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Summary

Previous papers[1]‘ C21 have drawn attention to the
sustained oscillations ("noise”) in the solution by Successive-
Over-Relaxation of the equations from the finite difference
approximation of regional groundwater flow including ephemeral
stfeams. This paper shows that the trouble can be avoided by
introducing an averaging step in the algorithm; the trouble
can also be avoided by "under-relaxation” but this 1s far less

efficient than averaging.



Introduction

Connorton and Hanson1 and Rushton and Tomlinson2 have drawn
attentlion to computational difficulties encountered when incorporating
an ephemeral stream system 1nto a numerical model of regional ground-
water flow. The conventional partial differential equation used
by -these authors as the basis for the mathematical model of the

groundwater flow is as given by Beara:

E_(TXi’A]J (Ty'ih_/*]ﬁi'l-q (1)
X 9x dy oy 3t

where x, y are horizontal Cartesian co-ordinates.

hA = hA[x.y.t] is the average piezometric head

Tx' Ty = Tx(x,y], Ty(x.y) are the transmissivities in

the x and y directions respectively.

S = S(x,y) 1s the storativity

g =g (x,y,h,,t) is the sink or source term.

A

Included within the term g is not only pumpage and natural or
artificlal recharge but also ephemeral stream leakage. It is the
latter which makes this term dependent on the piezometric head hA
and hence dependent on the solution.
The boundary conditions are such that at every point on the boundary
of the region we have either a Dirichlet boundary condition with given
value of hA or a noflow Neumann condition.
Equation (1) is solved numerically by Connorton and Hanson1 and
Rushton and Tomlinson2 using finite differences and Successive Over Relaxationq.
Clearly the iteration necessary because of the ephemeral streams

could also be combined with solving the simultaneous equations directly.

In both the first two refsrences 1, 2 the stream leakage term is of the form

Qg = KS(x,yJ f (AhA]



where Ks(x.y] is the stream leakage paramster and F[AhA) is
some function of AhA = hA(xs,ys,t] - Hs(xs.ysl where (xs,ys) is a
point on the stream system and Hs is some fixed datum associated with
the stream, usually the stream bed level.

The particular case 1nvestigated here 1s when f(AhA) is a linear

function such that
K (h -H), h, 2 H
q - s A S
0., h, <H (3)

Equations (3) imply that the stream has no storage capacity;
when hA < HS the stream dries up and no leakage from the stream into
the aqﬁifer can take place, see Figure {117.

In the Connorton and Hanson paper 1 the computational difficulties
took the form of sustained oscillations ("noise”) such that the iteration
never converged, as shown in Figure [2], which shows the head hA and qq
at a specific stream node on the finite difference mesh at successive
iterations.

The analysis of the trouble depends on the exact algorithm used.
This paper analyses an algorithm for the solution of the problem with
leakage from an ephemeral stream as given by equation (3) which can
produce the sustained oscillation and shows that the trouble can be avoided
by the addition of one extra step in the algorithm.

The key non-dimensional parameter is B = KS Axb (3a)

4T

where T 1is the local average transmissivity, Ax is the finite difference
mesh size (Ax = Ay for simplicity here) and b 1is the local average

width of the stream. Experience has shown that the larger the value

of B the greater is the likelihood of.noise oscillation troubles with



the original algorithm. For typical regional flow problems the
areal dimensions of the aquifer may be such that it is not possible
to reduce B by reducing the mesh size Ax and we must necessarily
have Ax large compared with the width of the stream b. For the

Lambourn aquifer, for example 1. B can have values up to 104,



The Numerlcal Solution

We consider the steady state equation without sources or sinks

since this 1s sufficient to 1llustrate the oscillation troubles and

the remedy:
3 (T ffﬁl R 3__(T ahA] = [Kg (hy = H] (4)
X ox oy dy

where the right-hand term only applies for the part of the region
occupled by an ephemeral stream with hA p-] Hs'
We put hA = h HS, supposing HS is constant for simplicity.

