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Abstract

A study is made of operator splitting methods for two-dimensional
hyperbolic problems with application to various test problems.
Particular emphasis is given to upwind differencing schemes for
non-linear systems of equations and some analysis is given for simple
cases. The results presented give insight into the feasibility of using
split schemes for two-dimensional conservation laws and the

circumstances in which genuinely two-dimensional schemes may be

necessary.



§] Introduction

In a paper by Strang [1] a procedure for solving two-dimensional
systems of partial differential equations is presented. This procedure,
often called operator splitting, has been a tool commonly used in
solving multi-dimensional fluid flow problems such as those governed by
the inviscid Euler equations.

The underlying strategy involved in operator splitting is to
replace the system of equations in n dimensions by n one-dimensional
systems. Each one—dimensional system is solved by some suitable method
and the solutions recombined in a suitable manner to yield an
approximate solution to the full problem.

In this report we consider three different techniques of applying
operator splitting and compare the application of these techniques to
several two-dimensional test problems. Section 2 reviews Strang's paper
in which two of the operator split methods are presented. The third
split method being considered in this report is introduced in Section 4.

In Section 3 we consider upwinding methods in one-dimension and
their use in solving the Euler equations. An analysis of various
splitting strategies is given in Section 4. The test problems are
stated in Section 5 and the results set out in the following section. A

discussion of the results is given in Section 7.



§2 The Technique of Operator Splitting

In a paper by Strang [1] a technique for solving, to second order
accuracy, a stystem of linear first order hyperbolic partial
differential equations was proposed. He dubbed the resulting methods as
'alternating direction schemes’ and carried out an analysis of these

schemes on the model problem

4, = Ay + Bgy (2.1)

¥(x.y.0) = g (x.y)

where A and B are symmetric constant matrices which do not
necessarily commute.

The underlying philosophy of such schemes 1is that the
two-dimensional equation (2.1), may be split into two one-dimensional

equations, namely

u, = Agx (2.2a)
Bt = Bgy (2.2b)

and that solving both of these one-dimensional equations simultaneously
is equivalent in some approximate sense to solving the two-dimensional
equation (2.1). To demonstrate this in the linear case we recall the

two-dimensional linear advection equation



u +au +bu =0
t X y

(2.3)
u(x,y.t) = uo(x.y)
which has solution
u(x,y.t) = uo(x -at , y - bt) ,
can be split into two sibling equations
u +au = 0 (2.4a)
u, + buy =0 . (2.4b)

If we now simultaneously integrate (2.4a) and (2.4b), remembering
that (2.4a) is independent of y and (2.4b) is independent of x ,
along all lines y = constant and x = constant respectively (c.f.

Section 4), then we arrive at the solutions

u(x,y.t) uo(x—at,g) (2.5a)

u(x.y.t) u0(§,y—bt) (2.5b)

respectively, where

z(x.t)

%2
n

“
]

V(y.t)



are two independent functions.

In obtaining these solutions, we have used the fact that data is

preserved along the one-dimensional characteristics of (2.4a) and (2.4b)

given by
X — at = constant
y - bt = constant
respectively. However, since the integrations are performed

simultaneously, both characteristic equations are satisfied in solving

(2.42) and (2.4b). Hence

"
]

X — at

y - bt

<
]

and the solution is

u(x,y.t) = uo(x-at. y-bt)

which is the solution of (2.3). This justifies the splitting in the
linear case.
It is worth noting that if we split equation (2.3) such that its

two sibling equation, when summed together, yield the original equation

(2.3), i.e.



Il
o

1
Aut + aux (2.6a)

]
o

1
Y+ buy (2.6b)

then solving these two equations simultaneously yields the solution

u(x,y.,t) = u(x-2at, y-2bt)

which is, of course, incorrect. In many places the sibling equations
are written in the form of (2.6) rather than (2.4) indicating that the
sibling equations are to be solved sequentially, which is then (in the
linear case) equivalent to solving the full equation.

Returning now to Strang's paper, we look at the specific type of
problem considered there and two of the operator split methods
described.

As stated previously, the model problem is a first order linear

system of hyperbolic partial differential equations

4, = Agx + Bu
it (2.7)

4(x.y,0) = u (x.y)

The matrices A and B considered are constant and symmetric, but not
necessarily commutable.
We shall require difference approximations to the partial

differential equations to be second order (in the case of smooth data
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without non-linear features such as discontinuities or shocks). Given a

difference operator, Sk . which is a weighted sum of translations,

(S.£)(x.y) = z C, ; E(xrih,y+jh) (2.8)
i,

where Ci i are constant coeffficent matrices, we can define the order
of accuracy by comparing Skg with the Taylor expansion of
u(x,y.t+k) . For second order accuracy, given that u is a smooth

solution, we shall require that

2

- k- s
Skg =u + kgt t5 W, t o(k™) . (2.9)
Thus writing u(x,y.t) = f(x.y) and determining g, and 4., from the

partial differential equation (2.7), we require that for all smooth

functions f = f(x,y)

_ k? .2 2
Sk£ =f + k(A£x+ Biy) + 3 (A ixx + (AB+BA) £xy + B iyy)

+ 0(k°) . (2.10)

Attention is now focussed on the Lax-Wendroff operator, which in

one spatial dimension is given by

r2
I + rAA + 57-A2 52 (2.11)

L

where r =

= oy

. (2.12)
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M(x) = 5 (£(x+h) - £(x-h)) = hf (x) + O(h°) (2.13)
and
5%f(x) = f(x+h) - 2f(x) + f(x-h) = hzfxx(x) + 0(h*) (2.14)

This scheme has been the subject of much literature (see e.g.[3]) and it
suffices to state that the scheme is linearly stable if the eigenvalues

of A satisfy

max [N (A)] € T (2.15)

and that it is of second order accuracy in both space and time (given
the above definition of a second order approximation).

Strang [1] considered several methods of combining and adjusting
the one-dimensional operators Lﬁ and Li to yield second order

methods for solving the model problem, two of which are analysed here,

namely:
(i) The "symmetric sum" of one-dimensional Lax-Wendroff
operators:—
1 1,.x X
s() §(Lk +L13:) (2.16)
and

(i1) The sequential method



=17 =

s{?) - (2.17)

1

POl o
bl ¢

The second method, Sﬁz) , is also known as the ‘fractional step method’

and is associated with Yanenko [2].

