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ABSTRACT

An approximate (linearised) Riemann solver is presented for the
solution of the Euler equations of gas dynamics in an orthogonal
curvilinear coordinate system. The scheme incorporates the technique
of operator splitting. The specific case of axially symmetric flow
is discussed in detail and numerical results are given for two test

problems.




s INTRODUCTION

The (linearised) approximate Riemann solver of Roe [l1] and extensions
given by Glaister [2] have been highly successful in applications to
problems governed by the Euler equations with slab, cylindrical or
spherical symmetry. We seek here to extend these techniques to multi-
dimensional problems, incorporating the technique of operator splitting,
including problems with axial symmetry and/or source terms. The
resulting method is applied to some strongly shocked axially symmetric

flows.

In 82 we review in detail differential equations for the flow of
an inviscid perfect gas in a general orthogonal curvilinear coordinate
system for the general equations of fluid flow. This is done in order
to make clear the origin of the non-cartesian terms in the subsequent
equations. In 83 we describe the details of the flux difference
splitting scheme for the approximate solution of the equations given in
§2, and in 84 we discuss the particular case of axially symmetric flow.
Finally in 85 we describe two test problems with axial symmetry and
display the numerical results achieved for these two problems using

the scheme of §4.



2. EQUATIONS OF FLOW

In this section we consider the Euler equations for modelling the
time-dependent flow of an inviscid compressible fluid in a general

orthogonal curvilinear co-ordinate system (xl,xz,x3).

The Euler equations governing the flow of a compressible inviscid

fluid can be written as

pt + div(pu) = 0 (2.1)
(pg)t + div(puu) = - gradp (2.2)
e, + divlu(etp)) = 0 (2.3)
and
e = pi+ zpu.u e
where
p=plxt) , u=uxt = (uxt), vkt , u3(>_c,t))T '
i=i@x,t) ., p = p(x,t) and e = e(x,t)

represent the density, velocity in the three co-ordinate directions,
specific internal energy, pressure and total energy, respectively,
at a general position x = (xl,x2,x3)T and at time t . We only

consider the case of an ideal gas where the specific internal energy

i is given by the equation of state

p = (y-1)pi (2Er2l

and Yy is the ratio of specific heat capacities of the fluid.

Consider a general orthogonal curvilinear co-ordinate system
(xl,xz,x3) where a line element ds is given by

~

ds = hydxx) + hydxok, + hydxgxg

and 51,52,53 are orthogonal.



N

The vector x. is of unit length and parallel to the co-ordinate

lines with Xy increasing. Consider also a scalar field
o = a(xl,xz,xa) a vector field
B #® blxg.xy,Xg) = byXy + byxy + by¥y &
and a 3 x 3 tensor B = (Bij) . Then the definitions of grad a ,

div 9 and div B are as follows

grad o = .}11__'2_3_}?_%1_'_?1*_2)1)_(2_‘_%_3_0!.53 (2.6)
1 °%1 2 %2 3 °%3
div b = ——J;——-—E—(h h.b,) + —g—(h h,b,) + —g—(h h b,) (2.7)
= h,h.h, 9x 27371 ax 17372 9x 17273 :
17273 1 2 3
and
(div B) - —t —g—(h h,B,,) + —2—(h h B,,) + —é—(h h.B..)
="1i h.h h 9x 273714 Ix 173721 ox 172731
17273 1 2 3
i Bij ahi . By ahi i Bij ahj i Bk Bh.k 2.8)
hihj ij hihk axk hihj 3xi hihk 3xi
where (ijk) 1is a cyclic permutation of (123). If we use the expressions
given by equations (2.6)-(2.8) in equations (2.1)-(2.5) together with
(uu) ,, = u,u,
-= 1) 173
we obtain the following form for the Euler equations in an orthogonal
curvilinear co-ordinate system:
o, + Gelmere —E—{h h.pu,) + —é—(h h,pu,) + —2—(h h,pu,) = 0 (2.9)
t  h,h,h ox 273771 ox 173772 ox 172773

17273 1 2 3



1 5 9 3
(pu;dy + h hh, axl(h2h3°“1ui) i 3x2(h1h3pu2ui) * 35 (hyhypusuy)

