 1 ) 8,0® 4 usin ¢

_ 2 A 42 1 O\V” Tusmge
Ju =14 afAt*(20sin ¢ a62¢u)(2ﬂ sin ¢ + o ) (42)

, 1 6200 + W sin ¢

2 A 42 X . 2)
_ ! 4
Jy =14 ofAt*(2Qsin ¢ a6¢u )(2Qsin ¢ + pp—, ) (43)
where I, and F, are defined by

F, = 01 At(2Qsin ¢ — %62¢u)Ju_1 (44)

11



822 + T sin ¢
a cos ¢

F, = a1 At(2Qsin ¢ + )t (45)

Substituting the resulting equations for u' and v' in terms of A’ into the discretized form of

equation (34) then gives

) At
a cos ¢
At

a cos ¢
At

a cos ¢

= — At 5,\(U7F/\)—

a cos ¢

SRR, + BO R — P as I At—T 8k — B asAtIE,RTY)  (46)
a cos ¢ a
. o _ . ¢
[P J7 Ry — PR F, — W0 At L6,0 + T as At —2— 6, b’
a a cos ¢
At

cos ¢
At

acos ¢

) cos ¢]

543(1)74’ cos ¢)

—
6‘ 1
auh'™) + "

6¢(UF¢ cos ¢).

This is a variable coefficient Helmholtz equation of the form

1 o ( A o, on"
acosd O\ \ acos¢g O 0¢

1 9 Bcosqﬁ@_’_ 1 ar "
acos ¢ 0¢ 0¢

1 9(Dh') 1 O(Eh cos @) .
acosd O +acosq5 d¢ =G& = &b

where RH S is comprised of all the terms which do not involve A'. This equation is solved using
a multigrid solver.
Now set
uy = u" + g (48)
vy =0" + v (49)

. . " " . .
and obtain new estimates of ™! — u™, v™*! —»™ u v respectively by solving

" i 63h’
' =g — ws + 51+ At200,0 sin ¢ — Lag 2
a

] (50)

cos ¢

and

v =wv1g—v+ 95— At[QQOfl?/\d’ sin ¢ + %a36¢h’], (51)

where the departure point of the trajectory is calculated using the wind field (uq,v1).
Finally set
u =t o (52)

12



" =" 0" (53)
Rt = hn 4B (54)

Note that h could also be updated by

At

a cos ¢

At

a cos ¢

hn+1 - hn _

6,\(ulﬁ)‘) — 64,(1)1#’ cos ¢) (55)
but this is not consistent with the Helmholtz equation derived above since it does not include
the V.(h'u) term. To use this version the first derivative terms from equation (46) should be
omitted, i.e. set the coefficients D and E of equation (47) to zero.

A number of different procedures were used for the calculation of the departure points, e.g.

[9], and a number of different interpolation methods were tested.

4 The Test Cases

The problems investigated are all the test cases from [13]. These are presented below together
with an outline of what they set out to simulate. The complete suite of test cases from [13],
systematically tests areas of the advection code. The cases include an analytic problem to test
the advection part of the scheme, steady state problems with analytic results, forced SWE, a
problem with orography (surface topography) and finally a problem involving actual observed
data. Various error measures are described in [13], and the complete range is detailed in Section

4.8 together with a guide to which error measures are employed with which test case.

4,1 Test Case 1

The first test case does not deal with the full SWE but solely with the advective part. It may
be implemented in full shallow water codes by simply overwriting the calculated velocity field
with the specified velocity field at all times.

This case is a test of the ability of the numerical scheme to cope with the transport of a
disturbance around the globe. Different orientations of the advecting wind are specified. An
initial height field is specified together with a velocity field which is analytically divergence free.
The advecting wind is given by

u = up(cos ¢ cos a + sin ¢ cos Asin «), (56)

13



v = —upsin Asin a, (57)
where the parameter « is the angle between the axis of solid body rotation and the polar axis

of the spherical coordinate system.