Following Strang, if we substitute the difference scheme into
(2.16), then Sﬁl) is the difference operator
I_2

(1) _ LLer v ran, + I A%82)(1 + vBA._ + Lo B252 )
Sk 2 x 2 pYe y 2 y

2 2
r 262 I ,2c2
+(I + rBAy + 5 B Gy)(I + rAAX + ——A2 6x)}

2
r 202 2,2
I+ r(Ab + BAy) + 5(A%8% + (AB + BA)AxAy + B 5y)

+ 0(r®) . (2.18)

Hence
D) (x.y) = £(x.y) + K(AL. + BE ) + 5o(A%F  + (AB + BA)f
k ~ i ~ T ~xX ~y 2 ~XX Xy

+ Bziyy) + 0(k%) ., (2.19)

and so Sﬁl) is a second order accurate approximate solution operator
to equation (2.7). Carrying out the same analysis of Séz) ., we find

that this is also a second order approximate solution operator to
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equation (2.7).

In a paper by Yanenko [2] and elsewhere in the book by Sod
[3]. S£2) is reviewed and the same conclusion about accuracy is
reached without reference to the symmetry of the matrices A and B .

In principle, Sﬁz) can compute solutions faster than Sﬁl)
and thus Sﬁz) was favoured by Strang. However, the author has found
that with careful programming, the difference in computation speed can
be made negligible.

In recent years many advances have been made in the study of
hyperbolic partial differential equations and in the theory of
one-dimensional difference operators applied to hyperbolic partial
differential equations, especially application of such operators to
one—dimensional fluid flows. For example, much is now known about
numerical techniques for solving conservation laws, i.e. equations of

the form
u, + f(u)x =0 . (2.20)

Solutions of such equations produce discontinuities 1in general
(unless f is a linear function of u) and numerical techniques have
been developed that can handle these non-linear features. Indeed the
classical schemes, such as the Lax-Wendroff scheme, have become less
widely used following the advent of adaptive TVD schemes, such as those
of Osher [15], Roe [4], Van Leer [12], which are able to successfully

generate sharp solution profiles near shocks and contact discontinuities
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(as well as being accurate in regions of smooth data). It is near these
discontinuities that classical schemes produce oscillatory behaviour and
require the addition of artificial viscosity. Many difficult problems
in computational fluid dynamics, governed by the Euler equations, have
been solved very successfully (in one-dimension) by such schemes. In
particular, Roe's decomposition [4], in which flux limiters have been
incorporated, is particularly successful.

However, all the theory concerning conservation laws and flux
limiters has been developed only in one spatial dimension. What, then
happens when we are faced with a two-dimensional problem in
computational fluid dynamics? There are only a few truly
two-dimensional approaches to solving such problems and, as a
compromise, such problems are generally solved using operator splitting.
For example, the Euler equations in two-dimensions can be written as

u, + AEx + Bgy =0, (2.21)
a non-linear system of hyperbolic partial differential equations. The
Jacobian matrices A and B are asymmetric and certainly do not

commute. However, given that we can solve the one-dimensional sibling

equations
' + AEx =0 (2.22a2)
u +Bg =0 (2.22b)



- 14 -

we may attack the full parental problem (2.21) by employing operator
splitting.

Despite excellent results obtained via operator splitting,
certain questions do arise about the validity of employing operator
splitting when solving the two-dimensional Euler equations, since the
Jacobian matrices, A and B , are not constant, in fact they vary not
only spatially but temporally. This difficulty is generally ignored
when applying operator splitting to the Euler equations.

Since the analysis of splitting methods is incomplete, as we
shall see in section 4, and since no analysis has been done with respect
to non-linear systems of equations, the question of the validity of
operator splitting remains unanswered. This report is a contribution to

the evidence for and against operator splitting.



- 15 -

53 A Brief Review of One-Dimensional Techniques
a2l 2=l acview of Une—bimensional Techniques

In this section we briefly review the techniques used in solving

one-dimensional non-linear hyperbolic problems of the form

u, + f(u)x =0

(3.1)
u(x,0) = uo(x)

and show how these techniques can be extended to solving the inviscid

compressible Euler equations in one-dimension. We begin by considering

some analytic results concerning the solution of (3.1).

3.1 Analytic Considerations

It is well known that equation (3.1) can be solved by the method

of characteristics. By writing

f(u)x = a(u)ux (3.2)
where

a(u) = £'(u)
(3.1) becomes

u, + a(u)ux =0 (3.3)
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the characteristic curves of which are given by
x - a(u)t = constant (3.4)

Since (3.1) is a conservation law, information is propagated along the
characteristics, i.e. in this case Uu = constant along the

characteristics, and so a solution of (3.1) is
u(x.t) = uo(x—a(u)t) 3

This solution holds as long as the characteristics remain well-defined
and do not cross or diverge from a point. If the characteristics do
cross then the solution becomes double valued and a shock or
discontinuity 1is produced. We can then continue the solution by
considering weak solutions and by including the Rankine-Hugoniot

relationship

[£] (3.5)

— = g

[ul

where s 1is the shock speed and

[()1=()g - () (3.6)
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is the jump in states of f and u across the discontinuity.
If the characteristics diverge then there is an infinity of

possible weak solutions. For example, consider Burger's equation
1.2y _
u, + (2u )x =0 (3.7)

with the following initial data:

1 x>0
uo(x) = o <o i (3.8)
X

Two possible solutions are

1 X > t/2
a) u(x,t) = (3.9)
0 x < t/2
1 X2t
b) u(x,t) = yx/t 0<x<t

0 x <0

solution (a) representing a rightward travelling shock and solution (b)
representing an expansion ramp. To obtain the correct physical solution
we call upon the entropy condition (Lax [7], Oleinik [5]) which is

derived from consideration of the limiting equation

u, + f(u)x = eu

. (3.10)
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as e 1 0.

In simple terms, the entropy condition tells us that, for a
convex flux function f(u) (f"(u) > 0) and a fixed time t , the
solution of (3.1), in traversing the x-axis from -® to +® , can only
jump down at discontinuities. In the above example the correct physical
solution is (b).

The above analytic results have been useful in developing high
resolution upwind algorithms for solving scalar conservation laws.

For a fuller account of the treatment of hyperbolic conservation

laws see Smoller [6].

3.2 Upwinding in One-Dimension

Having described some analytic results for scalar hyperbolic
conservation laws, we now briefly outline some numerical techniques
developed for solving such equations.

Consider the linear advection problem

+ =
ut aux 0

(3.11)
u(x,0) = uo(x)

with a > 0 .

