DEPARTMENT OF MATHEMATICS

A Quasi-Conservative Version of the

Semi-Lagrangian Advection Scheme.

by
A. Priestley

Numerical Analysis Report 2/92

UNIVERSITY OF READING

0 Abstract

The semi-Lagrangian method is now, perhaps, the most widely researched algo-
rithm in connection with Numerical Weather Prediction (NWP) codes. Mono-
tonicity has been added to the basic method by the use of shape preserving
interpolation and, more recently, by using ideas from Flux Corrected Transport
(FCT). In this paper we describe how to make the scheme quasi-conservative.
Although the lack of conservation of the semi-Lagrangian method is not widely
regarded as a serious problem, for climate studies, where many tens of thousands
of time-steps are needed, it could become so. The method proposed here is very
cheap and hence is a viable proposition for addition to existing semi-Lagrangian
codes. Making the scheme conservative as well as monotone gives the scheme
shock capturing properties making the method much more useful in application

areas outside of meteorology.

1 Introduction

Numerical schemes that follow characteristics backwards in time and then in-
terpolate at their feet have a history stretching back to the very early days of
computational fluid dynamics, Courant et al (1952). In the last decade these
methods have been catching favour again. In the finite element literature there
has been a body of work on the Lagrange-Galerkin method by, amongst others,
Benqué et al (1982), Bercovier & Pironneau (1982), Douglas & Russell (1982),
Lesaint (1977), Morton et al (1988), Russell (1980) & Siili (1988). Meanwhile
the finite difference version of this idea has progressed in the form of the semi-
Lagrangian method. A useful survey of this method can be found in Staniforth &

Coté (1991). It is this form of the Lagrangian method that we shall be using here.

Consider the Cauchy problem for the scalar, linear advection equa-

tion for u(z,1):

up + a.Vu =0, zeRY t>0, (1.1)

u(z,0) = wuo(), (1.2)

where u, is the initial data and d is the number of dimensions. We can now define
characteristics paths or trajectories, X(z, s;t), in two ways, either as the solution

to an ordinary differential equation,

X(z,8;8) = g (1.3)

dX(z,s;t)

o = a(X(z,s;t),1); (1.4)

or, if desired, as the solution of the integral equation

X(z,s;t) —a:+/_ (z,s8;7),7)dT.

In order to simplify the notation, for "*! = " + At, we will denote
the foot of the characteristic path at time ¢ to be at z, usually termed the
departure point, and its arrival point at time t"*! to be at y. In terms of the

more general notation, these are

and

y = X(z,t%t™).

A unique (absolutely continuous) solution to equations (1.3) & (1.4)
can be guaranteed under fairly mild assumptions about the velocity field g, see
Mizohata (1973) for example. The solution to the original partial differential

equation (1.1) & (1.2) is now given by the relation

u(l('at,t'i'T):t"'T) =u(-,t), (15)

which is just saying that the solution, u, is constant along a trajectory. Putting

T = At and simplifying the notation as above we have,

u(y, ") = u(z, t").

If y, the arrival point, is then put equal to a grid point, Y; for example, the foot
of the trajectory z, the departure point, will not in general be a grid point and
hence some sort of interpolation will need to be performed. Cubic interpolation
seems to have been favoured in the development of the semi-Lagrangian method,
giving a reasonable compromise between accuracy and computational effort. The
two most popular are, in this context, the somewhat confusingly termed cubic-

Lagrange interpolation and cubic-spline interpolation.

In Williamson & Rasch (1989) and Rasch & Williamson (1990) mono-
tonicity was introduced to the semi-Lagrangian method. Although they exper-
imented with many types of interpolation perhaps the most pleasing was that
using Hermite-cubic interpolation (the monotonicity being obtained by limiting
the derivative values). More recently Bermejo & Staniforth (1992), using ideas
from the FCT schemes of Boris & Book (1973) and Zalesak (1979), have created a
semi-Lagrangian scheme that achieves monotonicity whilst still using the cubic-
Lagrange or cubic-spline interpolation, or for that matter any non-specialized

interpolation.