The initial height field is a cosine bell given by

%‘1(1 + cos(%)) if r<R (58)

h(A,¢>={ |
0 if r>R,

where hg = 1000m, R = a/3, a is the radius of the earth and r is the great circle distance
between (), ¢) and the centre of the cone, which is initially at (A, #c) = (37/2,0), where

r = acos”'[sin ¢, sin ¢ + cos @ cos ¢ cos(A — Ac)]. (59)

The initial height field actually used is h + ho, where h is as defined in (55). This point is
important as in a number of places height weighted velocity fields are used in calculations and
if the height field is zero then the equations become undefined, (see [10]).

The true solution of the problem is that the cone rotates around the globe without any change
in shape. It is possible to calculate the expected centre of the cone at all times, so comparisons

between the true solution and the calculated solution can be made.

4.2 Test Case 2

The second test case is a steady state solution of the SWE. It consists of zonal flow with the
corresponding geostrophic height field. The advecting wind is at an angle o to the equator.

The velocity fields are initially, and for all time,

u = up(cosdcosa -+ cosAsin ¢sin a), (60)
v = —ugsinAsinq, (61)

while the analytic h field is given by
h =ho— %(aﬂ—l— %)(sinqﬁcosa— cos A cos ¢sin a)?. (62)

In [13], it is suggested that it might be necessary to modify the initial wind and height

field so that they satisfy a discrete geostrophic balance relationship. This discrete balance was
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implemented here as was the analytic data. To satisfy discrete geostrophic balance we need, on

a B-grid,

—9c9¢

= —Zb\h 63
U af Al ( )

g =X
= bsh 64
v af COS¢ 45 ? ( )

where the coriolis term f is given by

f = 29Q(sin ¢ cos a — cos A cos $sin a). (65)

No averaging is required to satisfy geostrophic balance on a C-grid.
The parameters used in the tests described here are up = 2ra/(12days) and ko = 2.94x10%*/g
while o takes the values, a = 0.0,0.005,  — 0.005, 5. The code is run for 5 days.

4.3 Test Case 3

This case is similar to the previous one except that the wind field is only non-zero in a limited
region. The easiest way to define the wind and height fields is to start with a (', ¢') coordinate
system coincident with the earth’s rotation axis and then rotate it by an angle « to the coordinate
system(), ¢). Since it is difficult to write the equations straight down in the (X, ¢) system the
fields are defined in stages.

Let the velocity components (u’, v') be given by

v = uob(z)b(z. — z)et, (66)
g = ) (67)
where
0 if z<0
b@)=9 . (68)
e ® if 0<z
and

z=xc(d — b)(Pe — ¢6) 7" (69)

The parameters are ug = 2ra/(12days), ¢ = ==, ¢e = 7, and z. = 0.3.

The velocity components u and v are then defined as

veos¢ = —u'sinasin), (70)

wcosA = vsingsin)+u cos ), (71)
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with the coordinates related by

sing = sin¢cosa — cos¢cosAsina, (72)
sin\ cos¢ = sin)cos . (73)
Thus, with knowledge of X and ¢, equation (72) lets us determine ¢’ since ¢ € [—7/2,7/2].

Using this in equation (75) we can find sin X', but since A" € [0,27] we need to determine which

quadrant A’ falls in and this can be calculated by ensuring that
cos ¢ = sin ¢ cosa + cos ¢ sin avcos X . (74)

For a steady state solution A’ must satisfy

(u')? tan ¢' I ggh_'
a0¢’
The height A is difficult to find analytically, so the form in the prime system

+ fu =0, (75)

!

a ¢ )
h-—-ho——/ (2Qsin 7 +
g J-=m/2

u'(T) tanT

Yo' (1)67 (76)

is integrated numerically to give h. The quantity ho is the same as in test case 2.

The test case has been run with & = 0.0 and 7/3 for 5 days.