The simplest upwind scheme for solving this equation is that attributed

to Cole and Murman [27] and can be written as



k_ u
=4y
or
uk =u
-k
where
At
A= Ix
_.n
Y T Y%

and A(.)k+é

- haly, -y )
- vhu
' v = aA
uk - un+1
: K
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= (par = Gy -

(3.12)

(3.13)

This can be thought of as the advection of the linear interpolant of the

data and thus can be seen to be highly diffusive (see figure 1), as is

the case with most first order schemes.

On the other hand,

second order schemes,

such as Lax-Wendroff

[8] or Warming and Beam [9], are known to produce oscillations when the

solution varies rapidly (see figures 2 and 3).

written

LW u=u - phu s = B(1-v) A_(hw, 1)

W-B: uk = - vAuk_é - 5(1-p) A-(Auk—é)

where

D

\V)

D

\V}

A__ (.)k = (.)k - (.)k—l .

These two schemes can be

(3.14)

(3.15)
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Both of the above schemes can be regarded as the advection of
quadratic interpolation of data, which accounts for the production of
spurious oscillations around regions of rapidly varying data due to the
underlying quadratic interpolation. Various techniques have been
constructed for the approximate solution of scalar conservation laws
which are both high resolution and non-oscillatory (e.g. Woodward and
Collella's PPM [10], Boris and Book's FCT [11], Van Leer's MUSCL [12],
Harten, Enquist, Osher, and Chakravarthy's ENO Schemes [14] and Roe and
Sweby's Flux Limiter Schemes [13]). These schemes all work by limiting
the amount of second order flux in such a way that oscillations are
suppressed. We give here a brief description of how the Flux Limiter
methods succeeds in preventing oscillations.

Following Sweby [13] we can view the Lax-Wendroff scheme as a

first order scheme,
Ut =u - vAuk_é (3.16)
with the additional second order flux (or anti-diffusive flux)

-A_ {3v(1-v) My 1} (3.17)

This anti-diffusive flux is then modified in such a way as to prevent

oscillations, i.e. it is replaced by

- A_(¢kév(1—v)Auk+é} (3.18)
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where ¢k is a function of consecutive gradients

¢k = ¢(rk)
Au, 4
ry, = Aié . (3.19)

We now call upon the notion of Total Variation Diminishing
Solutions (TVD) to place bounds on ¢

The TVD property is based upon the fact that the analytic
solution of a conservation law satisfies the inequality (in

one-dimension)
d
I Jluxldx <0. (3.20)

i.e. the variation of u does not increase (see [7]). The discrete

analogue of this result is

n+l

V™) < TV(E®) (3.21)

where the discrete TV 1is defined as

V@) = ) |ul - w ] (3.22)
K
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From Sweby [13] we know that any scheme written in the form

k
ut =u - Ck—é Auk—é + Dk+é Auk+§ (3.23)

is TVD iff

s 2 0

D >0 . (3.24)

k+i

Ck+é & Dk+§ <1

Writing the flux limited scheme as a single difference scheme we have

k
ut =y - DAk—é - A {¢ké(1—v)vAuk+é} . (3.25)

Equation (3.25) can be manipulated to yield

¢
k k
u = uk = v{l + é(l_v) [_rk - ¢k—1]} Auk_é (326)

from which we can apply the TVD criteria to produce bounds
on ¢k . This leaves freedom to choose ¢k to be such that (3.26) is
'as second order as possible’. The second order TVD region is shown in
figure 5.

In practice flux limiter schemes are highly successful (see
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figure 4) and easy to extend to non-linear problems and systems of
hyperbolic conservation laws.

We now turn our attention to entropy satisfaction within numerical
schemes (q.v. Section 2). It is alarmingly easy to produce entropy
violating solution via numerical methods, for example, if we apply the
Cole-Murman scheme (3.12) to the inviscid Burgers equation (3.7) with

the initial data

0.5 |x - 3.75] ¢ 1.25
u (x,0) = (3.27)
e -0.5 |x -3.75| > 1.25

then the wrong solution is produced (see figure 6).

The reason for this is that the scheme is dispersing the
solution around the sonic point of the equation i.e. where f'(u) =0 .
To remedy this discrepency Osher [15] devised a criteria for
semi-discrete schemes approximating (3.1) to be entropy satisfying and
thus to be able to converge to the correct physical solution. These

schemes, dubbed E-schemes, have the form

S

vy ™ Pecy) (3.28)

> Ll
AL

where hE is a consistent numerical entropy satisfying flux function

hﬁ+§ = hE(uk+1 TR uk—m) (3.29)

hEu . u ..., u) = £(u) (3.30)



- 24 -~

and
E
sgn(uk_‘_1 - uk) [hk+é = f(u)] <0. (3.31)

Schemes of this form (e.g. Enquist-Osher [15]) are at most first
order accurate. However they can be used as a basis on which to add
flux limiters (see Sweby [13]) and produce very good (and physically
correct) results (see figures 7 and 8).

We now turn our attention to the Euler Equations.

3.3 The Euler Equations and Roe's Scheme

The Euler equations arise when modelling an inviscid
compressible fluid and take the form of three conservation equations,
namely conservation of mass, momentum and energy. To complete the
system an equation of state is also required. We can write the

conservation equations in a form similar to (3.1), i.e.

u, + 'f‘(g)x =0 (3.32)
where
T
u = (p, pu, e)

T
(pu, ptpu® , u(e+p))

+h
]



and where p, u, e, p are the density, velocity, total energy and

pressure respectively. The equation of state takes the form
p = p(p.1)

where 1 1is the internal energy.

As in the analytic case, we can write this as
u + Au =0 (3.33)
~X

Where A 1is the Jacobian matrix, defined as
o
A=A(u) = gg ) (3.34)

A popular method of solving the Euler equation numerically is
Roe's scheme, a linearised approximate Riemann solver (Roe [4], Roe and
Pike [16], Glaister [19]). The basic idea behind this approach is that
we locally linearise A over a computational cell to give an

approximation to the Jacobian. This approximate Jacobian, A , is then

used to obtain approximate eigenvalues and eigen-vectors Ai ; %i . An
increment Au is then decomposed onto the eigenvectors Ei with

wavestrengths zi given by

[
=]

1l
N
R
{ R

" (3.35)
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The averages 3i are then calculated solving (3.35) together

with

=YK G S (3.36)

which forms a discrete analogue of the spatial differencing of the Fuler
equations.