In this paper we will now introduce conservation to the semi-
Lagrangian method. This algorithm fits very neatly into the method of Bermejo
& Staniforth (1992) and this paper will be referred to frequently in the follow-
ing. Although the method presented here has more in common with the second
method of introducing monotonicity mentioned above there is no reason why it

couldn’t be combined with the approach of Williamson & Rasch (1989) to again

achieve the aim of a monotonic and conservative scheme.

In the remainder of this section the basis of the monotonic algo-
rithm described in Bermejo & Staniforth (1992) will be given. In the following
section the algorithm for recovering conservation will be given. Section 3 contains
two test problems that will be solved with the currently proposed method and

then finally, in section 4, a summary of the work will be given.

The first stage of any Lagrangian scheme is the solution of the tra-
jectory problem, equations (1.3) and (1.4). In principle any ODE solver could be
used to do this. In the first test case to be done later the exact trajectories are
known and used. In the second, nonlinear, problem Euler’s forward difference
method is used to determine the the departure point of the grid point. Since we
are only doing a comparative study, this is adequate. In practice this O(At) time-
stepping is not regarded as adequate, however, see Staniforth & Coété (1991), and
O(At?) time-stepping schemes are generally preferred. Working in spherical co-

ordinates can also raise problems, see Ritchie (1987).

Having found the departure point we must now interpolate the
value of the solution. The most common types used have already been men-
tioned and the mechanics of these methods can be found in most books on nu-
merical methods, see Johnson & Riess (1977) for example. Here we will only be
using cubic-spline interpolation (bicubic-splines in 2-dimensions). This is purely

because this interpolation comes out well in the tests of Bermejo & Staniforth

(1992). The results presented here are all compared with like schemes and so the
precise choice of interpolation is somewhat arbitrary and a cheaper and/or more
local interpolation could be used. The only difference would then be a slight

increase in the errors presented.

To obtain a monotone scheme via the FCT approach we need two
approximations to the solution at the new time-level. These are usually referred
to as the high-order solution, U¥, and the low-order solution UZ. These terms
are slightly misleading, since the only constraint on these solutions is that the
‘low-order’ solution be monotone, or more precisely in our context it should in-
troduce no new extrema. (This is a rather cumbersome phrase and so we shall
continue to use the word monotone with its extension to higher order schemes
and multidimensions being understood). We could therefore use the monotone
Hermite-cubic interpolation of Williamson & Rasch (1989) as either our high-
order scheme or our low-order scheme. As we have mentioned previously, we will
use the cubic-spline interpolation for our high-order scheme and linear interpo-
lation for the low-order, monotone, scheme. From these two solutions we then

define our monotone solution, UM at the point k, to be given by,
UM = U + (1 — oy)U¥ (1.6)
with
0<o <1, (1.7)
where the ay’s are yet to be chosen. Clearly the objective is to find o’s as large
as possible whilst maintaining monotonicity. A solution is guaranteed to exist,

corresponding to a; = 0, because of the monotone nature of UZ. Upper and

6

lower bounds are now placed on eq. (1.6) to ensure a monotone solution. Denote
by U™ the monotone solution from the previous time-level and by {U™, k} the set
of solution values at points surrounding the departure point of the grid point y, .
This is y(z;) in our previous notation. In the notation of Bermejo & Staniforth
(1992) {U™, k} = {U1, Uka, Uks, Uxs}. We now take the highest value of oy that

satisfies both (1.7) and the condition

min({U", k},UL) < U + (1 — a)UE < max({U™, k}, UF). (1.8)

Equation (1.8) only differs from the one given in Bermejo & Staniforth (1992) in
that the value of the low-order solution has been included in the bounds. When
calculated by linear interpolation from the values {U",k} for pure advection
problems it will clearly not affect anything. For more general problems, i.e. when
source terms are present or we are solving a nonlinear system, it is necessary to

include this value. We now proceed to discuss the recovery of monotonicity.

