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Abstract

Two finite difference schemes for the solution of the Euler
equations of gas flow are compared. One is based on the use of
pseudo-characteristic variables and is used in the Cas Industry, and the
other is based on an approximate (linearized) Riemann solver. The
schemes are contrasted theoretically and also applied to a number of

test problems for comparison of the results.
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1. Introduction

This report presents two schemes for the solution of the equations
of gas flow in a pipe. In a network of gas pipes, it is often necessary
to be able to model the behaviour of the dynamics. Transient behaviour
in a gas network can have a typical timescale of hours, associated with
the fluctuations in the demand for gas on a daily basis, and can also
have a timescale of minutes or seconds when associated with the
operation of equipment in the gas network, or the failure of some
component. The schemes described here attempt to model well this rapid
transient behaviour.

Attempts to model gas flow in the networks (see [1]) are based on
the solution of the equations of gas flow in a single pipe. Chapter 2
describes the equations chosen to model this flow, and the
simplifications and assumptions made. The two schemes used are also
outlined in that chapter, but given in detail in chapter 3. One of the
schemes is a recent scheme by Roe, and the other is a scheme that is
used in the gas industry. The schemes' properties and a comparison
between the two schemes are investigated at the end of chapter 3.
Chapter 4 details the test cases and gives results, and chapter 5 draws

conclusions and summarizes the findings.



2. Statement of the problem

The Euler Equations

The equations governing the flow of gas in a pipeline under the
assumptions that the gas is inviscid but compressible are the Euler
equations [1]. Under the further assumptions that the flow is
one-dimensional, irrotational and homogeneous, and that the pipeline is

straight, level, and has a constant circular cross—-section, those

equations become:

g%-+ g; (pu) = 0 (2.1)
g—t(pu) + g;(pﬂmz) = - ﬁ%lﬂ (2.2)
S+ & (uern)) = @ (2.3)

where p,u,e,p are, respectively, the density, velocity, total energy
and pressure of the gas. The friction term on the right-hand side of
(2.3) involves the Fanning friction factor f [1] and the pipe diameter
d . The heat per unit length into the pipe is given by Q .

Equations (2.1)-(2.3) are not sufficient to find the four unknown
quantities p,u,e,p; a further equation relating these must be
provided. The equation of state for the gas provides this relationship.
Equation (2.4) is a version of the ideal gas equation with a factor Z

providing variable compressibility to allow some departure from the

ideal (see[1]).

ZRT
P=0 (2.4)



The following form (written for an ideal gas) can also be used:

2

1
e=i{L_T+§pu . (2.5)
where =~ = Cp/Cv , the ratio of specific heats for the gas.
The set of equations (2.1)-(2.3), taken with an equation of state
such as (2.4) or (2.5), will be called the full system of Euler

equations, or the 3-system, with the appropriate assumption of equation

of state.

The Adiabatic Approximation

The assumption is often made., especially for rapid transients where
the dynamic effects are on a shorter timescale than heat transfer
effects, that the effective heat input 2 = 0 . In this case, equation
(2.3) and the equation of state are replaced by an equation of state for

adiabatic conditions, or an adiabatic law. For ideal gases, this is
1/
p=k(s)p " (2.6)

where k(s) 1is a function of the entropy, s . If friction is

negligible, the isentropic assumption holds, i.e.
p = kp (2.7)

where k is constant. Equation (2.7) is often taken even when friction

is present.

The set of equations (2.1), (2.2) with (2.7) or (2.6) will be

called the Euler equations under the adiabatic or isentropic



assumptions, or the 2-system, for an ideal (real) gas.

The Isothermal Approximation
For slow transients, the flow may be assumed isothermal, as heat
transfer effects may be taken to even out the temperature distribution

on a shorter timescale than the dynamic effects. In this case,

equations (2.1) & (2.2) can be taken along with the following equation

of state (for an ideal gas)

p =k(T)p . (2.8)

where k(T) is a function of the temperature, T . This set is also
described as the 2-system, under the isothermal assumption. The partial

differential equations are the same, and the equation of state differs

only in prescribed values of constants.

The Schemes Used

Two numerical schemes are used here for computing solutions to the

gas flow equations.

The Directional Difference Scheme [2] stems from a method of
characteristics approach, and uses pseudo-characteristic variables,
denoted by a and B . The 2-system equations are put into a form of 2
PDEs, each of which is written largely in terms of derivatives of a

single variable but involves derivatives of the other:

du_  da, _ op
9t ~ %11 3x " %12 3x * 51

9B 9B Ga
3t = %1 3x " C2 3t Sy



where the cij' S;. i,j = 1,2 are functions of the conserved variables
not involving derivatives.

Each equation is derived largely from one of the two characteristic
equations and is discretized by upwinding in the direction of the
respective characteristics. Difficulties with the scheme arise from the
incompleteness of the decoupling.

Roe’s scheme [3],[4] can be applied to either the 2-system or the
3-system (indeed. to any system of conservation laws) and seeks locally
linear solutions to the equation between nodes. The scheme is an

approximate Riemann solver in that it solves approximately the Riemann

problem
u +f =h
u X {x
u(x.0)=u=_L &
u X > X
o

within each cell (between nodes). Here, u = (p,pu)T is the vector of
conserved variables, and Y up the initial values to the left and
right of x = X, - The vectors f and h are the vectors of flux
quantities and source terms respectively. The first of these equations
can be written in terms of the Jacobian matrix A = 8f/8u :

u + Au_ =h

_t — —

The matrix system can be analysed into a system of eigenvectors and

eigenvalues associated with each of the wave disturbances of the

physical system. An approximation, A ., to the matrix A can be found



as a linear function of the two initial states : A = A(EL'ER) . The
eigenvectors and eigenvalues of this matrix are used to find the
approximate disturbances associated with each wave, then each wave is
upwinded separately.

The Directional Difference and Roe's schemes, each with its
refinements, are detailed in the next chapter and a more thorough

comparison of the two schemes is given.