Each wave is represented by

At o ~ ~ At
Qi e A'f’i x - >\i o €4 ix (3.37)

which is then used to update u in time in an upwind manner, i.e. added
to the appropriate end of the computational cell according to the sign

of X. .
i

computational cell 2i

for Roe’s scheme

S, R
figure A
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i.e. 4=y - ¢, Vi ¢ Ai <0 (3.38)
R N
g =u - ¢, vi X >0 . (3.39)

This method assumes a piecewise constant form for u within
each computational cell and in effect solves the Riemann problem at the
jump interface. Roe's scheme is a first order method, although a
seconder order version with flux-limiters can be easily applied (Sweby
[13]) and it is also possible to embed an entropy ’'fix’ in the scheme to
prevent backward facing shocks by considering the sign of the
eigenvalues at the left and right hand ends of the computational
cell AL , AR . A second order version of Roe’s scheme has been shown
to be convergent (Sweby and Baines [17]) for scalar non-linear
hyperbolic p.d.e.’s. Results for this scheme applied to the shock tube
problem of Sod [25] are shown in figures 9 through to 11. Further
extensions have been made to this scheme, see for example Glaister [18],
[19], who has adapted the scheme to give a linearised approximate
Riemann solver for non-cartesian geometries with a general equation of
state. The scheme can also be used to solve the two-dimensional Euler
equations via operator splitting (see for example Barley [20]) although,
recently, Roe himself has pointed out difficulties associated with this
extension (Roe [21]). Despite this objection, operator splitting has
proved to be a very useful tool in solving multi-dimensional fluid
flows, and in the next section we shall consider some simple analysis of

operator splitting.
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84 An Analysis of Splitting Strategies

In this section we give a comparative analysis of three

splitting techniques. We start by describing the three methods.

4.1 Description of Methods

In Section 2 we saw how Strang compared two different splitting
strategies. The assumptions made there about his model problem do not
hold for the equations we are interested in here, namely the Euler
equations, which are non-linear and have non-constant asymmetric
Jacobian matrices.

Since we are interested in the difference in resloution of split
schemes, it seems sensible to take the underlying one-dimensional
solution operator to be of first order in the hope that when extended to
higher order, the most successful first order split method will also
succeed at being the highest resolution method when flux limiters are
applied.

We start by clarifying some notation. Considering the scalar

conservation law

u, + f(u)x + g(u)y =0, (4.1)

then use of a splitting technique implies that we solve the two sibling

equations
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Il
o

u, + f(u), (4.2a)

]
o

u, + g(u)y (4.2b)

via some one-dimensional solution operators.

Ve let Lx be the one-dimensional solution operator which

solves (4.2a) using only x-variations throughout the computational

domain,i.e.

Lxsolves (4.2a)
along all lines
computational y=constant in the
domain » computational
domain.
Figure B

Similarly, we let Ly be the one-dimensional solution operator which
solves (4.2b) wusing only y-variations throughout the computational
domain.

Using this notation we can write down the three splitting

strategies refered to in Section 2 as follows:
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(1) _ 4 = .
a) S S z(LxLy + Lny) Strang’s original method

(2) _ (2,2 ,2 2 . .
b) S = Lx Ly Ly Lx - Yanenko's method of fractional steps
c) S(s) . Lx + Ly -1 - "genuinely two—dimensional"” for

first order solution operators.

We note that S(2) is slightly different to the operator
considered by Strang, since he combined the two L}% operators to
yield Ly ; however, since we are concerned with solving a non-linear
system, we can no longer do this since the Jacobian matrices are
solution dependent.

It is worth noting that if the three methods are programmed
naively, S(2) will take twice as long to advance from one time level
to the next as S(B) , Whereas S(B) will need twice as much storage
since the solution at the next time level 1is based on both
operators Lx and Ly operating on the solution at the previous time
level. S(l) comes off even worse in this respect since it needs the
storage associated with S(3) while taking the time to advance one
time—-step associated with S(z) ;

For most of the analysis given here we will be considering

Lx and Ly as first-order upwind difference operators, i.e.

L=U...—D.1.Axu.1. (4.3)
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n
Ly =gy Ty g Ay g -4 (4.4)
Af. 4
where v, 1 . = Xi=a.l b (4.5)
i-2,] Au, ¢ . Ax
X i-2,]
A 1
i,j-2 At
D, . 1 - i T (4.6)
i,j-2 ﬁyul’j_é Ay
AX(.)i—é.j = (.)i.j = (.)i—l.j (4'7)
Ay(.)i.j—é = (.)i.,] - (.)i.j"l (4.8)
At At _
and ix ' by are the mesh ratio’s parallel to the x and y axes
respectively. We will consider only situations where wavespeeds are

positive (vi j > 0) , although the analysis carries through, with

simple modification, for any wave speed.

4.2 Numerical Stencils

If we consider updating the mesh point (i,j) ., then, by
consider the stencils of the three splitting techniques with Lx and
Ly defined by (4.3) and (4.4), we have an indication of which points
are influencing the updating procedure.

Diagrammatically the stencils for S(l), S(z). S(B) are as
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follows:-—

(1) ’

¢
NE)

g(27e -+ —

et

4.3 Numerical Schemes

figure C (1,ii,iii)

If we consider solving the two-dimensional linear advection

equation, then we can write down the three different split schemes

explicitly, i.e. for solving

u, +au_ + bu =0
t 4 y

a,b >0

we have

L (un) n . At . n n )

11
o
1
o
o
&l
o
o
|

(4.9)

(4.10)
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(4.11)

After a little manipulation, the three schemes can be written explicitly

as

n

s{l) (1-v ) (1w Juf |+ (1-v) v} )+ (1o )v, ],

yi,j-1

n
+ v vy ui-l.j-l

s§%’= (1) (1 )] 5+ 20 (1 ) (11 ) 0] )

+ 2 (1-p ) (11 )y 5y

g (I ) (- dul g g + e (e )] oo + ud (1),

209 0 Y, 209 0 V1 2 2 N
2 “’x“y(1 “x)ui—l.j—2 * 2“y“x(1 “y)ui—2.j—1 + L ”y ui—2.j—2

(3)_ (4. = n n n
Sp¢ = (1 Dy)ui,j oy gty g

At
where v, = a5 (4.12a)
At
Uy =b Ki (412]3)
)
and B=g - (4.13)
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4.4 Consistency and Accuracy