2 Recovering Conservation

We shall refer to the maximum values of a that satisfy constraints (1.7) and (1.8)
as {ay**}. Sub-optimal values of the a;’s can now be chosen to try and make

the scheme conservative. That is we choose ay’s such that

0 <o < o™

whilst at the same time trying to enforce

[UM@)dz = [U°(@)dz = C, say. (2.9)

In general, of course, the best we can do is to minimize the difference between
the two quantities. In the examples given later we have precisely the situation
stated in (2.9) but in other problems it may be necessary to take into account
source terms and boundary conditions. There are many ways this problem can
be solved, by linear programming methods for example, but the following algo-
rithm is found to be a very efficient and direct way of obtaining a solution. The
efficiency of the algorithm will be demonstrated in the results section and also
the fact that in using sub-optimal a’s we sacrifice comparatively little accuracy

compared with the introduction of the monotonicity.

Firstly we define S; to be the area associated with node . With
a regular mesh this is just A in 1-dimension and A% in two-dimensions. A more

general case is illustrated in figure (1). Secondly, let

ﬂi = (UzH - UzL)SZ

The problem now is to maximize the a’s subject to the following condition arising

from egs. (1.6) and (2.9),

Zai(UiH — UZL)Sl = C - ZUiLSl = C*

i

Assume that

Za;‘naxﬂi > C*-
1

If this is not the case then the definitions are just changed so that

Bi — —pB

c*r — —-C".

Step 1
if B, <0 then o;=a™
iflag(z) = 1
otherwise
a; =0
iflag(z) = 0.
Step 2 Define a surplus
=C*— Z akﬂk.
iflag(x)=1
Step 3 Define the average value of a
surplus
Qpy = .
Ciflag(ky=o Pk
Step 4 if aav < ot everywhere iflag(k) =0

then for these k set a; = a,y.

END

Step 5 else for those k that satisfy both

iflag(k) = 0 and aqv > o

put

o k max

Il
Q
x

iflag(k) = 1.

Step 6 GOTO 2.

If the surplus is negative then there is no conservative solution and the best so-

lution, as regards conservation, is given by the initial setup of the a’s in step 1.

In step 4, where the successful algorithm finishes, there is a certain
amount of freedom in what we do. Here, we have just set the remaining a’s to the
average value. This is quick and is certainly a reasonable thing to do. However,
if desired, these extra degrees of freedom, which correspond to the solution lying
on a plane in the linear programming case, could be used to try and achieve some
other goal. In the next section we shall monitor the second moment of the solu-
tion, which ideally should also be conserved. This, of course, is not conserved by
this algorithm but these extra degrees of freedom could be used to try and achieve

conservation of the second moment or indeed any other conserved quantity.

10

3 Results

The first problem is that of the slotted cylinder. This is Example 3 of Bermejo
& Staniforth (1992). On the domain [—3,1] x [—31,], with a uniform grid of size

o212l

h = -, we define the slotted cylinder. It is centred at (—,0) with radius 15h.

Its height is 4. The slot has width 6h and length 22h. The initial data is shown

in figure (2).

This profile is then advected by a given velocity field, a = w(—y, x)
which causes the cylinder to rotate with angular velocity w. The value of w is
taken to be 0.3636 x 10~*s~1. This corresponds to one rotation every twenty days.
Taking a time-step of At = 1800s a revolution is completed every 96 time-steps.

Six revolutions are performed.

Following Bermejo & Staniforth (1992) we define some errors for
this problem. The first moment of the approximate solution U, normalised by

the first moment of the exact solution u, is given by

jﬂ [j (ﬁa t outpul) dﬁ«.

RFM =
I u(z,0)dz ?

and the second moment is similarly defined by

f!l U (ls r'ra*l.-.r.;r;vu.f.)dﬂ_

RSM = ’ .
Jo u*(z,0)dz

A fairly obvious discretization of the above integrals is used. The maximum and

minimum values are also given. Again following Bermejo & Staniforth (1992) and

11

Takacs (1985) we write the discrete [, error as

1 X n n
= UIE, = % 3~ O
k=1

where K is the total number of points. This is then split into the dissipation

error (DISSER) and the dispersion error (DISPER), i.e. we can write

llu— U|j2 = DISSER + DISPER

where

DISSER = [o(u)—o(U)] + (m-T)? (3.10)

DISPER = 2(1 - p)o(u)o(U). (3.11)

In egs. (3.10) and (3.11) the overbar denotes an average value, o is the standard
deviation (o? the variance). The correlation between u and U on the mesh is

denoted by p.