4.4 Test Case 4

The non-linear steady state test cases, 2 and 3, are the simplest method of measuring the
adequacy of a particular numerical method. The measure of performance of a scheme on the
non-linear unsteady equations is also desirable, but analytic solutions only exist in trivial cases.
Thus a flow @, and % that is similar in structure to those in the atmosphere is chosen. This
flow is a solution of the forced shallow water system given below in equations (77) to (79).

The flow is a translating low pressure centre superimposed on a jet stream which is symmet-
rical about the equator. This field exhibits some of the properties of middle level tropospheric
flow.

Test case 4 is a forced SWE problem which actually simulates the effect of a physics step in
the unified model. If the forcing terms are thought of as corresponding to the correction due to
the physics then, since the SWE are split into an “adjustment” step and an “advection” step, it
is is possible to test whether the forcing terms should be added solely to the advection step or

equally to each adjustment step.
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The forced SWE are

d oh

c;: (f R ¢) a cis ¢ X~ Fu, (T7)
‘Z (f +2ta qs) u+t gg—z F, (78)
dh h Ou  Ovcosg)
dt " acos¢ <_ + ¢ ) = b, (79)

where the height of the mountains, h,, is defined as zero and the substantive derivative is

d 0 u 0 v 0
3 T acosgan T 204" (80)

The forcing terms in equations (77) to (79) are defined as

di g Ok
Fu= dt (f+ —tan¢) G acosqﬁﬁ’ (81)
B dv g Ok
F, = (f + — tan ¢) 94’ (82)
_dh h 0t  O0vcos¢
Fh_E—l_acosqﬁ(_—l_ 0¢ ) (83)
The flow fields are given by _
s
i=u--", (84)
. 1y
U= acos ¢’ (8)
gh = gh+ f9, (86)
where
4 = upsin'*(2¢), (87)
_ ¢
gh = gho — / /2[af(7') + @(7) tan 7)u(r)oT (88)
and
DX, @, t) = hoe~o((1=0)/(14C) (89)
with g = —0.03(gho/ fo), o = (12.74244)2, gho = 10°, fo = 20 sin(x/4), and
C = sin ¢p sin ¢ + cos ¢ cos ¢ cos ()\ - %t -~ )\0> . (90)

The centre of the low is initially located at (Ao, #o) = (0, 7/4).
Results for this problem are not available due to implementation difficulties, with the com-
pilers available being unable to evaluate the recursive functions needed to calculate all the terms

in equations (84) to (90).
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4.5 Test Case 5

This test case consists of zonal flow, as in test case 2, impinging on a mountain. The wind and
height field are as in case 2 with a = 0 but with hg = 5960 and uo = 20. The mountain height
is given by

hs = hyo(l —r/R), (91)

where hy = 2000, R = r/9 and 72 = min[R?% (A — X;)® + (¢ — ¢c)*]. The centre is taken as
A =37 /2 and ¢. = 7/6.
This tests the code when there is surface topography involved in the problem. In this case

the surface is a steeply sloping mountain. The code should be run for 15 days.

4.6 Test Case 6

Rossby-Haurwitz waves are analytic solutions of the nonlinear barotropic vorticity equation on
the sphere. Although they are not analytic solutions of the SWE they have been used for so
long that they are now de-facto standard test cases.

Test case 6 is the Rossby-Haurwitz wave with R=4.