3. The Two Schemes

In this chapter, both the Directional Difference Scheme and Roe's
scheme as applied to the 2-system are derived, and in the final section

the schemes are analysed for comparison of their approaches and

features.

3.1. The Directional Difference Scheme

The Euler 2-system equations of mass conservation and momentum
conservation for gas flow in one dimension (2.1) and (2.2), with

friction, can be written (not in conservation form) [2]:

d a
5%+ % {(pu) =0 (3.1a)
-2fpu |u|
u, . 8u, 8 _
Port Mgt —a— - (3.1b)

The adiabatic law relating pressure and density for an ideal gas is
taken to replace the energy equation and the ideal equation of state.

Although friction is present, the isentropic form of this law is

assumed:

b = kp (2.7)

Since p = p(p) . the derivatives take the form

and
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But the adiabatic sound speed is (see [1])

¢ = E?q - & (3.2)

C pt 3 pt (333)

c%p_ = p (3.3b)

Using (3.3a) in (3.1), the Euler equations can be written in matrix

el b Tl L e e
— + e + = .
ot u = u . u 2fu|u|/d ~

These can be converted into pseudo-characteristic form by

form:

pre-multiplication by the matrix

which is the matrix of right eigenvectors of the Jacobian matrix (see

section 3.3). This gives the equations

(pt+pcut) + (u+c)(px+pcux) + pc(2fululzd) = 0 (3.7a)

(pt—pcut) + (u—c)(px—pcux) - pc(2fulu|sd) =0 . (3.7b)
In the scheme the variables «a,B are defined as

a = p + pcu (3.8a)

=)
]

ey (3.8b)
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The equations (3.7) can be reworked (see Appendix A) into forms

relating a, to ax’Bx' and Bt to ax'Bx . Each equation has cross

terms involved, so they are not decoupled. These equations are (A.8):

a, = -—(u+c) + Efilill?] a + Eilgll [1 + ELZ:l)jﬁ -F (3.9a)

8c 4c |'x

- L—(u+c) ) Eié%ill?] ﬁx . U(7£1) [1 _ u(;:l)jax+ B (3.9b)

where

2fpcu |u|
F = —_— (3.10)

The directional difference scheme discretizes the space derivative
terms in each of (3.9) according to the original characteristic equation
from which it is derived. Thus, for (3.9a), which is derived from
(3.7a), the characteristic wave travels forward and therefore backward
differences are used. For (3.9b), derived from the backward travelling
characteristic equation (3.7b), forward differences are used.

For example, with first order differences, equation (3.9a) is used

with the following approximations:

-

n+l n

a, = (o, © - aj)/At
n n

a, = (aj = aj—l)/At ’ (3.11a)
n n

B, = (B} - B}_j)/be

i
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and equation (3.9b) is used with the approximations:

IS

B~ (g% - VY

t J
n n
a o (aj+1 = aj)/At (3.11b)
n n

o

with all other terms evaluated at time level n , node J .

The solution variables are recovered from o« and B at each point by

inverting (3.8):

=]
I

%(a+B) (3.12a)

j
E

e A (3.12b)

Note that in (3.12b), pc is a function of p so the inversion is

nonlinear.

Boundary Conditions

Let the pipe be modelled by N nodes numbered j = 1...N, at
positions spaced regularly with spacing Ax , where (N-1)Ax 1is the
length of the pipe.

Then use of (3.1la) enables a to be evaluated at the new time

level at nodes 2...N, and (3.11b) enables B to be evaluated at nodes

1...N-1:

node no. 1 2 3 . . ) N-2 N-1 N
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Therefore the boundary condition at the inlet (node 1) must specify
a , and that the outlet (node N), 8 . The values of [ at the inlet
and a at the outlet are given by the difference scheme.

If p 1is specified at either end, then u can be found from

whichever form of (3.12b) is appropriate:

u = ggg- at inlet, as B 1is known here, or
a— :
u = EEE- at outlet, as a 1is known here.

(N.B. pc is a function of p ).

If u 1is specified at either end, the appropriate form of (3.12b)

has to be iterated to find p :

(pC)J- = pC(pj)

P+l B + (PC)ju at inlet, as B is known here, or

pj+1 a - (pc)ju at outlet, as a 1is known here.

The first iterate, p,. can be taken as f3 or a (depending on

whether the condition is at the inlet or outlet, respectively).

Second Order

Higher order approximations to the derivatives may be used in place
of (3.11a) and (3.11b). Approximations that are one-sided can be used

to preserve the directional differencing. Where second order
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differences are shown in the results, the following approximations have

been made (see [2]).

Backward spatial differences (replacing (3.11a))

n, = (3ni - 4”1-1 + ni_2)/2Ax (3.13a)

Forward spatial differences (replacing 3.11b))

N, = - (3ni ~ 4ni+1 + ni+2)/2Ax (3.13b)

where m 1is either of @ or B . The approximations to the time
derivatives remain the same. First order differences are used at nodes

next to the boundary.
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3.2. Roe's Scheme

The scheme outlined here is based on the approach by Roe in [3] &
[4]. Applied to the reduced set of Euler equations subject to the
adiabatic approximation it is very similar to the scheme used by
Glaister for the shallow water equation (see [6],[7]).

The Euler equations of mass conservation and momentum conservation

for gas flow in one dimension, with friction, (2.1),(2.2) & (2.7), can

be written:

u +f =h (3.14)
where
u = (p.pu)T (3.15)
£(w) = (pu,p+(pu)2/p)" (3.16)
h = (0. —2fpulu|/d)’ (3.17)

The Jacobian matrix A = df(u)/du , its eigenvalues Ai and

corresponding right eigenvectors r,

, 1 =1,2, are found to be

0 1
A= (3.18)
c?-u? 2u
Al =u+c (3.19a)
A2 =u-c (3.19b)

"
Il

1
£ Lm] (3.20a)
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1
Iy = {u_c] (3.20b)
where
2z _ |Gp| _
c® = Lﬁp] =5 (3.21)

is the adiabatic sound speed squared from equation (3.2).