3
2 2
. puiuj Bhi . pu Bhi i puj th ) puy Bhk 1
h.h, 0ox, h.h,  9x h.h, 9x, h.h 9x, h, ox,
ij Jj ik k ij i i’k i i i
i = 1,2,3 (2.10a-c)
and
o, + e -—a—(h h,u, (e+p)) + —2—(h h.u,(e+p)) + —a—(h h,u, (e+p) )
t  h,h.h,|9x, 27371 ox, 1372 9x., 17273
17273 1 2 3
= 0 (2.11)
where
- P 1 2 2 2
e = 33 + Ip(u1 +ouy 4 u3) (2.12)
and (ijk) is a cyclic permutation of (123).
If we now write
1 Op p d 1 d
maim— . (h.h ) - =—(h_h, p)
h, Bxi h1h2h3 Bxi jhk h1h2h3 Bxi jk
i = 1,2,3
in equations (2.10a-c) then equations (2.9)-(2.12) can be written in
vector form as
(hhohow) + (hyh £ (w)) 1 + (h1h3g(yg)}x2
+ (h1h2§(y))x3 = r, +r,+rg (2.13)
where

W =

(p,pu, ,puy,pug,e)’ (2.14)



1
w o= ?:T’+ 5P9q
2 _ 2 2 2
q° = ul +uy +ug
f£(w) = (pu,, p + pu?, pu,u,, pu,u,, u (e+p))T
- - 1’ 1’ 1727 173" 71
g(w) = (pu,, puu,, p + pu?, pu,u,, u (e+p))T
2 = 27 2717 27 273" 72
= T
1;1(‘17) = (pu3l pu3u11 pu3u2l p + pu3l u3(e+p))
and
oh oh
_ 9 2 2 2 oh
£y = (000 gmihghy) + puihy 52= + puln, =, - pujuphy 2,
1 1 1 8x1
8h3 T
- pu1u3h2 3x1 4 O)
dh oh dh
r = (0 - pu,uh j=c2 P s=—(h h.)) + puzh - + pu2 =
=2 ’ 2713 9x,. ' ox 173 371 9x 173 9x
2 2 2 2
8h3 T
- pu2u3h1 ax.. ' 0)
2
gh dh
r = (0 - pu,u . h sl - pu,u,h .
=3 f 37172 ox, ' 37271 9x., '
3 3
5 ) oh th T
— o 1 2
p 3x3(h1h2) * puihy 3%, * pughy ax, ' 0)

We have written the right hand side of equation (2.13) as the sum of

three vectors r, i=1,2,3

respect to xi

equation (2.13) with derivatives in one of the co-ordinate directions

only.

In the next section we discuss a numerical technique for solving

the equations of this section.

where

X,
-1

has derivatives only with

This is done so that we can identify the terms in

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)

(2.22)



3k FLUX DIFFERENCE SPLITTING

In this section we consider a finite difference approximation for

the solution of equations (2.13)-(2.22).

The finite difference approximation we propose is based on the
approximate Riemann solver of Roe [1] (for the cartesian case), and
the modification given by Glaister [2] for flows in one space dimension,

sometimes referred to as duct flow.

We consider solving equations (2.13)-(2.22) using the technique
of operator splitting. In particular, we propose solving the following

equations along an X, coordinate line

(h hohow)  + (h2h3§(w))x1 = r, (3.1)
where
w = u u e)T (3.2)
w = p, P 17 p 27 pu3r .
e = §%T + 1pg? (3.3)
2 _ 2 2 2
q° = uj +ug + ug (3.4)
and
dh dh
= _é_ 2 2 2 3
r, = (0.p axl(h2h3) M T PR U3h2 Bx,
- pu,u h i I h e O)T (3.5)
Pu,uyng 3%, puyu3hy Bx, . :

(A similar analysis will follow for X, and X3 coordinate lines.)

If we define a new variable W= h2h3y and notice that

h2h3§(y) = g(h2h3y) = F(W) , then equation (3.1) can be rewritten in

the form

(h, W, + (F(w)) = r. (w) . (3.6)
l, =" ¢ == & -1 -



This gives rise to new ‘'conserved' variables R, Mi’ M2, M3, E where

R = h2h3p, M, = h,h.,m M, = h2h3m2, M, = h.h.m_ and

1 27371’ 2 3 2733
E = h2h3e . (Here ml, m2, m3 denote the components of the momentum
in the X 1 X1 Xg directions, respectively. It also gives a new
'pressure' variable P = h2h3p ) Quantities with the dimension of

velocity are unaltered, e.g. the components of the velocity

= = = v - JYp / YP
u, = Ul’ u, = 02’ uy = U3, sound speed a = o = %r and enthalpy
h = (etp)/p = (E+P)/R = H . In particular the matrix A = EE(W)
of oW

involves only velocities and is the same as si(y) .