Then, using Varga's integration method4 with Ax = Ay (i.e. square

mesh) we have for the numerical solution typical equations

£ %T Ti,5-4 N1,5-1 - = Tiog,g Mo,y + Pag - 0 Taag g Maad, g
1 Ti,j+% hi,j+1 +E< Axb h K Ax
4T
where Ti,j = T(iAx, JAy)
hi.j = h(iAx, jAy)
and 4T = T . + T, + T + T, 4

i,j-3 i-1.] i,J+1 1+3,]
We suppose b < Ax and for simplicity that the stream runs
along a mesh line. The extra terms in square brackets in equation (5)

are only present when (iAx, jAy) is a stream node.
KS Axb
a7

Put B =

Suppose the nodes are re-numbered as a one-dimensional array
{2} and that the matrix from the finite difference operator corresponding
to the non-bracketed terms in equation (5) has entries 3.m* Then
the S.0.R. algorithm as originally applied to the set of equations (5)
is given by
hE = (1) hy e S [fﬂ + B - %<£ 8y o et - £>g & h%] .

if h: 21 and & is the number of a stream node.




PERE = ——

k+1 k k+1 3

or bh = (1-w)h, +w | f, - z a h = X a h (7)
3 L L n<s L,m 'm ) L,m m

otherwise

(where w 1is the S.0.R. parameter and fl comes from any Dirichlet
boundary data affecting the equation).

The superscript k 1in equations (8) and (7) denotes the number of
the iteration. The diagonal terms 62,2 are each unity.

The initial values hz are taken below the stream bed levels
i.e. hg < 1, for all %, and the iteration proceeds without the extra
terms in the equations and with the values hz increasing unfil we have

A k+1

hg 2 1 for some stream node s. Then if hS is the value we would

get if the next step did not include the extra terms, this is given by

Ak+1 k k+1 k
ot = (1-w)h. + [P =Y a AT oY al h ]
s s S meg SeMmom hsg S:M M (8)

However, what we actually compute is

3 k+1
Hkt1 _ BU-wlhe | 1 fxrt | uB (9)

s 1+B 1+B 1+B

Now we know that hk =1 + ek, ek = 0.
) s s s

I

Suppose 1

Substituting in equation (9) we have

S I o - U (10)
s 148 °s l

1+B
Hence h:+1 <1 1f (@-1)B e >BK*1 (11)

§ .S

The S.0.R. parameter ® was taken as 1.6 for the Lambourn

. 1
aquifer model', and the value of B could be up to 10%, hence

condition (11) is very likely to apply. The consequence 1s that a

persistent oscillation may be set up. We can have h2_1 <1,

hk > 1, h§+l < 1, etc. with extra terms brought in at alternats



sweeps and the process will never convergs.

The cure is to insert another step in the algorithm so that

we have
k k k-1
Ay =3 g+ &7 12)
K+1 . JpAK W _ K+1 K
followed by h, " = (1 w]ﬁ2 * 118 [fl ) & .m h, ) 8 .m ﬁm +B ]
&<m &>m
(13)

if ﬁ; =21 and % 1is a stream node
or h:+1 = [1-00%2 + 0 [}2 = z 8 m h$+1 . 2 az,m'ﬁ;]
f<m >m .
(14)
otherwise.
If L 1is the S.0.R. iteration matrix corresponding to the set of
equations (7) and E is the limit to which this iteration would converge,

we have (Varga4]

hk+1

F=Ldf - m
Hence from equation (12)

ﬁkf1

-Ro= a0+ L1 - W (15)

The iteration is thus still convergent because if A 1is an

eigenvalue of L, in the new iteration matrix the eigenvalues are

1(1+\) and we know that 0 < 1 (1+\) < 1.