The Approximate Riemann Problem

The Riemann problem is the following: given the system of
equations governing the flow (3.14), suppose that up to time t = 0 ,

the following states are maintained by a membrane at x = O :

T
g = (pp.ppy) RS0

T
Y (pR.pRuR) x>0
which are constant states. Suppose further that the membrane is removed
at t =0 ; then the problem is to find the resulting fluid flow.
The approximate Riemann solver is constructed by solving problems

of the above type approximately in the region

[xL.xR] b (tn’tn+1) :

This cell, between two grid points with abscissae X and Xp has

initial data (at ¢t = tn)

u = u(x .t ) x < x; + Ax/2
u={r n L (3.22)

o= EIXR’tn) X > Xp = Ax/2
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where Ax 1is the spacing between X and Xp -

Equation (3.14) can be written

u + AWy =h.

It is possible [3] to find a locally linear approximation to A

called A » in the cell, such that the following hold:

Au = 3 Zk Ek (3.23)
Af =3 @ N Ty (3.24)

for some numbers @, . where A(.) = (.)R = (.)L ., and Ak' Iy
(k = 1,2) are the eigenvalues and eigenvectors of the approximate
matrix A . This provides a unique decomposition of the flux difference

Af into the eigenvectors of A (provided that they are independent).

The update at tn+1 is made by following each component of Af to the

right or left, according as the sign of the associated eigenvalue is

positive or negative .

To obtain the approximate Jacobian matrix X(EL'ER) , or
equivalently, the Xk and Ek . and to obtain the coefficients 5k }
the expressions (3.23), (3.24) are first satisfied for states W . up
which are close to each other. Then average values in the cell are

sought to make the expressions correct for arbitrary states.

Decomposition for Close States

. T T
Consider two states W = (pL'pLuL) . Up = (pR,pRuR) ., both close
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to an average state u = (p.pu)T - It is required to satisfy (3.23) and

(3.24) to within O(A?) . Here we take A = A(u) .

require

2

b= e,
k=1
2

M=) Ay

where the r

(3.15) & (3.16), we have to find «

Ap = ay + g
A(pu) = al(u+c) + a2(u—c)
A(pu) = al(u+c) + a2(u—c)

A(p+pu?) = al(u+c)2 + a2(u—c)2 .

Equation (3.26a) is the same as (3.25b).

for a.a, gives

R
1]

1
1 = #8p + 5= (A(pu) - udp)

1
Abp - 55 (8(pu) - ubp)

1 and a

Specifically, we

(3.25)

(3.26)

r, and the Ak are given by (3.19) & (3.20). Then, from

that satisfy

(3.25a)

(3.25b)

(3.26a)

(3.26b)

Solving (3.25a) and (3.25b)

(3.27a)

(3.27b)
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To within 0(A%),

Ap = c3Ap

A(pu®) = u®Ap + 2pudu
Hence, to first order,

A(p+pu?) = c3Ap + uZAp + 2pudu
and therefore, also to first order,

(a1 + a2)(u2+cz) + (al—a2)2uc

(u®+c?)Ap + 2u(A(pu) - uhp)

c?Ap + u®Ap + 2pulu

A(p+pu2) .

So, equation (3.26b) is satisfied by the choice of a .y given in
(3.27), and therefore, all of the equations (3.25) & (3.26), are

satisfied to within 0(A®)

Decomposition for general u. ,u
- £ LR

It is now required to find an average X(EL

'ER) such that (3.23)

and (3.24) hold for arbitrary states Y .Up . In fact an average state
is sought such that A = A(E) . Specifically the relations

1=K

(3.28)

*ﬁ?

5
b =) &
k=1



are required to be satisfied by some i

>
]
e

R
]
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Uhp + Lo (A(pu) - Tp)

2c

Gy = %hp + L= (A(pu) - ukp)

2¢

A() . ()R - ()L

and ¢ = S(?.l_‘) in
Equations (3

(3.31), in full:

1]
R

Ap

A(pu)

A(pu)

A(p+pu?) = EI(G + '(\:l)z + &2(’{1‘ = '(‘:’)2 .

some manner.

.28) and (3.29) are, with the help of (3.30) and

al(u +c) + a2(u - c)

&1(3 +c) + 32(3 - <)

(;,SG)T where

(3.29)

(3.30)

(3.31)

(3.32a)

(3.32b)

(3.33a)

(3.33b)

(3.33c)

(3.33d)
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Equations (3.33b) and (3.33c), which are identical, and equation
(3.33a), are automatically satisfied by any averages, where the a's

are given by (3.32). Equation (3.33d) gives (by 3.32)

bp + B(pu*) = (ar+ ap)(u™+ %) + 2uc (ay- o)
= (u%+ c2)Ap + 20(A(pu) - uhAp)
or
u?Ap - 2uA(pu) + A(pu®) = cZAp - Ap . (3.34)

Values for u and ¢ to satisfy this equation can be found by

setting both sides to zero. Thus

= - (3.35)

~

and the appropriate solution of the remaining quadratic for u in

(3.34) is

u = A(pu) - ¢(A£pu))‘ ~ ApA(pu*) (3.36)
p

which reduces to

E = A(pu) - VpRpL Au
Ap
and
! %
~ PpUg T PLU
w- R R L (3.37)

PR * PL
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Note that:
A(pu) - GAp = VpRpL Au

and that equations (3.32) can be simplified to

a) = %hp + % & pu (3.38a)
[
a, = #bp - % £ Au (3.38b)
C
if E is defined as
’5 = VpRPL . (339)

In the case where Ap = 0 , ¢? can not be defined using (3.35).

Instead, it is defined as

__R (3.40)

|

as p=p =P . P= P =Pg - Note that the right hand side of (3.34)
is identically zero and so the result for u is not affected.