To show consistency for the above schemes we note that they can

be written in the form

oty =§ Cy.m Yio1. om (4.14)
1,m=0

and therefore that the difference operator L(u? j) can be written

L.M
n n+1 n
L(u] ) =uTy - 2 Cl.m Yool yom = O (4.15)
1,m=0

so that we can define the truncation error as
At T,y = L(v(x,y.t)) (4.16)

where v 1is a smooth function that is sufficiently differentiable to
allow a Taylor series expansion. The definition of consistency is that
the numerical scheme converges to the partial differential equations we
are solving as At , Ax , Ay > 0 with %&-. %;- held constant.
Expanding (4.15) in a Taylor series about the point (iAx , jAy , nAt)

yields

L.M L.M
At Ti,§ S Eu - z Cl,m u] + [At u, - z Cl,m(_ leux - mdy uy)]
1,m=0 1,m=0
2 Sl 2 2
(At) _ (1Ax) (mAy)
+ [ 5 — Uit z Cl.m 5 Yy + mleAyuxy + 5 uyy

1,m=0
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+ higher order terms . (4.17)

Hence, the definition of consistency shows that the given scheme is

consistent if

M
> Cp =1 (4.18)

L
1,m=0

We now apply the definition of consistency (4.17) to the three schemes:

1,1
1
For S( ) . z Cl.m = (l—vx)(l—vy) + (1—vx)vy + (l—vy)vx
1,m=0
+v_ v
XY
e (1—vx)(1—vy + Dy) + vx(l—vy + vy)
=1
2,2
2
For 82 i Yo = (m)® (ow)? ¢ 20m) (1w B
1,m=0

+ 21 ) (11 )® By + A Hy (1-p0) (11 )

+

204_ 2 27q_ 2 2rq_
uy(l r)® + o (1 uy) + 2uxpy(1 1)

+

2uyu§(1-uy) + uiy;

(11,)% {(1p)® + 2 (1) + p8)
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+

M (1) {4 (1) + 2(1-p)° + 2u0}

+

pe {(1mn)® + 2 (1-p ) + p2)

o 2 _ 2
(1= )™ + 2u (1-p ) + n

1
—
I
<
"
I
<

1,1
(3) .
For S : z Cl.m + vx + D

1,m=0

It is therefore clear that all three schemes are consistent.

Since the wunderlying one-dimensional solution operators are
first order accurate, it is hoped, and will indeed be shown, that the
splitting strategies are used also first order accurate.

From (4.17) we can write

L.M L.M
1
Ti.j =ac ¢ [1 - 2 Cl.m] * Ye * [ 2 1 %%-Cl m]ux
1,m=0 1,m=0 !
L.M
Ay
* [ z ™ At Cl.m]uy
1,m=0

+ higher order terms (4.19)
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and thus we can see that for first order accuracy we require that

LM

Y 1axc

1, m=0 At

I
[

I = (4.20a)

L.M

m Ay C
z At 1,m
1,m=0

I
o

(4.20b)

L.M

i.e. z 1 Cl,m = (4.21a)
1,m=0

L.M

Ym Cp.m= Yy (4.21b)
1,m=0

Applying (4.21) to the schemes we have

1,1
(1), " = (1-
st/ z lcl,m = (1 vy)vx + VyPy
1,m=0
=0
x
1,1
z mCl'm e (l—vx)vy + Dy Py
1.m=o0
=D
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2,2

E ¢, = 2ux(1-ux)(1-uy)2 + o (Topy ) (1)
1,m=0

S(2) ;

* 2 (1 )® + 2uqi(1op ) + 4l (1p)?
+ 2u xp;
= B A1 ) (11)® + p (11 ) (1)

o (1mn)® + i (1)

+ 2up (1p) + 2 pl)

(1) (1) + 2201 + 2 |

+ ux[uf, * 2 (lp ) + (l-uy)2 ]}

v, {(1n) +n}

Similarly (or by symmetry)

2,2

2 m C =0
1,m y
1,m=0
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1,1
(3) . -
& ’ 2 mC1,m = Vg
1,m=0
1,1
z lcl.m = Dy .
1,m=0

Hence we have shown that the three schemes are first order accurate.
Before showing linear stability, it is of interest to use (4.17)

to give some idea of the truncation error involved in applying each

scheme. Since the schemes are consistent and first order accurate, then

we can rewrite (4.17) as

L.M
_ At _ 1 (1Ax)* (may)?
T3, 53 Yt T BT 2 Cl.m [ 5 Ut mleAyuxy + uyy)
1,m=0
+ higher order terms. (4.22)

Now let us assume that the Taylor series expansion is written in

the form with the second derivative term u . in (4.22) replaced by

Uxx = uxx(xi + Gle,y.t) (4.23)

0<0, <1 (4.24)
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and similarly uyy and uxy are replaced by similar expressions.
Also, we note that, via equation (4.9), we can replace u., as follows:
u,, =a%u__ + 2abu__ + b%u (4.25)
tt pio'd Xy vy
and hence

L.M
a®At 1 z C (1Ax)* U
l,m

2 XX
1,m=0
L.M
+ [abAt - 2 C mleAy]U
At l,m XX
1,m=0
2 L. 2
b%At 1 mA
+ [-—2 ) Cl 1—‘1)—2 ]Uyy. (4.26)
1,m=0
Thus
vy 51 < (Al + [B] + |c|u (4.27)
where
- U , ., 1o 4.28
= e (L]l ] oD (4.28)

and
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LM
_eht, L 2
A=a? St b zcl'm(mx) (4.29)
1, m=0
LM
1
B = abt + = ) Cp p Im b by (4.29b)
1,m=0
LM
At . 1
C=b2gte gt ) C; , (my)? . (4.29¢)
1,m=0

In defining A,B,C we have assumed that the schemes are monotonicity

preserving (see Roe [28]), that is

Cl.m 2 0 Vl.m (4.30)
we therefore need
0 ¢ v, o Dy <1 (4.31)

for S(l) .