Using these new variables equations (3.1)-(3.5) become

)
[ h, R R u,
2
h1 R U1 P+ R U1
h1 R 02 + R U1U2 =z,
hl?R U, R U, U,
W hl E Jt - Ul(E+P) X
1
where
= P, 1lpp?
E = + 5RQ
2 _ 2 2 2
0 = U1 + U2 + U3

We now propose a finite difference algorithm for the solution of

equations (3.7)-(3.9) by noting their similarity to the cartesian case

1 o) = 5
f (
N P u,
2
p u2 + p u1u2 = 9
|
P3| P uju,

(3.7)

(3.8)

(3.9)

(3.10)



where

o
I}

P+ 1pq® (3.11)

(3.12)

We consider a fixed grid in space and time with grid sizes Axl,

At , respectively, and label the points on an x,-coordinate line so

1
that x, = x + Ax, , and on the t-axis t_ =t + At .
lj 1j_1 1 n n-1
w?, y? denote the approximations to W(x, ,x, ,x, ,t ) , w(x, ,x, ,x, ,t )
3j 3 1j 20 3o n lj 20 30 n
respectively. We also use the notation that on an x,-coordinate line
1

the coordinates x2,x3 will take the constant values x2 ,x3 '
0] 0
respectively.

Using the relationship w(xl',xzo,x3o,tn) = h2h3y(x1j,x20,x30,tn) ’

we may write

A

where h;s represents an average value of h Assuming that at

2h3 .

any time tn = nAt , @? represents a piecewise constant approximation

to w(x1 Xy Xy ,tn) in the interval (x1 - Ax1/2,x1 + Ax1/2) (as
j ‘0 "0 A 3 3
in the usual Godunov approach), h? is given by the integral
xl.+Ax1/2
A23 1JJ
hy = +— h,(x,,Xx, ,x, )h_ (x, ,x, ,x, )dx, . (3.14)
3 ﬂxl x, —Ax1/2 2717725773 371 29" 3¢ 1
J
n
We can then recover the approximation w, to w(x, ,x, ,x, ,t ) at
=3J - 1j 29 3’ n
time ¢t = trl from equation (3.13), i.e.
yg = W? / ;m . (3.15)



Consider the interval [x

approximations to W at 3

j_
equation (3.6) as

1

1

oF

- 10 -

le

j-1 J
X

1.
J

CHONES TRuln

1

respectively.

and denote by WL' W

r, (w

and solve the associated one-dimensional Riemann problem

(h W)y + AW W)W,

with data HL’wh
in the form A(WL’wk)

(see below).

~

+
A, W)

either side of the point x

and P may be L

r, (w)

1, !
j-%

(WR = WL) A
Ax1 - El(y )

or R.

. (Wn+1 _ Wn)
N -p . -P
1, t
=4
where A(WL,WR) is the Roe matrix (3.20),
. 1
h = =
1j—§ Ax1
r is an approximation to r,

1

The Roe matrix A(W_,W_)
P -L"-R

A = Eﬁﬁ(w)

be seen that

is an approximation to the Jacobian

A —
(W, W) A (W, W)

~

where the Roe matrix A(w ,w.)

The Roe matrix is constructed so that gR - £

is an approximation to

of

5;(3)

-L

any finite change of state and is given [1] by

R

the

We now rewrite

linearising A
which is then taken to be a constant matrix

We shall use the approximate form of equation (3.17).

and because of the remarks following equation (3.6) it can

= Awp ,w) (wo-w ) for

(3.16)

(3.17)

(3.18)

(3.19)
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B 0 1 0 0 0
(Y=1) ~2 ~2 i e ~ o _
5 QU] (3-v)U, - (y-Du, (yv-1)u,  y-1
. T = ~ (3.20)

UIUZ U2 U1 0 0

- U1U3 U3 0 U1 0

1) 55208 H-(y-1)02  -(y-1)U,U, -(y-1)U,U, YU

2 1 1 i 172 1°3 1

where Y denotes a square root mean of left and right states of Y ,

namely,

J?L' Yo+ /RR' Yo
Yy = (3.21)
/R;+/1TI:
for all variables other than R and p , and
T2 e 12 T2 2
Q = U1 + U2 + U3 . (3.22)
In later analysis we need mean values for R and p , given by
R = VRLRQ ' p = /prR' (3.23)
The eigenvalues of A are
Al =U +a, AZ = U1 -a, K3,4’5 = U1 (3.24)
with corresponding eigenvectors
e, = (1, U +a,U, U, H+Ua"
=1 | A 1
S, = 1,0y -3, 0y 0, 8- 0T
€2 = '"ha Uy =@y Hoym Ugs H= D
- _ S 172, T _
€y < (1, Ul’ U2’ U3, : ) (3.25a-e)
5‘34 = (Or 0, U21 o, U;)
- g uzyT
95 = (0, O, O, U3, U3)



~

(as in the standard cartesian case when h1 = h2 = h3 = 1), where H
is calculated using equation (3.21) and the mean sound speed a is

calculated from

32 = (y-1(H - 30D . (3.26)