In summary, we have found that for the problem (3.22), the

‘equations
bu=3arT, (3.22)

Af =3 @ X T (3.23)



hold, where
. ute (3.41)
&9 = (1, u £ ¢) (3.42)
@ o =%hp % E hu (3.43)
’ c
AC) = (g - ()
% 1
Pp U, + p, U
~ FPRER T PL YL
u PR (3.44)
PR PL
~ %
P = (PgpL) (3.45)
Ap/hp Ap # 0
c? = ; (3.46)
'rpR/pR Ap =0

Source term

The source term is similarly decomposed onto the eigenvectors:

~

Bkzk : (3.47)

|=
o ]
N~

1

In this case, with h given as per (3.17), we seek 51 and 52 such

that

0=+, (3.48)
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F = -2fpuju|/d = EI(E+Z) + EZ(G—E)

= (El+ 52)3 + (El+ 52)8 (3.49)

therefore
F/c = El— 52 . by (3.48)

and

~ ~ _F
31=-52=—g. (3.50)

N

The term F can be any average value for the cell. As F = F(uw) .
convenient choices are F = lA(F(u_L) + F(ER)) and F = F(u) , where
E S (;,B’E)T is given by (3.44) and (3.45). Here the choice F = F(G_)

is taken.

The Scheme

Referring to Figure 1, the values of u at each point (idx) at

time level n are assumed to define a piecewise constant state

u = 22 x e((1-%)Ax, (i+4)Ax) , t = I (3.51)
- Al oLt ALy
AL;—-L}_K\ / L;-x{- l—_w\,’_ \ | /’ 1
| \ l |
| R | W i
- i
| Ao ¢ | = |
n |
| ' ue . |
| I B |
| 1 1 | | !
T | I
Nobeg - \ P+
CeLL (i=t,0) (v i+
or 14
=k i+

Fig. 1.



At each node, the equation (3.14) is discretized in the following way:
The decomposition of the flux differences Af 1is performed in each cell

(i.j+1) ., giving these differences as the sum of two terms

2
o= ) & K
k=1
Xk<o
2
+ ~ v A
i =) & R E
k=1
Xk<o.

If these flux differences in the cell (i.i+l1) are denoted by the

. - . + -
subscript 1 + % , i.e. A£d+% , A£i+% , A£d+% , then the flux

contribution to the node i is that travelling rightwards from the cell

(i-1,i) and leftwards from the cell (i,i+1) , that is, Ag;_% and

A£;+% . The source term at each node can be produced similarly, so the

update is given by

+ ==
T Y (AL + AL ) T,

At =" Ax i-% ' —i+4%

or

n+1 n At + - + -
=4y - oax (AE v AE )+ At(h; ,+ b

uy ug ) (3.52)
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Boundary terms

Taking the boundary to be at node 1, say, and with reference to
figure 2, it can be seen that the boundary node receives a contribution
only from cell (1,2) from the left-moving eigenvector. To balance this,
a wave from outside the computational region is assumed to contribute to
node 1 also.

The wave is assumed to be proportional to the right eigenvector of
the Jacobian matrix, as are the flux differences and source terms of
all rightward travelling waves in all other cells. The right
eigenvector can be evaluated at node 1 directly or over the cell (0,1)
by the decomposition of equations (3.42), (3.44) and (3.46) where the
value of u at node O 1is obtained by some extrapolation. Here it is
evaluated at node 1 directly.

The steps in the calculation of the new boundary values are: first,
the contributions from the flux and source terms from the cell (1,2) are
added to EE . giving an intermediate value at the boundary, which we

%
denote by u, - If the boudary condition to be satisfied is at time

level n + 1

y(i™ = o (3.53)

then (3.53) has to be solved along with

n+l % ~
21 = u) + §£1 (3.54)

where El is the right eigenvector of the approximate Jacobian, and §

is an unknown determining the 'strength’ of the incoming wave.
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Equation (3.54) then gives the value of g§+1 at the new time level.

The system (3.53) and (3.54) may or may not require iteration, depending

on the form of the boundary condition (3.53).

BOouNDARY

(exTeRioR) L~ Te RioR

I
~ >

—re=

NODE (o) [

Fig. 2.

At the right hand boundary the system to be solved is

2@ - o (3.55)
= uy (3.56)

where (3.55) is the boundary condition, N 1is the boundary node, uy

=N
the intermediate value, and Eg the leftward travelling eigenvector of

some approximate Jacobian and 7 is an unknown again determining the

'strength’ of the incoming wave. Equation (3.56) gives the new boundary

lue un+1
va Uy .

Second Order

For second order schemes, the method of flux limiters can be
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applied. For a discussion and details of these, the reader is referred
to [13]. The limiters used here are the minmod and superbee limiters.

'No Limiter’ in the results refers to the basic first—-order scheme.

An entropy correction

The Roe's scheme can in rare situations give solutions to the
conservation equations that are non-physical, i.e. entropy violating. A
modification is used here to ensure that the solutions do not violate

the entropy condition. For discussion and details see [4].[8].
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3.3. Comparison of Schemes

The Euler equations (2.1)-(2.3) can be written in a variety of
ways. The form used as the basis for a particular numerical scheme can
to some extent determine the properties of that scheme. This section
attempts to show how the features of the two schemes discussed in this
report arise from the form of the Euler equations chosen as a basis for
each scheme, and compares the schemes. For a general discussion and
basic ideas, see [5].

The Euler equations are derived from physical conservation laws,

and the following form (ignoring friction) is called the conservative

form:

Et + i(li)x = 9 2 (357)

Here, the components of u are the conserved variables and the
components of f are the flux quantities arising from the physical law.
One desirable property of a numerical scheme is that it mimics an
integrated form of (3.57) over a control volume, that is, the total
amount of (each of) the conserved variables within the computational
region increases at each time step by the net numerical flux into the
region in that time step. Such a scheme is called conservative, and has

the additional properties that for shocks, the shock speeds and

positions will be correct.

By writing

A = 3f/8u
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the equation (3.57) can be transformed into matrix form:

u_ + Au_ =0 . (3.58)
ﬂ —

The Jacobian matrix A has left eigenvectors -l—i , right eigenvectors

r, o and eigenvalues )\i that satisfy

Ali = ?\ill (3.59)
_l_1 = 7\i_1__1 (3.60)
For the Euler equations, the P\i are distinct. The left
eigenvectors can be normalized such that
0 i#£]
li ¢« T, =<Si.= ; (3.61)
J J 1 i=3
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and the diagonal matrix of eigenvalues

A = diag (A

L Ay)

where N is the number of equations in (3.57). With these definitions

and equations (3.59)-(3.61), the following hold:

LA = AL ]
AR = RA
IR =1 L (3.62)

(I 1is the identity matrix).