Results are presented for three versions of the semi-Lagrangian
method. All use cubic-spline interpolation. The first is just the basic method,
the second is the quasi-monotone version (as in Bermejo & Staniforth (1992))
and the third is the new quasi-monotone and conservative method. Plots of the
results after 6 revolutions are shown in figures (3), (4) and (5) respectively. The
figures indicate that the monotone version of the method lives up to its name.

The slot remains well defined in both of the monotonic implementations. Indeed

12

there is no visible difference between the quasi-monotone solution, fig. (4), and
the quasi-monotone and conservative solution, fig. (5). More objective compar-
isons can be made from tables (i), (ii) and (iii). Obvious statements that can be
made after looking at these tables are that the monotonic implementations are
indeed monotone and that the conservative version is conservative. The results
in table (ii) appear to be slightly better than those for the identical problem in
Bermejo & Staniforth (1992). This is almost certainly entirely due to the fact that
we made use of the known trajectory paths in this problem for the calculations
presented here. Looking at the errors DISSER and DISPER, the two quantities
making up the discrete [error norm, we can see how the modifications to the

basic algorithm have changed the accuracy.

Firstly, comparing the results for the basic method and the quasi-
monotone method, tables (i) and (ii), we see that the dissipation error (DISSER)
has increased by a factor of just over 4. The larger dispersion error (DISPER),
that dominates the I, error, rises by between about 10% and 20%. Comparing
tables (ii) and (iii) to see how the introduction of the quasi-conservative algorithm
affects accuracy, we see an approximate rise in the dissipation error of 10% and
in the larger dispersion error of less than 1%. This demonstrates that very little
accuracy is sacrificed in achieving conservation compared to what has already

been lost due to the introduction of monotonicity.

As to cost, an increase of %% in CPU time was needed, compared

to calculating the quasi-monotone scheme. This was for a problem where the tra-

13

jectories were calculated once and then stored and the cubic-spline interpolation
was able to take advantage of the interpolation points being fixed. Timings can
be found in Table (iv) for both the results obtained here on a SUN Sparc 1 and
for results obtained by Gravel & Staniforth (1992) on a CDC 4680, with 32-bit
precision, and a Cray XMP, with 64-bit precision. Times are for 192 time-steps
of the above problem. The cost seems to be very machine dependent but it must
be emphasised that the code used for the Cray had not been specially written
and hence it may not have vectorized as fully as it might. It is believed that this

timing could be reduced significantly.

The second test problem is that of the one-dimensional inviscid
Burgers’ equation. This equation has been solved before using the semi-Lagrangian
method in Kuo & Williams (1990), but here we will use the same problem as

Bermejo & Staniforth (1992). We are required to find the solution to

Ou Ou

S Huz = 0 atel-1,1x[0,T], (3.12)
u(z,0) = l—|—l ' (3.13)
,0) = 7 +gsinma, :

u(=1,t) = wu(1,t) Vvt

The initial data, eq. (3.13), is depicted in figure (6). We do not take the velocity
from eq. (3.12) to be u but rather define it to be a(u) where a(u) = df/0u and

is the flux function defined by f(u) = Lu? for Burgers’ equation. This is then
2 g

14

approximated by a simple central difference as

f(uig) = f(“i—l)’

a(u,-) B U1 — Uj—1
In smooth regions of the flow this should be a good approximation to u, whereas
in non-smooth regions it should give a good approximation to the shock speed.
The velocity thus generated is then used in Euler’s method to determine the

departure point, i.e.,

¥ = z; — a(u;)At.

For this problem it was not felt necessary to use a more sophisticated approach.
Eighty grid points were used giving a value of h = 1/40. Figure (7) shows the
result at 7' = 0.65. All three methods give virtually identical results at this time,
before the shock develops, and we only show the result for the quasi-monotone
and conservative method. This solution was obtained in 10 time-steps implying
a maximum CFL number of just under 2. The next output time in Bermejo &
Staniforth (1992) is T = 0.9. However, we found very little to distinguish the
methods at this time: the basic method had a slight oscillation, but was otherwise

identical to the other two solutions.