Using the above properties of A we can write equation (3.17)

as

F )
+ = £, ) (3.27)

where fl(yn) is a suitable approximation to the term El(y) on the

right hand side of equation (3.17). We thus obtain

o n+l _ A n B At _
hlj_i(‘ﬁp - W= btz (W) B (Fp - Fy) - (3.28)

Before we describe the mechanism to update W? to W9+1 along the

xl—coordinate line we look at the approximation fl(yn) used for

r,(w .
Now,
RuZ Ru?
P 0 2 9 3 0
r.(w = (o0, we—(h.h.) + —= = h, + — =—— h, ,
1 h2h3 3x1 23 h2 Bxl 2 h3 3x1 3
_B1% o h,, - e R I o]T (3.29)
r ’ .
h2 3x1 2 h3 8x1 3
and using the change of variable W = h2h3y , Wwe obtain
oy 3 2 0 2 0
r, = (O, P axl loge(h2h3) + RU2 §§I'10geh2 + RU3 5;; logeh3 i
T
- RU, U, 2 log _h,, - RU,U 0 log_h,, 0) (3.30)
172 3x e 27 173 9x e 37 : :

1 1



= 3 =

Note that we need only to approximate the second, third and fourth
components. For the second component we notice first that, since

the sound speed a 1is given by a? = %? = %? , We may write

(r.). = Ra® 3 log (h.h.) + R02 3 log h. + Ru? 2 1ogh (3.31)
21443 Y 9%, Je ' M2M3 2 3x; 92 3 3%, Je3 y

and approximate (r.) by (21)2 where

1°2

~ A, (L h ~~ A1 h
o z2 4, (log, (hyhy)) L2 , (Leg hy) e y (Log h3) 5329
2 T Ty Ax1 2 &xl 3 Ax1 :
and
A f(x, ,%X,%X,) f(x, ,%x, ,x, ) - £(x J X 1 Xo ) . (3.33)
TR R R 172434 15,1720 30

Similarly, we approximate (51)3, (51)4 by (51}3, (51}4 where

(51}3 = = RU1U2A1(lOgeh2) (3.34)
(), = - RUiU3A1(logeh3) . (3.35)
In the cartesian case the procedure [1] is to project
AE = fR - EL onto the eigenvectors of A . Each projection represents

the contribution of one wave system to Ag . Here we follow a suggestion

of Roe [3] for the one-dimensional case of duct flow, and find the

projections both of AE = ER - EL and also El(yn) ) We than update
w? to W§+1 as follows.
Suppose
5
A = - E a e
=ty = 5 z @i (3.36)
i=1
so that
3 n o~ o~
AF = F, - F = Z Aoe, (3.37)



~

Since A has eigenvalues Ai with corresponding eigenvectors e and

14

3 .~
L) = - ] Bey (3.38)

we may rewrite equations (3.28) as

5 = mor
Bl oe P et Taye

-P -P n Ax. i=1 i'i-i (3.39)
1, 1
j-1
where
- 5. +8 ~ 3.40
Y a; + Bi/xi ( )
n n+1
and P may be L or R . To update W to W we apply a sequence

of one dimensional calculations along computational grid lines in the

X)X, and x3—directions in turn. The algorithm along the
x,—-coordinate line where x, = X, , X, = X uses first order upwind
1 2 2y 3 3 T
0 Atkiyigi
differencing, i.e. for each_cell [x Xy ] we add - ————— to
W? when Ai >0 and - e j-%
B A
by
j-%
to W§-1 when Xi < 0 (see figure 1).
Aoyse xy.e
AEA;Y;E;5 AL
Axlh1 Axlhl.
j-3 j-%
1 1 1 1
j-1 3 j-1 J
;\ <0 >\i >0

i=1,2,3,4,5

Figure 1
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If we follow the algebra through, we obtain

&, = L (Ap + REAU,) (3.41a)
o 1
2a
6, = — (be - R3Av,) (3.41b)
~2 1
2a
&3 = AR w EE (3.41c)
~2
a
&4 = ~£—AU2 (3.414)
U
2
&5 N ~£AU3 (3.41e)
U
3
~ 1 _ ~ A had A ~ A _ ~ ~
B, = - pes [(y 1 (U, (x)), + U, (x)) )+ Uy(xy),) a(51)2] (3.42a)
~ _ 1 o ~ ~ A ~ ~ ~
B, = - pery [(y-l)(u1 (), + Uylry)g + U3<51)4) + a(gl)z} (3.42b)
B, = D (G oz, + U (F), + Us(E),) (3.42¢)
3 52 1'=1'2 2'=1’3 3'=1'4 )
B, = (x,)5/U, (3.424)
Be = (r;),/Uy (3.42e)
and (51)2, (51]3, (£1}4 are given by equations (3.32)-(3.35).