0« My uy <1 (4.32)



for S(z) and

0« v, + vy <1

for s3)

Manipulation of (4.29) leads to

Substituting the C

()

A=

B =

C=

” L.M
(4x) {v2+2120 }
b 1,m

20t
1,m=0
L.M
AxAy
1t Uk vy + z ml Cl.m}
1l,m=0
L.M

A
2At

(by)* {v; + z m® Cl,m} ;

m, l=o0

l.m for each scheme yields

2
A:MD(I'FD)
X X

B = é%él 2v v
t X

C =

2At

(Ay)’

2At

y

2
1+
vy( vy)

(4.33)

(4.34a)

(4.34b)

(4.34c)

(4.35a)

(4.35b)

(4.35c)
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2
s x5 (1) (4.36a)

B

AxAy
= 2vx vy (4.36b)

Ay)* 3

- {&y)
C = SAt vy(1+§vy) (4.36¢)

S(B) = é%%)zvx(1+vx) (4.37a)

_ Axdy
B = Tt x Yy (4.37b)

A

_ (ay)?
C = gip- v () . (4.37c¢)

If we now make the further assumption that we are using square cells

throughout the computational mesh, then we can write

At At

and therefore
v, = a\ (4.392)
vy = bA (4.39b)

Hence, in this simplified case, the truncation error for each scheme is
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e R A° {a+b + A((a+b)? + 2ab)} M (4.40)
+d 2(At)?
2) . 2 A° 3 2
5(2) . |T§’§| < sy {a+b + M(3(a+b)? + ab)} M (4.40b)
(3) . (3) A? 2
S : lri’jl < Y {a+b + N(a+b) } M. (4.40c)
This implies that
3 1 2
|T§'}| < |r§'3| < |T§.}| : (4.41)

4.5 Linear Stability

Although it was originally intended by the author to show
Fourier stability of the three schemes, the complexity of the scheme
S(z) made the algebra of such stability analysis impractical. Instead
we shall look at stability in the L norm.

Again we consider the schemes being used to solve the linear
advection equation with positive advection coefficients. Once again we

write the schemes in the form

L.M

n+l . n

i,j 4 7l.m Ui—l.j—m
1,m=0

: (4.14)



so that
n+1
g 751 <
<
<
L.M
L 2 Icl.m|
1,m=0
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< 1.

Thus, for S(l) . We require

ll—vxl|1—vy| + va||1—vy| + |vy||1—vx| + |vx[|vy| <1

i.e. (|1—vx| + lvxl)(ll—vyl + Ivyl) < 1.

Now |1-v| + |v] = 1 iff 0<v<1

since e.g. if v > 1

|1-v] + |u]

then

> 1.

(4.42)

(4.43)

(4.44)

(4.45)

(4.46)

(4.47)

(4.48)
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Hence LI vy cannot be greater than one
; (1)
i.e. for S to be stable

0« vxg 1 and 0 Uy <1, (4.49)

For S(2) (4.44) gives
2 . 2 = o 2 - _ 2
11, 1210 2+ 20w [ (10 12+ 200 [ 11p [ 110 |
. - 2 . 2 2 _ 2
vl gl [ 1w |+ e 1P 124 o 121 |

v 2l 121 |+ 2l L 1710w ]+ e 12l 12 < 1

- 2 . 2
(rmm b+ e D? (gl + D <1
hence
tmn b+ I D g |+ g <1

and by similar arguments for S(l) we have that
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We now turn our attention to S(3) ; for this scheme the stability

criterion is

0¢ Il-vx—vyl + |vx| + |vy| <1
or

|1—vx-vy| 4 l—lvxl - Ivyl

which is satisfied for

In the following section we will show how the three different strategies

compare in numerical tests via various different test problems.
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§5 Numerical Tests

The previous chapters have concentrated on various aspects of
operator splitting and we have now come to the point where we compare
and complement the analytic results with numerical tests. However,
before describing the test problems we will study how, 1in
two-dimensions, the resolution of each of the three schemes is affected
by information propagating in directions that are not aligned with the

grid.
5.1 Propagation of a shock

Since shocks are a common occurence in nonlinear gas dynamics,
we investigate how well each split scheme resolves the propagation of a
simple scalar discontinuity travelling obliquely to the grid lines.

We consider solving the Burgers’'-like equation

u, + (%2 cos 6 uz)x + (% sin @ uz)y =0 (5.1)

with initial data u(x,y,0) = u, as shown in the diagram

figure D

Initial data of shock propagation problem
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The analytic solution of this problem is that the discontinuity line
propagates at a speed s = 3 normal to itself. To test the accuracy of
the three schemes we consider advancing the solution through one
time-step and compare the results with the analytic solution in one cell
for various values of 6 .

We discretise the computational domain such that the mesh points
occur at the centre of each computational cell. Since we are only
considering the solution in one cell after one time step, we need at
most nine computational cells to accommodate the three first order
schemes described previously. Thus the (square) mesh and the initial

data are taken as follows

J =2 uo=1 u0=1 0 u =0
j=1 u0=1 uo=1 uo=1 uo=0 figure E
u =
i=0 u =1 u =1 u =1
(¢} (¢] (o]
i=0 i=1 i=2

We now project the values of the intial data onto the mesh points in the

manner
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X

Yirg *iy
1
uij = m Ju dx dy (5.2)
Vi *i

which yields the following values for u

1

03 ~ "1j J
2 0< 8¢ tan l(3)
1-2t)? -1 -1
u20=~ I—IT)- tan (é)gﬂgtan (é)
1 tan 1(%) < 8 < tan *(1)
3t 0<6 < tan 1(3)
Ugy =7 i
L1 - &8 tan (%) < 6 < tan 1(1)
w ot
22 T 2
where
t = tan 0
The exact solution for Uyo after a time At 1is given by the
projected value
[ 1t + At 1 t+ At 1 1
2 Ax ¢ Ax 2c
Uy, =3 1 -1[1-At 1 )21 At 1 At 1
. 2[ H%]? Ix S1¢ tris:
1 At 1 > 1
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where ¢ = cos 6 .

The three schemes were tested against the exact solution, the
underlying one-dimensional operator in each case being the first order
upwind scheme of Cole-Murman (see §4).

Figures 12 through 15 show the approximate solutions for Uys
using the three operator split schemes for various different values
of %i- with 8 varying between 0° and 45°.

Figures 16 through 19 show the absolute errors incurred by the
three schemes and figures 20 through 23 show the relative error for the
three schemes.

We see from these figures that the angle of the shock affects
the error greatly and that for angles 6 > 20° the error in one
time-step is considerable. It is observable in these results that the
scheme S(2) always does worse than either of the other two schemes.
More interestingly, though, is the way in which S(l) behaves in
comparison to S(B) : for an angle of less than 22° (approximately) S(l)
performs marginally better than S(S) but for larger angles S(s) performs
better. We note that for %i- = 1.0 the C.F.L. condition for S(B) is

violated.

We now describe the full test problems.