In Bermejo & Staniforth (1992) a shock fitting technique was used
to obtain their results. It should be stressed that when we later get rather poor
results for the quasi-monotone semi-Lagrangian method the shock fitting has not
been used and it is hence not comparable with the scheme presented by Bermejo &
Staniforth (1992). We reject the use of shock fitting for two main reasons. Firstly,

although shock fitting may work very well for the one-dimensional Burgers’ equa-

15

tion (3.12), for a one-dimensional system of equations, the Euler equations of
gas dynamics say, we already face difficulties. Numerically, in this situation the
Rankine-Hugoniot equations predict three separate shock speeds, the conserva-
tion laws three separate shock positions. These difficulties can be overcome, see
Morton & Sweby (1987), although it is not a very aesthetically pleasing approach.
In two dimensions things become even worse in that it is even a problem to de-
tect shocks unless they are lying along, or close to, grid lines. If tolerance s are
reduced to the extent that most of the shock is recognized it usually implies that

‘ghost’ shocks will also be caught. A notable exception to this rule would appear

to be that of Moretti (1987).

However, it is known that with conservation we are guaranteed the
correct shock position, see Lax & Wendroft (1960), while monotonicity ensures
convergence, see Sanders (1983). An entropy condition is needed to finally com-
plete the picture of convergence to the correct physical solution, Harten et al (1976).
Thus, by adding conservation to the quasi-monotone scheme we are freed from
the need to fit shocks and hence the scheme becomes much more widely applicable
even in higher dimensions. To demonstrate the advantages of having conserva-
tion the previous problem was run to 7' = 1.5. This time was reached in 30
time-steps giving a maximum CFL number of 1.5. A control solution, obtained
with the quasi-monotone and conservative method on a grid with 2000 points,
is shown in figure (8). Figures (9), (10) and (11) show the solution as calcu-
lated by the basic method, the quasi-monotone method, and the quasi-monotone

and conservative method. At first glance all three methods have performed well,

16

with the basic semi-Lagrangian method only suffering from a slight oscillation
behind the shock. However, on closer inspection we see that both the basic and
quasi-monotone methods have not transported the shock far enough. The quasi-
monotone and conservative version has got the shock in the right place. This is
confirmed by checking the function values to see where the shock lies. Allowing
one intermediate point, in the control solution the shock lies somewhere in the
interval {—0.626, —0.624]. The basic and quasi-monotone semi-Lagrangian meth-
ods both predict a shock position somewhere in the interval [—0.7, —0.65] whilst
the quasi-monotone and conservative algorithm correctly predicts the shock to
be somewhere in the interval [—0.65, —0.6]. We must stress again that this is not
the implementation of the quasi-monotone semi-Lagrangian scheme advocated
for this problem by Bermejo & Staniforth (1992). However, we believe that the
introduction of monotonicity used here to be a much more general and robust

procedure for obtaining correct shock positions than the shock fitting technique.

The extra cost involved in calculating the conservative solution,
over and above that of calculating the monotone solution, represents an extra
%% of CPU time. The reduction over the previous case is because the trajecto-
ries have to be calculated at each time-step now and the interpolation routine
cannot take advantage of the interpolation points being fixed. Clearly if a more
expensive trajectory solver were used, as is likely to be the case in practice, then
the relative cost will go down slightly, just as it will go up a little if a cheaper

interpolation is used. In either event conservation is achieved at very low cost.

17

4 Treatment of Source and Boundary Terms

In both the test cases performed here the equations were homogeneous and the
domains had periodic boundary conditions. This meant that there was a constant,
denoted by C in eq. (2.9), that equalled the amount of the conserved quantity

u for all time. We now consider the non-homogeneous problem corresponding to

(1.1),

uy + a.Vu = b(z, t),

with the initial conditions still supplied by (1.2). The constant C' now becomes
a function of time, C'(¢). For our purposes we now need to replace the C used in

the algorithm described previously by its value at ¢ = t**1. That is, we take

t"+l

C=0m =Cn 4 /Q bz, t)dedt, (4.14)

tﬂ
where () represents the spatial domain and C? is just given by the spatial integral

of the initial data ue(z).