A similar analysis will follow for updating the solution in the
X, and Xq coordinate directions. In particular, for a given

geometry many of the expressions we have derived will be greatly

simplified: however, we must take account of the computational mesh



that results. In addition to the increments given here, we can calculate
second order corrections by transferring fractions of the increments
described in figure 1 (see [4,5,6]). If we limit these transfers

using a suitable flux limiter or B-function (see [4,5,6]), the scalar
scheme will be second order almost everywhere, oscillation free, and

will sharpen up certain features that would be smeared by using the

first order method only.

In the next section we give the Euler equations for axially
symmetric flow, and show how the algorithm of this section simplifies

in this case.



4. AXTALLY SYMMETRIC FLOW

In this section we describe the algorithm of 83 as applied to

the case of axially symmetric flow.

The Euler equations for

flows dependent only on R,

(independent of ¢) , where R, ¢, z
system may be written in the form
[ o Rpu pv [0
pu . Rpu? puv -p
+ E + =
pv Rpuv pv2 0]
| e c Ru(e+p) % v (e+p) J 0
where
— p il 2 2
e -1 + 2p(u + v%)

The flow variables p, u, v,

is the radial coordinate and

The velocity components in the directions

p depend on (R,z,t)
(x,y,2)

R,2

z

where

increasing are

respectively, and the velocity component in the direction

is set to zero.

R =

and t

14

denote a cylindrical coordinate

VX +y

are cartesian coordinates.

u,v,

(4.1)

(4.2)

¢ increasing

Equations (4.1)-(4.2) can be rewritten using the change of variable

W=Rw , as
W + E(Wp + HW = g(w)
where
W = (R, Ru, Rv, )"
F(W) = (Ru, p+Ru2, Ruv, U(E+p) )"

jas)
IS
1

(Rv, Ruv, p+Rv?, v(E+p) ) T

(4.3)

(4.4)

(4.5)

(4.6)



and

glw) = (0, pgaﬁ ®, 0, 007 . (4.7)

The variables R, P, E are given by R = Rp, P =Rp, E = Re.
Those variables with the dimensions of velocity, however, remain unchanged,
i.e. U=wu, V =v, the enthalpy H = (E+P)/R = (e+p)/p = h , and
PV Y e |
the sound speed a = xe //YP . We leave the term -é—(R) in
0 B oR
equation (4.7) since it indicates that this term should be incorporated

in the one dimensional algorithm in the R direction, i.e. along a

line 2z = constant.

The algorithm of 83 as applied to equations (4.1)-(4.2) can be

described as follows.

Consider a fixed grid in space and time, with grid sizes AR,
Az and At, respectively, and label the points on an R-coordinate

line so that Rj = Rj—l + AR, on a z-coordinate line so that

zZ, =z, + Az, and let t =t + At as usual. This gives rise
J j-1 n n-1

to a computational mesh that is rectangular in the R-z plane.

We assume that at any time tn = nAt, wg . yﬁ represent approximations
to W(Rj, zO,tn), y(Rj, ZO’ tn)’ respectively, on an R-coordinate
line (z = zo), or W(RO, zj, tn}, y(RO, zj, tn)’ respectively,
on a z-coordinate line (R = RO) . We therefore have the relationship
W, = R w. (4.8)
=J !
where
R_+AR
‘6
i 1
R = == { RAR (4.9a)
AR
R.—AR/
b
on an R-coordinate line 2z = z_. , or



._19_

z . +Az
3%
3 = = I R,dR (4.9b)
Az z,—A%/
2
on a z-coordinate line R = R0 . Performing the integration in
equations (4.9a-b) yields
W, = R.w. (4.10a)
=J J-J
or
W, = RW (4.10Db)
=] 0-3
on R,z-coordinate lines 2z = ZO’ R =R respectively. (N.B. The

O’
change of variable W = Rw is applicable to the one dimensional operators

in both the R and =z directions, and this is highlighted by the

results given by equations (4.10a-b).