5.2 Two Advection problems

Consider solving the advection equation

u +u +u =0 (5.3)
Xy
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using two sets of initial data. The first set consists of a smooth

function defined on [0,1] x [0,1] of the following form

4 cos® [5mR R 0.2
uo(x,y) = 2
0 R > 0.2

where R? = (x - 0.25)% + (y - 0.25)2 |

figure F

uo = 4 cos?(57R
2

The second set of intial data is a discontinuous ’box’ function

on [0,1] x [0,1] defined as follows

(.5) 4 0.004 < x,y £ 0.46
uo X,y) =

0 elsewhere
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y (1.1)
uo =0
figgre G
u =4
o
0 » X

5.3 Two Riemann Problems

Recent work has been directed towards obtaining analytic
solutions of simple scalar two-dimensional Riemann problems (see for
example Klingenberg [22], Lindquist [23]). In the sense used here, a

two-dimensional Riemann problem is a scalar non-linear problem of the

form

u, + f(u)x + g(u)y =0 (5.4)

with initial data

a x>0, y>0
b x>0, y<O
u (x.y) = 5
c x<0,y>0
[ d x<0,y<O
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where a,b,c,d are constants.

Analytic entropy satisfying solutions are now available for
certain special cases, e.g. when f =g and a,b,c,d satisfy certain
criteria [22],[23]. It is from this set of solved two-dimensional
Riemann problems that we draw the next two test problems, i.e. we

consider
u, + (éuz)x + (éuz)y =0

with the two sets of inital data:

-1 x,y >0
1
5 y>0, x<0O0
uo(x,)=*
0 y<0, x>0
| 1 x,y 0
(ii)
-1
-5 x,y >0
1
5 y>0,x<0
u (x.y) =1
= 0 y<0, x>0
[ 1 x,y <0

These two problems are solved on the region [- %n%ﬂ % = %u%ﬂ .

Having described the test problems we now reveal the analytic solution.
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5.4 Analytic Solutions

The four preceding test problems have been chosen for their
relative simplicity and also because analytic solutions exist for
comparison with the numerical tests. The analytic solution to the

advection problems at time T 1is given by

u(x,y,T) = uo(x—T, y-T) (5.5)

i.e. the initial data is advected without deformation, rotation or
diffusion along a line parallel to the curve x =1y .

Analytic solutions of the Riemann problems are more complex than
the advection problems. We can apply the Rankine-Hugoniot jump
condition along the shock interfaces to yield part of the solution,
although it is obvious that this does not yield the full solution. The
full solutions to the two Riemann problems may best be shown
pictorially. For the first Riemann problem the exact solution is as in

the diagram

S=2
—
=3 1 0.5
-1.0
Analytic solution of first
Riemann problem
shocks 1 s=3
1.0 i
0.0 Siligure) Il
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where s is the shock speed
In the above figure H, let A and B denote the intersection
points of the three shock interfaces (initially the

points A and B are at the origin). Then at time T

(5.9

-3

=
I

and the secondary shock (not present in the initial data) is along the
curve joining A0 and OB where O is the origin.

For the second Riemann problem, the exact solution is as in

Figure I.
S=
s=2T 0.5 |A
- 0.5
Analytic solution of second
0 Riemann problem
10 .B l S=2,
0.0 figure 1

ﬁ
s=3

Again, in figure I, we let A and B be the points of the

corners of the shocks. Then, at time T
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P
-

and the secondary shock lies along the line joining A and B ,

6.5 Boundaries, Errors and other Numerical Considerations

The boundary conditions used were made as simple as possible so
as not to detract from the purpose of the analysis. For the advection
equation ‘periodic’ boundary conditions were used, i.e. the actual
computational domain is considered as the central part of a much bigger
domain that is divided into equal sized sub-domains. Exactly the same
process is assumed to be occuring in each sub-domain so that if data
moves out of the central sub-domain, then exactly the same data moves
into the central sub-domain from an adjacent sub-domain (see figure J

below).

“IN [ /central sub domain

% _){‘ >,3_/' Periodic boundaries

data moving over boundaries

figure J
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For the two Riemann problems we assume tranparent boundary
conditions normal to the boundaries. Their effect on the interior
solution may be monitored by assuming that any resulting disturbances
propagate into the interior at a finite known speed.

Turning our attention now to calculation of errors, we look at
five simple types of error estimate. The three simplest are defined as

follows

(1) error in the 1  norm defined as

e, = Max {(u’i1 N (5.6)
Vi, ] !
(ii) error in the 11 norm
e, = z |uT(iAx.jAy) - uﬁ'j| Ax Ay (5.7)
Vi, j

(iii) error in the 12 norm

ey = V/E (uT(iAx,jAy) - uN

)2 bx Ay (5.8)
Vi, j 1.3

where uT(iAx.jAy) is the exact solution at time T = NAt and grid
position (x,y) = (ilx,jdy) .

We note that the first error estimate is only useful for the
advection problems where the maximum height of exact solution is 4.

We also have two other methods of monitoring the numerical
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solution, namely the energy error and a two dimensional TV (q.v.

section 3).

We can look at the loss of "energy" within the system (5.4):

i.e. multiplying
u o+ f(u)x + g(u)y =0 (5.9)

by u leads to

a(éuz)
w, = —o = = u[f(u)x + g(u)y] .

Integrating over the domain, we find that

t t
o | futecay, + e Jex ay

Jéuz dx dy
o o

Q:IQJ
ot

is constant in time. Thus we define the "energy'" error to be

t N
eE(u) B Jé u? dx dy | + At 2 Jﬁn[fx + gy] dx dy (5.10)
° n=1
which should not grow with t . A discrete approximation eg(un) to

(5.10) can be constructed in  which fx,gy,un, approximations
to f(u)x, g(u)y and u(x,y,t) are given by the approximate solution
and the integration in (5.10) is carried out numerically. The initial

. n . .
energy in the error u-u  being 2zero, a measure of the error is
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obtained by calculating the growth of eg (un-u).

As well as looking at the loss of energy within the numerical
computation, we can also look at the two~dimensional ‘total variation’
(TV) in the sense of Goodman and Leveque [24]. In this paper the TV is

defined as the direct extension from one dimension into two dimensions:
TV(u) = J luxl + |uy| dx dy (5.11)

(c.f. section 3) with discrete analogue being

TV(un) = 2 {AYIuj+1.k - uj.kl + Axluj.k+1 - uj.kl} X (5.12)
Vi.n

It is worth noting that, in studying the first of the two
Riemann problems presented earlier, the exact solution is
not TV bounded in the above sense and therefore the above TV norm is
misleading when applied to certain test problems for example, the first
of the two Riemann problems has an initial TV of 1.99 and at time
t =0.5 the TV 1is about 3 . However, for the advection problems

(5.12) proves to be a useful monitor.