In some situations b(z,t) is a known function, where a pollutant is
released at a known rate for example see Pudykiewicz (1989), and it may be pos-
sible to evaluate the integral in (4.14) analytically. More generally the function
b will also depend upon the solution v and the integral will have to be approxi-

mated. A simple and obvious choice would be to put

O™t = O™ + At | bz, t™)dz.
+ /Q(i,)dz

18

If this is a part of some iteration, i.e. there is already a guess for u™*! then clearly

a more accurate treatment of the integral may be used.

Boundary terms affecting conservation can be treated in an entirely

analogous manner, a surface integral of the flux function now arising in (4.14).

5 Summary

In this paper we have shown how the semi-Lagrangian method can be made con-
servative. Although the procedure presented here falls in most naturally with
the monotone scheme of Bermejo & Staniforth (1992) there is no reason why it
should not be used with the monotone schemes of Rasch & Williamson (1990).
Conservation is achieved at very little expense above that needed for the calcu-

lation of the monotone scheme.

This makes it a practicable addition to semi-Lagrangian codes for
climate modelling, or other applications, where loss (or gain) in conserved quan-

tities can become an issue.
In addition, the shock capturing properties endowed upon the semi-

Lagrangian method due to the addition of conservation and monotonicity makes

the scheme much more widely applicable.

19

References

Benqué, J.P., Labadie, G. & Ronat, J., 1982: “A New Finite Element Method
for the Navier-Stokes Equations Coupled with a Temperature Equation.”
Proc. 4** Int. Symp. on Finite Element Methods in Flow Problems (Ed. T.

Kawai), North-Holland, Amsterdam, Oxford, New York, pp. 295-301.

Bercovier, M. & Pironneau, O., 1982: “Characteristics and the Finite Element
Method.” Proc. 4** Int. Symp. on Finite Element Methods in Flow Problems

(Ed. T. Kawai), North-Holland, Amsterdam, Oxford, New York, pp. 67-73.

Bermejo, R. & Staniforth, A., 1992: “On the Conversion of semi-Lagrangian

Advection Schemes to Quasi-Monotone Schemes.” Mon. Wea. Rev., July

1992.

Boris, J.P. & Book, D.L., 1973: “Flux Corrected Transport, I, SHASTA, A

Fluid Transport Algorithm that Works.” J. Comp. Phys., 11, pp. 38-69.

Courant, R., Isaacson, E. & Rees, M., 1952: “On the solution
of Nonlinear Hyperbolic Differential Equations by Finite Differences.”

Comm. Pure Appl. Maths., 5, pp. 243-255.

20

Douglas Jr., J. & Russell, T.F., 1982: “Numerical Methods for
Convection-Dominated Diffusion Problems based on combining the Method

of Characteristics with Finite Element or Finite Difference Procedures.”

SIAM J. Numer. Anal., 19, pp. 871-885.

Gravel, S. & Staniforth, A., 1992: Private Communication.

Harten, A., Hyman, J.M. & Lax, P.D., 1976: “On Finite-Difference Approxi-

mations and Entropy Conditions for Shocks.” Comm. Pure Appl. Maths., 29,

pp- 297-322.

Johnson, L.W. & Riess, R.D., 1977: “Numerical Analysis.” Addison-Wesley

Publishing Company.

Kuo, H-C. & Williams, R.T., 1990: “Semi-Lagrangian Solutions to the Invis-

cid Burgers’ Equation.” Mon. Wea. Rev., 118, pp. 1278-1288.

Lax, P.D. & Wendroff, B., 1960: “Systems of Conservation Laws.”

Comm. Pure Appl. Maths., 13, pp. 217-237.

Lesaint, P., 1977: “Numerical Solution of the Equation of Continuity.” Topics

in Numerical Analysis IIT (Ed. J.J.H. Miller), Academic Press, London, New

21

York, San Francisco, pp. 199-222.

Mizohata, S., 1973: “The Theory of Partial Differential Equations.” Cam-

bridge University Press.

Moretti, G., 1987: “A Technique for Integrating Two-Dimensional Euler

Equations.” Comp. Fluids, 15, pp. 59-75.

Morton, K.W. & Sweby, P.K., 1987: “A Comparison of Flux Limited Dif-
ference Methods and Characteristic Galerkin Methods for Shock Modelling.”