The approximate solution of equations (4.1)-(4.2) can now be found
by using the one-dimensional algorithm of §3 and incorporating the

technique of operator splitting. Along an R-coordinate line (z = zo),

for each cell [R. ,, R,] we
-1 3
add - %E AngeB to W. when XB >0
R 1'1-1 -] i
and
At TRTR'R n R
dd - =—=
a R AiYigi to wj—l when Ai <0
where
"R R . ,RAR
Yl = al + Bi/ i (4.11)
R~ 1 (ap + Ratv) (4.12a)
1 ~2
2a
~r { S
a. = —— (AP - RalU) (4.12b)
2 2
2a
~a 5,
o = AR - Ap/a (4.12c)



and

- 20 -

"R R
o = = AV
4 v
XR S 6 + a
1
Xz = U - a
R~
AB = U
R
A4 = U
ARG
R 2 ~ ~
B, = =3 @+ (y-1)u)
2a
- ARG
R 2 P ~
82 = - (a = (y-1)0)
~2
2a
ARg
83 - - ~2 (Y_l)U
a
R
84 = 0
é? = (1, 5 +a, vV, H+ Ua)T
& = (U, U-a, Vv, B-Ua)"
~R ~oo N ~5 T
e; = (1, U, v, 30" + V"))
& = (0,0, v, V)"
The averages U, V, ﬁ are defined as
- VR ¥y + VR Y,
Y = J J 4 J . Y = U,V,H
VRj-l + VRj

2

are given by

(4.124)

(4.13a)

(4.13b)

(4.13c)

(4.134)

(4.14a)

(4.14b)

(4.14c)

(4.144)

(4.15a)

(4.15b)

(4.15d)

(4.16)



R = VRj_le (4.17)
a? = (y-1(E - % (@ + v?)) (4.18)

and the difference Af is defined by

Af = £, - £, . (4.19)
j g=1

The coefficients Bi here have been determined by setting

ro 3
4 g
1 *RR 2
" L Biey - (420
i=1 0
0

and choosing a suitable approximation 9, to the term g,= P g%(R)

of equation (4.7).

2
. _pa” 3 .
We write 9, —-f?—aR(R) and approximate
A paZ A(R) a2
5, - £ AR ; (4.21)
¥ &8 Y
where D = vpj_lpjI as in the cartesian case.
Finally, we note that
R._, R, R
8 = V. .0, = N e R (4.22)
-1 ~ ~
J J R
R, R,
-1 3
where
R = VR, 1§_ = VRj 1R is averaged
-1 3 B

in the same way as p , R . Therefore



R
and 81,

line

Az

|
2k

~

R
B2I

~

B

22 -

5. - RaZ
2 ﬁY
2, Bi are given by
g% - RR 2+ (-1 O
2YR
R ﬁAR ~ =
) = -°= (a - (y-1)U)
2YR
~ R
By = - XR gy
YR
.
64 = 0

The algorithm for updating

Rog

)

to

to

is as follows.

n
W,

n
v_qj_l

when

~

z
Ai

the solution along a z-coordinate

For each cell

> 0 and add

% < 0 where

i
—%7-(AP + RaAv)
2a

12 (AP - Ralv)
2a
AR - Ap/a?
R
= AU
U

vV + a

V-a

[z. ,,z.]
=173

we add

(4.

(4.

(4.

(4.

(4.

(4.

(4.

(4.

.23)

.24a)

24b)

.24c)

244)

25a)

25b)

25c¢)

25d)

26a)

26b)
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. N
A3 = VvV
iy -
A4 = Vv

and
gf = (1, V+a, U H+va)?T
9; = (1, V-a,U, H-va)?T
e5 = (1, v, u, 3w? + v}))T
~g ~ o~y
e, = (0,0, u, u%

The averages U, V, H, R, a are defined as in equations (4.16)-(4.18)

and the difference Af is given by equation (4.19). We note that

. . z ~z Tz pt
in this case B1 = 82 = 83 =B = 0

Summarising, we project the initial data w(R,z,0) onto a set

of piecewise constant states w:j = Riy(Ri,sz) on the rectangle

(Ri = A%%: Ri + A%/ ) x (z., - A%/,

z. + Az,) ,
2 J 2 J

/)

march forward to a time 2mAt wusing a time step At by sweeping m

times in the R and z-directions alternately as described by

equations (4.8)-(4.27d), and recover the approximate solution using
2mAt 2mAt
w, . = W,, /R,
-ij -ij i

In the next section we describe two test problems that can be

used to test the algorithm of this section.

(4.26¢c)

(4.264)

(4.27a)

(4.27b)

(4.27c)

(4.2743)
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5. NUMERICAL RESULTS

In this section we describe two test problems that can be used

to test the algorithm of 84 and display the numerical results obtained.

Problem 1

This problem begins with uniform Mach 3 flow in a cylindrical

tunnel containing a cylindrical step, (see Figure 2).

Figure 2

The tunnel is 3 units long and 2 units in diameter. The solid
cylindrical step, whose axis lies along that of the tunnel, has a
diameter of 0.4 units and is located 0.6 units along the tunnel. At
the left an inflow boundary condition is applied, and at the right,
where the exit velocity is always supersonic, all gradients are assumed
to vanish. We assume axial symmetry, i.e. we consider the flow in

a plane ¢ = constant, where ¢ is the angle in cylindrical polar

coordinates, (see Figure 2). This problem is similar to the wind tunnel



W < £ o

- 25 -

problem of Emery [7], and also to that of Woodward and Colella [8],

in the case of slab symmetry.