All the schemes applied to the test problems described above

were carried out on a 101 x 101 grid with

Ax = Ay = 0.01
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and

At = 0.0025 .

5.6 A Further Test Problem

The motivation behind the work of this report is to investigate
genuinely two-dimensional algorithms for non-linear gas dynamics and for
this reason we include the following additional test problem.

This test problem is a cylindrically symmetric extension to the
shocktube problem of Sod [25] and involves solving a non-linear system
of hyperbolic p.d.e’s. The problem represents a fairly mild shock
problem in the field of computational fluid dynamics.

Here we are dealing with a two-dimensional gas lying, initially

at rest, in a square region. The region is divided by a circular
membrane of radius R . There are finite jumps in density and pressure
across the membrane. At time t =0, the membrane is removed (or
burst). A shockwave and contact form and move away from the origin

whilst an expansion moves towards the origin.

Reflection boundary conditions were implemented along the four
boundaries. However, the solution is not allowed to progress too far,
so that the boundaries have no effect on the solution.

The equations of motion governing the flow are the
two-dimensional Euler equations (see §3). The underlying
one-dimensional solution operator is the linearised approximate Riemann
solver of Roe [4] (see also Roe and Pike [16], Barley [20]) with an

entropy fix. The second order scheme 1is as above, but with the
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"superbee’ limiter added into the scheme. [13].

The initial data is

k)
1
N
o

u=v=0pr (R

u=v=0 pr >R

where 1 = v/x2 +y® and R =0.5. The solution domain is

[-1,1] x [-1,1] with

Ay = Ax = 0.02

At = 0.003 .
high pressure and density
membrane
2}& low pressure and density
e
figure K

Initial data for gas dynamic test problem.

Results of the tests described here are given in the following section.
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86  Results

The three splitting strategies S(l).S(2).S(3). described in
Section 4 were applied to the five test problems described in the
previous section. The underlying one-dimensional operator for the three
splitting strategies in the scalar case is the Enquist-Osher scheme [15]
which has been extended to a high resolution scheme by the employment of
the 'superbee’ limiter (see Sweby [13]). For the gas dynamic problem
the underlying one-dimensional operator is Roe’s scheme, again being
extended to second order by use of the ’superbee’ limiter.

For all the scalar test problems the following ratio's were used

e ﬁ—; - 0.25 where At = 0.0025
so that the maximum value of the CFL number is less than 0.5 .

Fach solution was advanced to a final time of T = 0.5 (200
time steps) and graphical and diagnostic output was produced at this
time.

Table 1 shows the values of the various errors incurred by the
three schemes applied to the scalar test problems and first and second
order results can be compared. Table 2 shows the initial and final TV
of the exact solutions to the test problems. More enlightening are the
graphs (figures 24 through 47) which give more of an idea about how the

schemes compare with each other in relation to various test problems.
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Before discussing the results, it is worthwhile pointing out
that the label on each graph (°'S1CBAl’' on figure 24 for example) is an
indication to the problem being solved. The first two characters,

S followed by a digit, refer to the splitting strategy being applied
i.e.

s1 = s(1) | s2 = s(2) g3 = s(3)

The final character (always a digit) refers to the order of the

underlying one-dimensional solution operator i.e.

—
n

= first order

no
1l

= second order

The characters appearing before the order reference and after
the splitting reference refer to the test problem, the key for this

being

CBA = advection of a cosine blip
BA = advection of a box

RP1

first Riemann problem

RP2 = second Riemann problem

We conclude this section with a discussion of the results.

The two most noticeable features present in the solution of the
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advection problems are the 'squaring' of data in the second order
results and the stretching of data perpendicular to the direction of
motion. This second feature is present in all the solutions but more
obvious in the results for S(B) and is due to the data being allowed
to travel in two directions only, i.e. the data naturally tries to
allign with the grid. The reason for S(B) suffering from this
affliction more than S(l) or S(2) is that S(B) fails to compensate
for the cross-terms (uxy) in the Taylor-expansion for the scheme.

The squaring of the data in the second order results is due to
grid alignment i.e. since the schemes are applied on a square grid, the
data only travel in the direction that the underlying one-dimensional
scheme is being applied in and since the scheme is only applied in two
directions, data will tend to align with these two prefered directions.
This is more apparent in the second order results since the stencil of
the underlying one-dimensional operator lies over more grid points for
the second order scheme than for the first order scheme and so the split
scheme will produce more one-dimensional effects.

The results for the scalar Riemann problems are very good for
all of the schemes although this is probably due to the discontinuities
being initially aligned with the grid.

Despite the abovementioned grid effects, we can see that for the
advection problems S(l) produces marginally better results than
S(2) and S(B) , however, S(B) produces the best results for the

Riemann problems.

The results for the gas dynamic problem show the same effects as
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in the scalar test problem, i.e. there is slight squaring of data due to
the grid effects although they are not as noticeable, especially in the
results for S(B) which are comparable to the results for S(l) in

both the first order and second order tests.

Table 2 : Initial and final TV for the Scalar Test Problems
<22: o > _nitial and rinal 1V ror the Scalar Test Problems
(Exact Solutions)

Problem Blip Advection| Box Advection| Riemann 1| Riemann 2

Initial TV 3.2 6.88 1.99 1.5

Final TV 3.2 6.88 3.065 2.000
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87 Conclusion

Although the failure of S(B) to perform as well as hoped would
at first seem to suggest that we cannot consider S(3) if we are going
to apply operator splitting, we can take heart in the fact that is easy
to take S(B) out of the splitting framework and use it as a basis for
a genuinely two-dimensional scheme. It can be seen that the
computational time used by S(B) is far less than that used by the
other two methods, and so it is hoped that, if one is going to consider
solving hyperbolic conservation laws in two-dimensions, then one may
consider using S(B) with additional terms to handle the cross
derivative terms in the Taylor expansion for the scheme.

By considering the stencils for S(l) and S(3) we can see
that both of these schemes could be taken out of the operator splitting
framework and considered as bases for genuinely two-dimensional schemes
(see Priestley [26]).

We sum up by stating the obvious need for genuinely
two-dimensional schemes (based on S(B) . perhaps) and hopefully the
next few years may see the development of two-dimensional schemes that
have all the necessary features (such as entropy satisfaction and TVD)

that are the hallmark of high resolution schemes in one-dimension.
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