J. Comp. Phys., 73, pp. 203-230.

Morton, K.W., Priestley, A. & Sili, E.E., 1988: “Stability of the Lagrange-

Galerkin Method with Non-Exact Integration.” RAIRO Modél. Math.

Anal. Numér., 22, no. 4, pp. 625-653.

Pudykiewicz, J., 1989: “Simulation of the Chernobyl dispersion with a 3-D

Hemispheric Tracer Model.” _Tellus, 41B, pp. 391-412.

Rasch, P.J. & Williamson, D.L., 1990: “On Shape-Preserving Interpolation

and semi-Lagrangian Transport.” SIAM J. Sci. Stat. Comp., 11, pp.656-687.

22

Ritchie, H., 1987: “Semi-Lagrangian Advection on a Gaussian Grid.”

Mon. Wea. Rev., 115, pp. 608-619.

Russell, T.F., 1980: “Time Stepping along Characteristics with Incomplete
Iteration for a Galerkin Approximation of Miscible Displacement in Porous

Media.” Ph.D. Thesis, University of Chicago.

Sanders, R., 1983: “On Convergence of Monotone Finite Difference Schemes

with Variable Spatial Differencing.” Math. Comp., 40, pp. 91-106.

Staniforth, A. & Cété, J., 1991: “Semi-Lagrangian integration schemes for

atmospheric models — a review.” Mon. Wea. Rev., 119, pp. 2206-2223.

Sili, E.E.; 1988: “Convergence and Nonlinear Stability of the Lagrange-

Galerkin Method for the Navier-Stokes Equations.” Numer. Math., 53, pp.

459-483.

Takacs, L.L., 1985: “A two-step Scheme for the Advection Equation with Min-

imized Dissipation and Dispersion Errors.” Mon. Wea. Rev., 118, pp. 1050-

1065.

23

Williamson, D.L. & Rasch, P.J., 1989: “T'wo-dimensional semi-Lagrangian

Transport with Shape-Preserving Interpolation.” Mon. Wea. Rev., 117, pp.

102-129.

Zalesak, S.T., 1979: “Fully Multidimensional Flux-Corrected Transport Al-

gorithms for Fluids.” J. Comp. Phys., 31, pp. 335-362.

24

List of Tables

i

i1

iii

v

Errors for slotted cylinder problem using semi-Lagrangian method
with cubic-spline interpolation. 27
Errors for slotted cylinder problem using semi-Lagrangian method
with cubic-spline interpolation and monotonicity. 27
Errors for slotted cylinder problem using semi-Lagrangian method
with cubic-spline interpolation, monotonicity and conservation. . . 28

CPU times for the various schemes on different machines. 28

25

List of Figures

1

10

11

The shaded area shows the value of S; for the point P on a non-
uniform mesh, s w s s s v wmau semae v v ay @R e
Initial data for the rotation of the slotted cylinder problem.
Results after 6 revolutions for semi-Lagrangian method with cubic-
spline interpolation. L.
Results after 6 revolutions for monotone semi-Lagrangian method
with cubic-spline interpolation.
Results after 6 revolutions for monotone and conservative semi-
Lagrangian method with cubic-spline interpolation.
Initial data for Burgers’ equation.
Solution at 7' = 0.65 using quasi-monotone and conservative semi-
Lagrangian methods: s mes as wsman puiwewis ¢am s s
Control solutionat T =1.5.,

Solution at T' = 1.5 with basic semi-Lagrangian method.

Solution at 7' = 1.5 with quasi-monotone semi-Lagrangian method.

Solution at 7" = 1.5 with quasi-monotone and conservative semi-

Lagrangian method.

26

29

30

31

32

33

34

35

36

37

38

39

N°At | RFM RSM MAX MIN DISSER DISPER
96 1.00002 | 0.93879 | 4.51856 | -0.54069 | 9.2896x10~* | 3.5973 x10~2
192 | 0.99996 | 0.92709 | 4.55160 | -0.63111 | 1.3266x10~3 | 4.3818 102
288 [0.99989 | 0.91948 | 4.53480 | -0.62486 | 1.6244x10~3 | 4.8731x10~?2
384 | 1.00006 | 0.91357 | 4.48548 | -0.65015 | 1.8788x 1073 | 5.2231x 1072
480 | 1.00027 | 0.90860 | 4.49618 | -0.64298 | 2.1083x1073 | 5.4920x10~2
576 | 1.00032 | 0.90423 | 4.50556 | -0.61775 | 2.3204x1073 | 5.7112x10~2

Table i: Errors for slotted cylinder problem using semi-Lagrangian method with

cubic-spline interpolation.