This test case has a height field that moves from east to west with no change in shape, with

an angular velocity v given by

. R(R+3)w—2Q. (92)
(1+ R)(2+ R)
The velocity components are given by
u = aw cos ¢ + ak cosF~! ¢(Rsin® ¢ — cos® ¢) cos RA, (93)
v = —aK Rcos® ! ¢sin ¢sin R, (94)

and the height is obtained from the stream function by solving the balance equation, so the

initial tendency of the divergence is zero:
gh = gho + a*A(¢) + a>B(¢) cos R) + a®C(¢) cos 2RA, (95)

A(¢) = %(ZQ + w) cos? ¢ + iKz cos?® G[(R + 1) cos? ¢ + (2R* — R —2) —2R*cos™ ¢], (96)

22 +w)K
(R+1)(R+2)

C(¢) = i[@ cos?R @[(R + 1) cos® ¢ — (R + 2)). (98)

B(¢) = cos® $[(R* 4+ 2R + 2) — (R + 1)? cos” ¢}, (97)

The parameters are w = K = 7.848 x 107 and ho = 8 X 10° and the code is run for 14 days.
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4.7 Test Case 7

This test case is comprised of 3 sets of initial data taken from physically observed data. The

observations were made at the following times:-

a) 0000 GMT December 21, 1978
b) 0000 GMT January 16, 1979
¢) 0000 GMT January 9, 1979.

2D contour plots for the initial height fields were shown in [11]. These data sets test the code
on a very unsymmetric problem.

The first data set, test case Ta, has strong flow over the North pole and has pointed out
deficiencies in schemes which have been applied to it by previous researchers. The second data
set, test case 7b, is characterised by two cutoff lows. The flow pattern develops into a typical
blocking situation. The third data set, test case 7c, initially has strong zonal flow. All three

cases are run for 5 days.

4.8 Error Measures

Graphical output, in the form of contour plots, of the height field and the error therein at the
end of the specified run time is required for most of the test cases.

All the other measures are to be plotted against time. These other measures fall into two
categories, “norms” and “invariants”. The norms are normalised global errors with respect to
the “true” solution. The invariants are quantities which should preferably be conserved.

Define I to be a discrete approximation to the global integral

I(e) = /0 " /_ ://22 (), ¢) cos $dd). (99)

and let z7 be the true value of z at a time, ¢, and z, be the initial value of z.

The norms to be calculated are

I|k(X, ¢) — hz(}, )]
R Mihr (X, 6)l] (100)
{I[(R(X, ) — hr (X, ¢))2]}*/?

{IThz (), ¢)71}1/2
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max,)y, |R(A, @) — hr (X, @)

=i max,q), 4 [hr(, 6| (102)
L{(u(A, 6) — ur(), 6))* + (v(}, ¢) — vr (A, 6))}/7]]
he) TurOh &)+ vry, 47378 .t
{I1(u(A, @) — ur (X, 6))* + (v(}, 8) — vz (X, 6))*]}'/7]
o) [Tz 0o 97 + vz $YT7 =
% [ma‘xall)\,qﬁ[{(u()‘a ¢) - UT()\, ¢))2 + 'U()\, ¢) - UT()\, ¢))2}1/2]]
)= ko g7 Oh B + vz 0, 9P i
The normalised integral is defined as
The following invariants are presented :-
e mass (i=1)
E=h" (107)
e total energy (i=2)
b L 2 19
£ = §h v+ §g(h — h3) (108)
e potential enstrophy (i=3)
¢ =0.5(C+ f)*/h* (109)

The unnormalised integrals of vorticity and divergence will also be presented since their initial

values are zero.

e vorticity (i=4)
§=¢ (110)

e divergence (i=5)

£=6 (111)

The norms are calculated every time step for test cases 2 to 4 and daily for test cases 5 to 7.
The invariants should be calculated for test cases 5 to 7 at every time step. Test case 1 requires
only the calculation of the norms of the A field, but requires the calculation of normalized mean,

variance, minimum and maximum at every time step. These are calculated as below. If
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F = I[h(A, ¢)] (112)

denotes the mean, the normalised mean and variance are written

M = E-T)/k (113)
Vo = {Il(k =B~ I(hr — Fz)1}/1{(ho — o)’ (114)

and the maximum and minimum are

hmax = (maxaul\’djh()\,qﬁ)—maxau/th()\,qb))/Ah (115)
hmin = (minallx,¢h()‘a¢)_mina]l,\,¢hT()"¢))/Ah (116)

where Ah is the difference between the maximum and minimum values of the true solution

initially.