Roe's Scheme

Roe’'s Scheme requires that a discrete form of the relation

(cf. (3.57),(3.58)) is satisfied in each cell (between nodes) where the
are discretized as (.)x = A(.)/0x , and
A() = (.)R— (.)L . This is done by finding an approximation to the

Jacobian A, i.e. A , such that

6f = Abu . (3.63)
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Denoting the eigenvalues and eigenvectors of X by Xi'i; and I,

we can find the projections &i of Au onto the right eigenvectors Ei

via

b=)a, T, (3.64)

since

1l
0~
Q2
[
A
Cu

i.e. the projection strengths are

a, = 1,.0u (3.65)

(3.66)

This equation gives the flux difference in the cell as being split into
components belonging to each wave motion (characteristic direction),

enabling upwinding to be carried out. Therefore updating the solution
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in time may be done in such a way as to ensure that information passes
in the correct direction, but the total update is the flux difference,
keeping the conservation property.
Specifically, the update Fu, = un+1 - u” to node k depends on
’ %k ~ =k %
flux difference components from the cells to the left and right (denoted

by k-% and k + % respectively), where
By, = - 5= ((85)), + (M),
% Ax k-% k+4
At o~ o~ o~ o~
=T & [2 (Ao s * 2 (A i-l;i)k-i—%]
A0 A0

At S & v o~ \UPWIND
- - & ) K3, wE) (3.67)

Directional Difference Scheme

This scheme treats the matrix A in (3.58)

u + Au =0
=t =

by premultiplication by the matrix of left eigenvectors L:

Lu_ + LAu_ =0
=t =
Lu, + ALu_ =0 (from 3.62)
=t =
i.e.
Liu +Alu =0 i=1...N. (3.68)
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The scheme then takes pseudo-characteristic variables which are

here denoted by a,

Substituting into (3.68):
(ai)t * }\i(ai)x = (ll)tg & Ai(Li)x'L—l . (3.69)

The terms on the right-hand sides that are time derivatives can be

eliminated in terms of space derivatives to give a set of equations:

(@) + Ag(ay), = g((ag) o)) » f=1...N . (3.70)

(See Appendix A, equation (A.12) to see how this is done. )
The scheme then discretizes and solves these equations for each a, in
an upwind manner, that is, at node k , the update E(ai)k defined as

Eay)y, = (ai)ﬁﬂ

- (ai)lri '

is given by

E(a,), = 1o~ ?\iAi(ai)k + gi(Ai(al)k....,Ai(aN)k)) L i=1...N. (3.71)

ct

Ai denotes an upwind difference which depends on the sign of Ai and
is the same in all occurrences in each equation, that is, all of the
difference terms in g; are differenced in a forward or backward manner
according as Ai is negative or positive, and irrespective of the

direction associated with the pseudo-characteristic variable being
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differenced. The existence of the gy (i.e. the cross terms or
non-diagonal terms) arises because the a; are not true characteristic

variables. The scheme has the following properties:

i) the scheme does not use proper characteristic variables, but
pseudo-charactertistic variables, therefore
(a) boundary conditions are easy to implement, although the
information will not be on exactly the correct variables:
(b) there is 'upwinding' in the cross terms that is not in the
correct direction (which is to some extent mitigated by the small

size of the terms in typical gas problems), (see below).

ii) The scheme does not deal with fluxes, and it can be shown that

conservation is not respected.
iii) the scheme is consistent with the Euler equations.

If the cross terms in (3.69) can be neglected, by neglecting
derivatives of the vectors li , then in the differences the

corresponding terms can also be neglected, i.e.

A(ai) = A(li.g) = li-AE

(wvhere A denotes finite differencing in time or space), and the scheme

becomes (from (3.71) with the terms g, omitted)

% .
li‘EEk = - Aili.A Ek) ,1i=1...N.

| B>
%L*
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These equations can be solved for Egk , giving

At *
Egk = - H (7\1(£1A u_k)Ll) (3.72)
The Ai . li » I; are all evaluated functions of gﬁ . We call this

the simplified Directional Difference Scheme.

Comparing (3.72) with the Roe Scheme, (3.67). we observe the
similarities of the schemes. The differences are:
i) The Ai . ld . L, are evaluated at nodes in the Directional

Difference Scheme, and as cell averages in the appropriate adjacent

cells in the Roe Scheme.

ii) The use of particular cell averages in Roe's Scheme ensures

conservation. Such a property does not hold for the Directional

Difference Scheme.

1ii) The simplified Directional Difference Scheme is not consistent with
the Euler equations. The schemes are similar in that both upwind
correctly, but, the simplified directional difference scheme differs
from the full version in that the cross terms have been eliminated. If
they had not been eliminated, then the eigenvectors li would also be
differenced in (3.71). Solving for Egk from E(ai) would involve
inversion of the matrix L at both the old and new time levels, so an
expression such as (3.72) could not be arrived at in the full case.

In the case of the gas equations the simplified Directional

Difference Scheme can be thought of as intermediate between two distinct
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orders of approximation of the full scheme. The full equations to be

discretized are (writing a = a . B = ay and neglecting friction)

r 2 2 B 7
t | 8c X 2 | 4c X
i 2 2 R ;
B = | - (u-e) - L) |g , u(xtl) [ u(r+l) |
t i 8c X 2 | 4c | x
These contain terms of order 1, (wc), and (wec)®? . If u < c,
the 1st order approximation is:
e u(v+1)
a = (u+c)ax + 5 Bx (3.73)

Pe =+ (u_c)Bx * Eizéll'ax

which still contains cross terms. The 0'th order approximation is

t X
ﬁt = CBX (3.74)
which are the wave equations for a and B . The simplified scheme

(3.72) corresponds to an upwind discretization of

a, + (u+c)aX

[}
o

1]
(@]

B, *+ (u=c)B,

which contains some of the terms of (3.73) and includes all terms of

(3.74). In many cases u << c applies, and therefore the simplified
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scheme is approximately what is being solved. The resemblance of the
solutions of the directional difference and Roe schemes at first order

for small u is therefore expected.