The equations of motion governing the flow are the 'two-dimensional'
Euler equations in cylindrical polar coordinates with axial symmetry,
namely equations (4.1)-(4.2). We assume that the incoming gas is ideal

with vy = 1.4. The initial conditions in the tunnel are given by

p(R,z,0) = p0 = 1.4
u(R,z,0) = u = 0
0
all r,z
v(R,z,0) = v, = 3 [
P(R,z,0) = py = 1

Gas is continually fed in at the left hand boundary with the flow

variables given by (p,u,v,p) = (po,uo,vo,po), (see Figure 3).

P
LYy 3.0 }'
P = o,
o} =
00— u Yo supersonic
0—> =
Vo —> 1.0 v Yo outflow

Po — P = p,

1 T 777,

——B.6=3

Figure 3

(N.B. Recall that the velocity components in the R,z directions

are u,v, respectively.) Along the walls of the tunnel we apply



reflecting boundary conditions. Specifically, along a boundary given
by 2z = constant, we consider an image cell and impose equal density,
pressure and tangential velocity, and equal and opposite normal velocity
at either end of the cell, i.e. p,p,u,v respectively, in this

case. A similar argument applies for a reflecting boundary condition

given by R = constant.

The main features of the solution are the Mach reflection of a
bow shock at the upper wall, making the density distribution the most
difficult of the three components to compute, and a rarefaction fan

centred at the corner of the step.

Figures 4a-7d are with 120 mesh points in the z-direction and
40 mesh points in the R-direction, i.e. AR = Az =-%F . All computations
have been done using a second order entropy satisfying scheme with the
'superbee' limiter, (see [6]). The results for the density are output

at times t = j/8 , j=1,2,...,16 using a time step At = 0.0025

so that the maximum C.F.L. number is 0.4. In each case 31 equally
i
d h i.e. + == -
spaced contours have been drawn, i.e. at pmin 70 (pmaX pmin) )
i=20,1,...,30, where p ., , p are the minimum and maximum densities

min max

throughout the flow, respectively.

The c.p.u. time used to compute these results using an Amdahl V7

is as follows:-

Using 'superbee' with the modified entropy satisfying scheme
and 120 x 40 mesh points takes 2.0 c.p.u. seconds to compute
one time step and a total of 50 c.p.u. seconds to reach a real
time of 0.125 seconds using 25 time steps.

(N.B. (a) These figures are for a maximum C.F.L. of 0.8.
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(b) For a 60 x 20 mesh the total c.p.u. time taken

will be approximately % of the values quoted
above, e.g. a total of 6.25 c.p.u. seconds would

be required to reach a real time of 0.125 seconds.)

Results for the corresponding problem in slab symmetry have been
given by Glaister [9] using the approximate Riemann solver of Roe [1].
A comparison of the corresponding times in [9] and those obtained here

shows that there is a 33%% increase in c.p.u. time due to the different

geometry.

Problem 2

This two-dimensional shock tube problem can be considered either

in (x,y) or (R,z) geometry, (see Glaister [10]).

Consider the two-dimensional Euler equations with slab symmetry
or axial symmetry and the region (x,y) € [0,1] x [0,1] or
(R,z) € [0,1] x [0,1] with rigid boundaries along x =0, y =0 or
R=0, z=20. We position a membrane along (x,y) or (R,z) where

2 2

or R + z = and have initial data

>
+
L<
]
S
Nl

-

(0,,0,0,p.) x2 +y? <% or VR* +2z® <}
(pu,v,p) =
e ST
(DR,O,O,pR) /;2 +y2 > % or VR? + z? > %

The solution to this problem has cylindrical or spherical symmetry and
satisfies the corresponding 'one-dimensional' Euler equations (see
Glaister [10]). Thus we can see whether the solution remains symmetric:

moreover, we can compare the results with those obtained using a 'one-
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dimensional' algorithm for the Euler equations with cylindrical or spherical

symmetry.

Figures 8-11 refer to the cylindrical problem and the two-dimensional
results have been computed using the algorithm of §3 in (x,y) cartesian
geometry, i.e. using the approximate Riemann solver of Roe [1]. Figures
12-15 refer to the spherical problem and the two-dimensional results
have been computed using the algorithm of 84 in (R,z) cylindrical
geometry. In each case we take Y = 1.4 , a mesh with 50 x 50 grid

points and a time step At = 0.004 . For each output time we draw 31

i .
equally spaced contours at pmin + 37 (pmax - pmin) , 1i=0,1,...,30 ,
where 0 . ,P are the minimum and maximum densities throughout the
min’ “max
flow, respectively. In addition we plot the density along x =y or

R = z and plot the solution to the corresponding one-dimensional cylindrical
or spherical problem obtained using the algorithm of Glaister {2] with

50 and 800 points. The one-dimensional solution with 800 points provides

a good approximation to the exact solution, whereas the solution with

50 points provides a comparison on similar grids.