5 Results and Comparisons

In this section the graphical and numerical results are presented.

The results for test case 1 have been produced in [10] and the conclusions are reiterated here.

The TVD schemes reduce the oscillations, as expected, but with a resultant loss in the
height field. The superbee limiter produced a reduction to about 75% while the van Leer limiter
produced a reduction to about 50% of the original maximum height.

For equatorial flow the best results were produced by the Heun scheme together with filtering
and diffusion. The filtering reduced the numerical oscillations in the polar regions while the
diffusion reduced the numerical oscillations behind the cone. Thus while the actual contours are
slightly more spread out the loss in height is not as severe.

A semi-Lagrangian code [1] has also been implemented, on a C-grid rather than a B-grid,
and while it compares well for all advecting wind directions the best result is that for cross polar
flow [10].

Results produced by the NCAR STSWM model [5] are used in problems 5-7 as “reference
solutions”. These were retrieved by using the netcdf files provided by NCAR of their test runs.
For a full comparison [6] shows a full set of results as does [T7].

A large number of test runs were carried out and a comparison of a number of different

solution strategies were made.
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The full results for the Eulerian schemes have already been presented in [11].

Indeed, the results reproduced here will be those of the semi-Lagrangian scheme, and these
show that the scheme produces favourable results.

It should be noted that the Heun scheme code only worked for timesteps of 10 minutes or
less even for a 96x73 resolution grid.

The semi-Lagrangian scheme code works for a time step of up to 2 hours although above
1 hour the results start to degrade. This has led to a slight modification of the scheme where
equations (48) to (53) are ignored, i.e. no second advection step is carried out and u and v are
updated using

uttl =yt 4y (117)

" =" o (118)

This has led to the use of a 6 hour timestep without degredation of the results. This revised

scheme is that currently used in the 3-D test schemes.

Height at 500.000 meters
At 00Z on 6/ 1/ 9999, from 00Z on 1/ 1/ 9999

GON
1200 1200
1400 1400
1800 1600 1800 1600
45N | 2000 20004
2200 5400 2200 5400
2600 2600
2800 2800
O L 4
2800 T 2800 T
2400 5500 2400 =565
45S 2000 1800 2000 T800°
1600 —— - — 1600
1400 1400
1200 1200
90S L i | i "
0 90E 180 9OW

Figure 2: Solution of test case 2.

Test case 2 is the steady-state solution and the code works perfectly on this case as can be
seen in Figure 2. The initial data and the solution are almost identical (the maximum difference

in h is 0.4).
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Height at 500.000 meters
At 00Z on 1/ 1/ 9999, from 00Z on 1/ 1/ 9999

90N

—8500 8250 —gH00 8250

45N [

45S

90S I 1 L "
0 90E 180 90W
Figure 3: Test case 6, initial data.
Height at 500.000 meters
At 007 on 1/ 17/ 9999, from 00Z on 1/ 1/ 9999
9ON [F I T T

8500

Figure 4: Test case 6, Heun solution, 10 minute time step.

Figure 3 shows the initial data for test case 6, the Rossby-Haurwitz wave number 4 problem.
Figure 4 shows the result of using the Heun scheme with a 10 minute time step. It can be seen

that it is starting to look as each wave is splitting into two components.
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Height at 500.000 meters

At 00Z on 15/ 1/ 9999, from 00Z on 1/ 1/ 9999
' BZ50 ' '
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8580_{] 8500
90s LB250 ; " 8250
0 90E 180 90W

Figure 5: Test case 6, semi-Lagrangian solution, 10 minute time step.

Hei?ht at 500.000 meters
At 00Z on 15/ T/ 9999, from 00Z on 1/ 1/ 9999

-8250 8250
8750

45N —Ghppel 0
’v—\/ﬁ W
) :

9ONT

2 M
455 W

90S

Figure 6: Test case 6, revised semi-Lagrangian solution, 6 hour time step.