Here, we have treated only the homogeneous case. In fact, it
appears that the modelling within the schemes of the friction terms is
crucial to the behaviour of the schemes, and a difference between the

rates of convergence in test problem 3 should be noted.

A scheme akin to the Directional Difference Scheme using Riemann

Invariants.

The directional difference scheme attempts to transform the Euler

equations (3.58)

u + Au =0
- =

t

by premultiplication by the matrix L , i.e.

LH{ + LAHX =0 (3.75)

such that the resulting set of equations (3.75) is a diagonal set,

wo t Ayx =0 (3.76)

in a new set of variables w . The diagonal matrix contains the
physical wavespeeds as entries and is therefore the matrix A of

eigenvalues associated with A . The directional difference scheme

takes
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and finds that (3.76) does not hold exactly. If instead we take

w = w(u)
and let
we obtain
w_ = Lu
_x
¥, = Lug

Therefore (3.75) is

Now

where z:[a— ?—]
N
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and R = (34""£N) . But

IR = (LIZWJ)

is diagonal so the Riemann invariants satisfy

The w; are the Riemann invariants (see [9]). For the reduced

Euler equations:

W oo =5t % ; (where A, , =u % c) (3.77)

1,2 7

N

are the Riemann invariants.

The method of directional differencing can then be applied to
(3.76), and will suffer from neither problem associated with pseudo
characteristic variables outlined in note (i) above, but will still be
non-conservative. This scheme, as opposed to the simplified directional
difference scheme, will be consistent with the Euler equations. Similar
schemes using Riemann Invariants but with more complicated

discretisations exist, see [11],[12].
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4. Test Problems and Results

Three test problems are used, namely, Sod's shock tube problem,
which is a theoretical problem with an analytical answer, and two model
problems from the gas industry, the flow increase problem and the load
rejection problem, the latter of which has experimental results

available for comparison. All graphs are in Appendix C.

4.1. Sod's Shock Tube Problem {10]:

This is essentially the Riemann problem for gas in a pipeline. Gas
is held in two parts of a tube separated by a membrane, at different
states. At t=0 , the membrane is removed and the motion observed. The
problem can be modelled by the 3-system or the 2-system, but friction
and heat input are taken as zero. The analytical solution for the

2-system case is given in appendix B.

Initial condition:

p=pL P=PR
u:uL u=uR
(p=p) (p = pg)
X =X
[¢]
Fig. 3.

In the results presented here, the intial values taken are
P =P = 1.0 , P. = 0.1, U = up = 0.0 . The gas is modelled by the
adiabatic approximation with ~ = 1.3 .

Results: Graphs 1-8 give the distributions of pressure (top) and

velocity (bottom) along the tube at a time 0.14s after the membrane is



removed. The numerical solution is found using 51 nodes, and plotted as
points. The analytical solution is represented by the line. The time
step used is 0.0ls except where stated.

Graphs 1-3 show Roe's scheme applied with no limiter (lst order),
and with the minmod and Superbee limiters respectively (see [13]). The
accuracy of the solution, especially the shock position and the lack of
oscillations are to be noted, with the 2nd order schemes improving on
the 1lst order.

Graphs 4-7 show the results from the Directional Difference scheme
with 1st order differences, both in its full version (Graph 4) and in
the various levels of simplification mentioned in section 3.3. Smaller
time steps are necessary to obtain any solution at all at t = 0.14s for
the full version and the O(wa) version (Graph 5). These solutions
are unstable and would break down if run to a later time. Graphs 6 and
7 both used simplified schemes which have no non—-diagonal terms (see
section 3.3) and are both stable although inaccurate. Comparing Graphs
4 and 5 with 6 and 7 demonstrates well the difficulties that the
non-diagonal terms present.

Graphs 8 show the results using the Directional Difference scheme
with the Riemann Invariants (characteristic variables) as opposed to the
pseudo-characteristic variables, as suggested in section 3.3. The
results are not particularly accurate but the solution is stable, as in

the diagonal versions of the ordinary Directional Difference scheme

(graphs 6 and 7).

4.2. Flow Increase Problem

A pipeline of 500ft, diameter 6in, has gas flowing though initially
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at a rate of 10,000 SCFH. The inlet pressure is 14.78psi and the outlet
pressure 14.70psi. The flow is increased at the inlet to 20,000 SCFH
(at time 0.174s) causing a wave to travel down the pipe. In the
simulation the pressure at the outlet is held constant. In this case,
the wave is reflected up and down the pipe several times. Comparisons
of the pressures and flows obtained by the various schemes are shown.
The graphs show the variation in time of the pressures and flows at an
upstream and a downstream node each. Solutions use 21 nodes each.
Friction is added to the Roe’'s scheme by projection onto the

eigenvectors (see section 3.2).

Graphs 9 (pressures and flows) compares the two schemes at lst
order.

Graphs 10 (pressures and flows) contrasts the use of flux limiters
in Roe’s scheme and the basic scheme. In this case the pressure rises
as the wave passes are sharper in both 2nd order schemes, but the
Superbee tends to predict overshoots in pressures and flows.

Graphs 11 (pressures and flows) shows the presence of large
oscillations in the solutions obtained by the use of 2nd order
differences in the Directional Difference scheme (see section 3.1), even
with a small time step in comparison to the other sets of results.

Graph 12 (pressures, using Roe's scheme/minmod limiter) and
Graph 13 (flows, using Roe's scheme/Superbee limiter) demonstrate the

convergence to a solution as the time step is reduced.