N°At | RFM RSM MAX | MIN DISSER DISPER
96 1.00387 | 0.873845 | 3.99947 | 0.0 | 4.1257x1073 | 4.3240x10~2
192 | 1.00452 | 0.85508 | 3.99849 | 0.0 | 5.5065x1073 | 5.0314x 1072
288 | 1.00563 | 0.84259 | 3.99429 | 0.0 | 6.5539x1073 | 5.4966x10~2
384 | 1.00689 | 0.83307 | 3.99113 | 0.0 | 7.4235%x1072 | 5.8595x10~2
480 | 1.00801 | 0.82514 | 3.99011 | 0.0 |8.1949x1073 | 6.1660x10~2
576 | 1.00911 | 0.81842 | 3.98925 | 0.0 | 8.8848x1073 | 6.4380x10~2

Table ii: Errors for slotted cylinder problem using semi-Lagrangian method with

cubic-spline interpolation and monotonicity.

27

N°At | RFM | RSM MAX | MIN DISSER DISPER
96 1.0 | 0.86936 | 3.99990 | 0.0 | 4.4037x1073 | 4.3300x10~2
192 1.0 | 0.84970 | 3.99842 | 0.0 | 5.8975x1073 | 5.0384x10~2
288 1.0 | 0.83560 | 3.99398 | 0.0 | 7.1163x1073 | 5.5111x10~2
384 1.0 | 0.82431 | 3.99062 | 0.0 | 8.1843x1073 | 5.8790x 1072
480 1.0 | 0.81484 | 3.98967 | 0.0 | 9.1441x1073 | 6.1885x 1072
576 1.0 | 0.80657 | 3.98757 | 0.0 | 10.031x1073 | 6.4621x1072

Table iii: Errors for slotted cylinder problem using semi-Lagrangian method with

cubic-spline interpolation, monotonicity and conservation.

Method SUN Sparc 1 | CDC 4680 | Cray XMP
Spline only 597.5 88.4 17.3
Spline 4+ monotonicity 736.1 148.3 18.3
Spline + monotonicity + conservation 742.6 155.8 23.5
Percentage overhead 0.9 5.1 29

Table iv: CPU times for the various schemes on different machines.

28

Figure 1: The shaded area shows the value of S; for the point P on a non-uniform

mesh.

29

0 = A LV NOILO3S SSOHD

Initial data for the rotation of the slotted cylinder problem.

Figure 2

30

G0

0 = A LV NOILDO3S SSOHO

thod with cubic-

lan me

.

Results after 6 revolutions for semi-Lagrang

Figure 3

spline interpolation.

31

G0

0= A 1V NOILD3S SSOHO

..:.e. T

ril *
_ A

Results after 6 revolutions for monotone semi-Lagrangian method with

Figure 4

cubic-spline interpolation.

32

0= A LV NOILD3S SSOHO

1ve semi-

Results after 6 revolutions for monotone and conservat

Figure 5

Lagrangian method with cubic-spline interpolation.

33

Figure 6: Initial data for Burgers’ equation.

34

Figure 7: Solution at T = 0.65 using quasi-monotone and conservative semi-

Lagrangian method.

35

N N I

-0.5

[A B B B

0.0

L

0.5

Figure 8: Control solution at 7' = 1.5.

36

I

1.0

Figure 9: Solution at 7' = 1.5 with basic semi-Lagrangian method.

37

Figure 10: Solution at T' = 1.5 with quasi-monotone semi-Lagrangian method.

38

1.0

0.5
0.0
T T e 7 B A TR R [At R i it i i B
-1.0 -0.5 0.0 0.5 1.0
Figure 11: Solution at 7' = 1.5 with quasi-monotone and conservative semi-

Lagrangian method.

39