Now again the iteration proceeds with the values of ﬁs increasing

N Ak Ak %2+4

es, es 2 0. Again suppose + 2k+1

until we reach ’r\: = 1 = 1

is the value at this stream node that would be given without the
extra terms, then what we actually compute 1s

Rkt L (1-0)B Ak 1 Ak+l |, B

+

8 1+8 s 1+B s 1+8 (16)




Hence from equation (12)

K+ [1+B(2-w) 1Ak 1 Ak#
ﬁs T+ St T, (17
Ak+1

The situation now 1s that even if es is negative the relatively large
factor attached to the éz term is positive. There may be some small
oscillation early in the procedure but 1t always eventually settles
down so that 92 > 1 1is followed by G:+1 > 1 also and the iteration
converges to the solution of the equations with the extra terms as appropriate.

It is apparent from equation (10) that the oscillation trouble could
also be avoided by making ®w < 1 1i.e. by under-relaxation, but this gives
much élower convergence than the averaging method. We can demonstrate why
this should be so by reference to the standard S.0.R. theory as in Varga4.

The formula for W, the optimum value of the S.0.R. parameter is

l:’=—“2""“—___ (18)
1+ V1 - 2
where u 1is the spectral radius of the corresponding Jacobi matrix. The

dominant eigenvalue of the S.0.R. iteration matrix is then A1 =w-1.

The effect of averaging is to make the dominant eigenvalue

(19)

NIE

A, m 01 A=

If this gives faster convergence than the Gauss-Seidel method with w = 1
then 1t certainly gives faster convergence than with w < 1 as can be seen
from the graph of the spectral radius of the iteration matrix against w.
(Figure 3 shows this graph as it applies to the numerical model of the Cotswold
limestone aquifer referred to in the next section). The spectral radius
of the Gauss-Seidel iteration matrix is u2 (Varga4). Hence averaging gives
faster convergence than under-relaxation if

A, < u? (20)

i.e. 1 < p2 (21)

14+ /1 - 42

from squations (18) and (19).



Inequality (21) implies w > 0.780 approximately. Since cos (£>= 0.8090,

which is the estimate for u for Laplace on a square with 5 x 5 mesh and Dirichlet
boundary condition, inequality (20) is certainly likely to be satisfied

for a practical aquifer model as demonstrated in the next section.



e

Application to Numerical Model

The averaging procedure described above was applled to a finite
difference model (based on equation (1)) of a Cotswold limestone aquifer,
see Fig. 4. The model is sub-divided into an unconfined and a confined
region. Three ephemeral streams, whose flow mechanism 1s of the leakage
type defined by equation (3) above, flow over the unconfined region in
the direction of the confined region.

Initially, transmissivity [Tx, Ty] for the unconfined region was
set to 500m2/d and satisfactory results were obtained using the straightforward
successive over-relaxation iteration defined above by equations (6) and (7).
However, when transmissivity was reduced to 100m2/d thereby increasing
the parameter B (equation (3al), sustained oscillations of the type
described by Connorton and Hanson1 were obtained. This spurious behaviour
is demonstrated in Fig. 5 which shows a section along row 7 of nodal
head values taken at the 100 and 101 iterations. The sustained oscillations
occurred globally but, as might be expected, Qere most pronounced in the
vicinity of the streams; the oscillations had not stopped after 900 iterations.

Applying the averaging procedure defined by eguation (12) in conjunction
with an optimised value of w of 1.85 gave convergence to four significant
figures after 100 iterations, see Fig. 6.

Using various values of w <1 without averaging also gave convergent
results. However, the rate of convergence for under-relaxation alone
was found to be appreciably slower than that for the averaging algorithm used
in conjunction with an optimised over-relaxation parameter, as indicated

by the above theory.

The authors wish to thank Thames Water Authority for permission to use

results from the numerical models of the Lambourn and Cotswold aquifers.
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Figure 1 Graphical representation of stream leakage.

Figure 2 Sustained oscillation at a stream nade.
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FIG 1 GRAPHICAL REPRESENTATION OF STREAM LEAKAGE
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FIG 2 SUSTAINED OSCILLATION AT A STREAM NODE
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FIG &4 LAYOUT OF COTSWOLDS MODEL
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FIG.5 SECTION ALONG ROW 7 AT SUCCESSIVE

ITERATIONS {100,101 )
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