4.3. Load Rejection Problem

A pipeline of length 43.1 miles and diameter 34.75 inches has gas
flowing through initially at a rate of 56 MSCFH. The inlet pressure is

initially 942.7psi and the outlet pressure 635.7psi. The flow taken



from the outlet is reduced to zero over the next 30s. The flow into the
pipe is also reduced between times 430s and 900s by 16.67 MSCFH (see
Graph 14 for flows in and out).

The pressures at the inlet and outlet are found and plotted.
Experimental results are also available and plotted. The friction term
in Roe’s scheme is added by projection onto eigenvectors, as a
preliminary run showed addition of a point value to be inappropriate
(see section 3.2).

Graphs 15 demonstrate that the isothermal‘model gives results
closer to the experimental results than an adiabatic model with
v = 1.3; subsequently, the isothermal model is taken.

Graphs 16 show results obtained by the various approximations to
the Directional Difference scheme when the gas velocity is small and the
non-diagonal terms in the scheme are relatively unimportant. Note the
similarity of the full version of the scheme to the simplifications
which include only terms of O(wa) and O(1). The scheme which omits
only non-diagonal terms omits some, but not all terms of O(w/a), which
explains its inaccuracy. See section 3.3.

Graphs 17 (Roe's scheme), Graphs 18 (Directional Difference scheme)
and Graphs 19 (Directional Difference scheme using Riemann Invariants)
scheme, show the convergence of the schemes on this problem using
smaller time steps with a fixed ratio of time and space steps.

Graphs 20 demonstrate the similarity of the results obtained by the
three schemes at the smallest time step. The three are expected to be
similar as the gas velocity is small. The Roe scheme may exhibit
greater accuracy due to the treatment of the source terms, as has been

mentioned. The inaccuracy at large time steps of the two Directional
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Difference Schemes could be due to implementation of boundary conditions
or source terms. It is strongly suspected that the treatment of source
terms is responsible, by analogy with a variant of Roe's method with a

different treatment of friction which shows comparable convergence

behaviour to the Directional Difference method.
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5. Concluding Remarks

In chapter 3, section 3, it was noted that Roe's scheme was
expected to produce better results than the Directional Difference
scheme. Roe's scheme is conservative, and this leads to accuracy in the
shock position in problem 4.1. The Directional Difference scheme
suffers from using pseudo-characteristic variables which cannot be
differenced in an upwind manner consistently everywhere in the scheme,
and that this presents severe difficulties, especially at high gas
speeds, (e.g. at pipebreaks), is again demonstrated in problem 4.1. The
more stable behaviour of less accurate versions of this scheme which
neglect the terms differenced in the wrong direction, can be improved
upon by the use of proper characteristic variables as suggestion in
section 3.3. However, the existence of easily calculable characteristic
variables for systems of equations which model the gas thermodynamics in
a different manner is not certain.

Roe's scheme upwinds correctly by the use of an approximate
linearized solution in each cell. The flux differences are decomposed
onto eigenvectors associated with each wave component of the motion, and
these eigenvectors can also be used in the implementation of boundary
conditions and the addition of friction and other right-hand side terms.
Second order methods can be used by Roe's scheme which are more refined
than the use of second order spatial derivatives in the Directional
Difference scheme.

In conclusion, whilst the two schemes have certain similarities of
approach and give similar solutions at low gas speeds, the theoretical

advantages of Roe’'s shceme and its better ability to produce good
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results with rapid transients and high gas speeds would seem preferable.
The questions of implementation of boundary conditions and friction
terms are still quite open and more work may be needed to find a good
resolution of these questions for the particular problems of gas

pipeline modelling.
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Appendix A

Deriving; the Directional Difference Equations from the Characteristic

Form of the Euler Equations

Here, equations (3.3) are used:

c’p, =P, (A.1a)
csz =p, (A.2b)
From (3.2),
2 =12 (3.2)
p

the following partial derivatives of ¢ can also be derived:

P
= —Lt _2P
2cct = iy " Pe
p
PP
t
=— (o~ =)
P c
Tp
t 1
= U3
- [;I]p (A.2)
t 2pc |t
and (from A.la, A.2)
-1 1

I
°l
o)
o
ct
+
i
g
ct
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SO
+1
(00, = [3Lp, (A.32)
and similarly,
+1
(pe), = Eﬁ;qpx - (A.3b)

Now, the Euler equations have been transformed into the equations

(3.7):

(pt + pcut) + (u + c)(px + pcux) +F=0 (A.4a)

(pt - pcut) + (u - c)(px = pcux) -F=0 (A.4b)
where

F = 2fpculu|sd . (A.5)
Defining variables «,B as in (3.8):

a =p + pcu (A.6a)

B =p - pcu (A.6b)

allows (A.4a) to be written as
[a, = (pe)u] + (u + o)a, - (pe),u] + F = 0

Using (A.3a)

C

a, - i%illpt == (u+ c)[ax— (pc)xu] = IH
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and using the first equation (component) of (3.4), an equation for the

time derivative of a alone is found:

a, = [—ug'7+12

50 ](upx+ pczux) - (u+c) [ax- (pc)xu] = . (A.T)

With the definitions of «,B (A.6) and also with (A.3b), the following
hold:

Substituting these into (A.7) and collecting the terms in ax’ﬁx' gives

at - [_ (LH‘C) + %] ax + %)_ [1 + %}Bx— F . (A.Sa)

Using a similar method, it can be found that

Bt - [_ (u-c) + ‘.J_(ﬂl] Bx + H:’z"'_ll [1 - %)-]ax*- F . (A.8b)

8Sc



- 52 -

Appendix B
The Exact Solution to Test Problem 1.
The first test problem is just the Riemann problem for the Euler

equations in the adiabatic form given in chapter 2 without friction,

that is,
where
T
u = (p,pu)
2, T
£ = (pu.ptpu?)
and
p=kp' (B.1)

where the initial data consists of two constant states either side of a

position x = X, (denoted by L and R), that is,

The values for the problem considered in chapter 4 are

pL = pL =1.0, pR =0.1, uL = uR = 0.0. The other densities can be

found by using equation (B.1), with ~ taken as 1.3.

The exact solution in t > O to this problem can be found and has
the following form.