The initial discontinuity breaks up into a converging shock and
contact discontinuity. The shock is reflected from x =y =0 or
R = z = 0 and interacts with the contact discontinuity. This results
in a transmitted shock together with the contact discontinuity still
converging. These features are apparent in Figures 8 or 12, 9 or 13,
10 or 14, 11 or 15, respectively. For each figure we see that the
two-dimensional solution obtained remains symmetrical and is comparable
to the one-dimensional solution on a similar grid. Furthermore, the
solution clearly models the high resolution solution obtained with

800 points.
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The c.p.u. time used to compute these results using an Amdahl V7

is as follows.

Using 'superbee' with the modified entropy satisfying scheme
and 50 x 50 mesh points takes;-
(a) Cylindrical case.

1.05 c.p.u. seconds to compute one time step and

52.5 c.p.u. seconds to reach a real time of

0.2 seconds using 50 time steps

(b) spherical case.
1.2 c.p.u. seconds to compute one time step and
60.0 c.p.u.seconds to reach a real time of

0.2 seconds using 50 time steps.



DENS OT/DX « 0.100 N = 120 NY = 40
i CONTOURS FROM 0. 5665 T S5
ATT = 0.1250 SUPERBEE LIMITER USED
Figure 4a
LENS DT/DX = 0.100 MNX « 120 NY = 40
1 CONTOLRS FROM 0. 5603 TO 5. 4940
AT T = 0.2500 SUPERBEE LIMITER USED
Figure 4b
DENS DI/DX = 0.100 N = 120 NY = 40
i CONTOURS FROM 0. 5863 TO 59203
AT T = 0.3750 SUPERBEE LIMITER USED
Ficure 4c
DENS DT/DX « 0. 100 NX =« 120 NY = &0
i CONTOURS FROM 0. 5914 TO & 0256

AT T « 0.5000 UPERDEE LIMITER USED

Figure 4d
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Figure 5a
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Figure 5b
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Figure 5c
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Figure 5d
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Figure 6a
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DT/0X = 0.100 NX = 120
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SUPERBEE LIMITER USED
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DENSITY

AT T = 1.7500

DT/BX = 0.100 NX « 120
CONTOURS FROM 0. 6519
SUPERBEE LIMITER USED

T0 & 1502

DENSITY
ATT =

1. 8750

DT/OX = 0.100 NX = 120
CONTOURS FROM 0. 6518 TO & 1499
SUPERBEE LIMITER USED

Figure 7c

DENSITY
AT T « 20000

DT/0X = 0.100 N = 120
CONTOLRS FROM 0.46517
SUPERBEE LIMITER USED

T0 & 1503

Figure 7d
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A Converging Cylindrical Shock

Dmam_dY at t

0.360 , contours from

2. 301

to

4. 226

Figure 9
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A Converging Cylindrical Shock

Dmam_nx at t

= 0.480 , contours from 2.910 to 5.352

Figure 10

+1-d eolution with 800 pointe

N

0.5 .0 R

+ 1-d solution with 50 polints

0.5 .0 R

2-d solutton along x=y
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A Converging Cylindrical Shock 10 11-d solut1on with 800 pornte

.5 L0 R
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05 .0 R

10 2—-d solution along xm=y

X

Density at t = 0.560 , contours from 2.836 to 5. 183 . "

('8 1.0 R

Figure 11




A Converging Spherical Shock

10 +1-d eolution with 800 polmts

| T~

6.5 1.0 r

10 - 1-d eolutton with 50 points

10+ 2-d eolution aelong Rz

----------

r4

Density at t = 0.200 , contours from 1.000 to 4. 000 Rm _f -

Figure 12




A Converging Spherical Shock

Density at t = 0.352 , contours from 3.164 to 65.012

r4

Figure 13

+1-d eolutton with 800 pointe
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10
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A Converging Sphertcal Shock

Density at t = 0.452 , contours from 2.766 to 6. 104

P4

Figure 14
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6. CONCLUSIONS

We have proposed an algorithm for the Euler equations in a general
orthogonal curvilinear coordinate system. This algorithm, which is
an extension of the schemes of Roe [1] and Glaister [2], incorporates
the technique of operator splitting. The algorithm has been applied
to two test problems with axial symmetry and has achieved satisfactory

results.
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