Figure 5 shows that for a 10 minute time step the semi-Lagrangian scheme produces results
which compare favourably with the Heun scheme and figure 6 shows that if the revised scheme
is used then even with a 6 hour time step the result is still sasisfactory. The numerical errors
for the Heun scheme result and for the 6 hour time step revised step are very similar, while the

semi-Lagrangian 10 minute time step is better than both.
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unknown code at 500.000 meters
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Figure 7: Reference solution of test case 7a.

Height at 500.000 meters
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Figure 8: Solution of test case 7a, 3 hour time step.

Figure 7 shows the reference solution for test case 7a while figure 8 shows the result for the

semi-Lagrangian scheme with a 3 hour time step.
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Height at 500.000 meters
At 00Z an 1/.9999, from 00Z on 1/ 1/ 9999
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Figure 9: Solution of test case 7a, 30 min time step.

unknown code at 500.000 meters
At 00Z on 6/ 1/ 9999, from 00Z on 1/ 1/ 9999
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90S

0 90E 180 0w

Figure 10: Error in solution of test case 7a, 30 minute time step.

Figure 9 shows the result produced by the semi-Lagrangian scheme with a 30 minute time
step. This is almost identical to the result for the same scheme with a 10 minute time step.
Figure 10 shows the error field from the same run. The errors near the north pole are caused
by the introduction of rounding error when calculating the departure points for the trajectories

near the poles.
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Figure 12: Invariants relating to test case 7a, 30 minute time step.

Figure 11 shows graphs of the error norms for the semi-Lagrangian scheme with a 30 minute
time step. The error norms are only calculated at one day intervals. Figure 12 shows graphs
of the invariants for the same run. Noting the values on the y-axes of the graphs, the only
invariants which do not stay very close to zero are the total energy (graph 2) and the potential

enstrophy (graph 3). The rest are very well preserved.
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Figure 13: Height values near a point, test case 7a.
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Figure 14: Reference solution of test case 7b.

Figure 13 shows the variation of height at a point over the complete run of the semi-

Lagrangian scheme with a 30 minute time step.

Figure 14 shows the reference solution for test case 7b.
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Figure 15: Solution of test case 7b, 30 minute time step.
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Figure 16: Errors in solution of test case 7b.

Figure 15 shows the result for the semi-Lagrangian scheme with a 30 minute time step. Figure
16 shows the error field for the solution shown in figure 15. Since the flow is not as strongly

cross polar as test case 7a the errors are smaller in magnitude.
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Figure 17: Reference solution of test case 7c.
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Figure 18: Solution of test case Tc, 30 minute time step.

Figure 17 shows the reference solution for test case 7c while figure 18 shows the solution for

the semi-Lagrangian scheme with a 30 minute time step.
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Figure 19: Error in solution of test case Tc.

Figure 19 shows the error field for the solution shown in figure 18. Again the errors near the
pole are caused by the introduction of rounding errors in the calculation of the trajectories over

the poles.

6 Conclusions

The Eulerian schemes and the semi-Lagrangian scheme have been compared on the test set
described in [13]. The results reported in [10] show that on the pure advection test case, of the
Eulerian schemes tested, the currently employed Heun scheme was the best. When the semi-
Lagrangian scheme was used on the same test case it improved results for cross polar flows while
being only slightly worse for equatorial flows.

The results of running the codes on the other test cases show that the semi-Lagrangian
scheme produces improvements in the Ly error of approximately 10%. The main advantage
of the semi-Lagrangian scheme is that it works with a much longer timestep, e.g. 6 hours,
as opposed to the the Heun scheme which only operated with a 10 minute time step. This
shows that the semi-implicit semi-Lagrangian scheme is worth investigating as a successor for

the current split-explicit Eulerian based Heun scheme.
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