The left-hand state u is connected to an intermediate state,

u, . say, by an expansion in the (u-a)-field, that is, the solution
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u(x,t) in the expansion satisfies

Ay(w) = (x—x_o)/t

wl (E) b wl(EL)

where the wavespeed Az = u-¢ , the Riemann Invariant Wy given by

W, = %u + ¢/(v-1) . and the sound speed is c¢ as given in chapter 3

above (equations (3.19a), (3.77), (3.2)).

Also, the intermediate state v, is connected to the right-hand

state up by a shock, that is, the solution jumps between u,

and ER

at a point moving with speed s , and where jump conditions hold:

s = [£(w)]/[u]

where [.] = (.)R - (.)

o °

These conditions allow the full solution at a time t > O to be

calculated; full details on these conditions and for methods of

obtaining the solution will be presented elsewhere. For these initial

conditions, then, the solution is, in terms of § = (x—xo)/t .

()

Ay ) <€ E < Ay(u)
coN(e) £ ECs

§ > s

u(x,t) = u(f)

fF e ¥ F
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. N T
Y .up are as given initially, u = (0.428, 0.389)",
A2(EL) = -1.140, A2(EO) = =0.010, s = 1.505, and the states in the

expansion are given by up = (pE,pEuE) where

(i) - 6).(5H =

Pp(§) = [ﬂ] S

2

(0.1144(7.601 - §))%-667

(E"A2(EL))
LT ) gt ) o ™ o)

uE(E) =u

0.803(f + 1.140) .

For the solutions plotted, X, = 0.5 and t =0.14 . All answers

here are to 3 decimal places.
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Appendix C

Graphs of Results

Test Problem 1 - Sod Shock Tube
Test Problem 2 - Flow Increase

Test Problem 3 - Load Rejection

Graphs 1-8
Graphs 9-13

Graphs 14-19



TEST PROBLEM 1 - RESULTS

Graphs of pressure vs. x and velocity vs. x at time O.l4s
Time step 0.01ls (unless stated).

50 nodes used.

Analytical and numerical results.
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Directional Difference, 0O (u/a) (dt=0.006)
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Directional Difference, diagonal terms
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Directional Difference, 0O (1) terms
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Direct:onal Difference, 0 (1) terms
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Directicnal Difference with Riemann Invariants

0.80+ [ \
0.85-+
0.80—~

0.75—~

0.65r

0.60 \

[ —— exact
p 0.55— . \ .
o numerical
0.50T (Y
0,485 (o]
0.40+ [+

&
0.35+ 0000 Q.

0.30+

¢

I I | I I i I

0 O.bﬁ 0.40 0.15 0.20 0.25 0.50 0.35 O.AO 0.45 0.50 0.55 0.60 0.68 0.70 0.7% 0.80 0.88 0.80 0.85 1.00

o

X

GRAPH_8B

Directional Difference with Riemann Invariants

0. 95—

Q.90

<><><><)<><>O
0.8~

0.80—
0.75— ¢
0.70—
0.65
0.60—
0.85—

0.50~ o ——— exact
v 0. a8~ 0 numerical

0.40— o]
0.38—

0.30+

0.25+

0.20~

0.15+ <
0.10T o
0.05“; 'y ! ¢

At b 9 | i L L I | I | O
Vo WY T T T
20 2

0.0 T gl T T T )
0.00 0.08 0.40 0, 4 +20 0.28 0,30 0.38 0.40 0.45 0,80 0.55 D.EO 0.85 0.7

oo

X



TEST PROBLEM 2 - RESULTS

Graphs of pressure vs. time and velocity vs. time.

One set of each from an upstream and a downstream node.
Time step 0.01 (unless stated).

21 nodes used.

The pressure at nodes 1 and 17 is plotted.

The flow at nodes 5 and 21 is plotted.

In each case, the upstream graph (low node number) responds to

the flow increase before the downstream graph.
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Roe scheme vs Directional Difference scheme
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Roe scheme, 1st & 2nd orders
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Jirectional Difference scheme, 1st & 2nd order (dt = 0.0001)
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Oirectional Difference scheme, 1st & 2nd order
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Roe scheme (Minmod), different time steps
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Roe scheme (Superbee), different time steps
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TEST PROBLEM 3 - RESULTS

Graphs of pressure vs. time, at inlet, and at outlet.
Time step 0.375s (unless stated).

161 nodes used.

Where larger time steps are taken, fewer nodes are used so as
to keep the ratio of time and space steps constant.

Experimental and numerical results.

The prescribed flows are below.
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GRAPH_15A

Different Models of Gas Thermodynamics

980T
978+ 4
. =

974+ A

972+ e

970+ /

sse-+- 7

966+ &
T

984+ ~ 50

%2# //z' —— D00. gamma=1.0

. ‘ o i ——— D0, gamma=1.3
P in ssot oy ' Hoe, gamma=1.0

ase+ £ FAoe, gamma=1.3
g“_i_ P == experimental
i 4

ssat
ssz+

QSOT

948
G4BT
1

a4+

S421

i 1} I |
q40-+ 4 1 | 4 I i L ' It I L 3 i L It

T L] T L] L) 13 H I 1 T 1
0 S0 100 150 200 280 300 330 400 450 %S00 550 800 €50 700 750 800 8830 800

time/s

GRAPH_15B
Different Models of Gas Thermodynamics

940T
920+
S00—
|
aso—+
860
I
840+

az20+

DD, gamma=1.0
———— 0D, gamma=1.3
--- Roe, gamma=1.,0
---------- Roe, gamma=1.3
experimental

800
p out 780+
7601

740t

720T /

700-;- '“I//

|
680 l/

=

Bag

i L } 1 i 1 | | | | |
T T T T T T 1 1 1 T f T T T
[} 50 10‘0 190 200 250 300 380 400 480 SO0 S80 S00 E50 700 780 BS00 S50 900

820+t f t '

time/s



GRAPH_16A

Approximations of the Dir. Diff. Scheme
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GRAPH_17A

Roe Effect of time step
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Directional Difference

Effect of time step
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Different Schemes
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