THE UNIVERSITY OF READING

Linearising the Kepler Problem for 4D-Var
Data Assimilation

by

Laura Stanton

Numerical Analysis Report 3/2002

DEPARTMENT OF MATHEMATICS



Linearising the Kepler Problem

For 4D-Var Data Assimilation

Laura Stanton
MSc MNMAO

University of Reading

August 2002



\
g

I confirm that this is my own work, and the use of all material from other

sources has been properly and fully acknowledged.

s

Laura Stanton



Acknowledgements

Completing this dissertation would not have been possible without the help
and support of my supervisors, Amos Lawless and Ian Roulstone. I also wish

to thank Nancy Nichols for her input at the start of the summer.

Thanks are also due to NERC for providing the financial support without

which I would have been unable to do the course.

I'm also grateful to the staff of the maths department, in particular Sue
Davis who has looked after us all so well this year. I'd like to thank my
fellow MSc students, especially Matt and Sarah, who have helped make it

such an enjoyable time.

I would like to say thanks to my parents, who are still supportive and un-

complaining, even in my fifth year as a student.

Last but definitely not least, I'd like to thank my fiancé Luke who has kept

me sane this year, and looked after me even in my worst moods.



Abstract

We aim to investigate the preliminary stages of setting up a 4D-Var data
assimilation scheme for the Kepler problem. We investigate the dynamics
of the system and set up a non-linear model to describe the motion using
the Stérmer-Verlet method. Tests prove the scheme is a good choice for the
problem. We use this to produce a tangent linear model, the code for this
is tested and shown to be a correct linearisation. We test the conservation

properties of the linear model, thus demonstrating the possible viability of a

4D-Var scheme.
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Chapter 1

Introduction

4D variational data assimilation is a technique often applied in meteorology
and oceanography, including numerical weather prediction [4, 5, 10]. It incor-
porates observational data into a model over a given time interval and at the
same time satisfies a dynamical constraint. We shall be investigating a sys-
tem that is numerically easier than numerical weather prediction - Kepler’s
problem. This describes the motion of two bodies due to their gravitational
pull on each other. We will consider here the early stages of setting up such
a problem, and look at the effects the model has on the global properties of

the system.

4D-Var involves the minimisation of a cost function, using the model equa-
tions as constraints [7]. This function is a measure of the distance between
the model state and the observations, and the model state and the back-
ground. The minimum is thus the model solution which most closely fits the
observational data, whilst staying close to the background state. The first

step in finding this cost function and solving the minimisation problem is to
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create a tangent-linear model which describes the evolution, to first order,
of a perturbation dz in the vicinity of trajectory z(t). It is the aim of this

project to set up such a model.

To do this we first require a non-linear model which accurately describes

‘the behaviour of an orbitting body, and most importantly displays the same

physical characteristics as the real system. This is then linearised about %,
where X is a solution of the non-linear system. We usually use an incremental
form of 4D-Var that directly uses tangent linear model [?]. It is the behaviour
of these perturbations that we shall be looking at in this project. Once the
linearisation has been achieved, we shall look at how well the linear model
retains the global features of the continuous problem, such as conservation
properties. This information is important as one may wish to use conserva-

tion laws as constraint equations for the 4D-Var assimilation.

1.1 Chapter Outline

o Chapter 2: This chapter looks at the laws of Kepler, and the physics
behind them. It also includes the equations of motion that describe

the dynamics of the system.

e Chapter 3: Here we shall look at the numerical scheme that will be
used to produce the non-linear model. This model will then be tested

to see if it retains the global features of the problem.



e Chapter 4: This discusses some of the theory behind variational data
assimilation, and explains how the model is linearised. It also includes

tests of the linearised code.

e Chapter 5: Here we carry out some tests on the validity of the lineari-
sation, and whether the conservation laws can be used as constraint

equations.

e Chapter 6: Summarises the results of the project.



Chapter 2

| The Kepler Problem

" ' In this chapter, we shall list the three laws of Kepler and look at each in
N detail. We shall then go on to look at the equations governing the motion as

| a result of these laws, and look at the conservation properties of the problem.

2.1 Kepler’s Three Laws

In the early seventeenth century, following detailed observations and analysis
of the planetary motion within our solar system, Johannes Kepler deduced

his three laws relating to the motion of each planet around the sun.

e The planets follow an elliptical orbit, with the sun at one focus.

e A line from the planet to the sun will sweep out equal areas in equal

times.

e The square of the period of the orbit is proportional to the cube of its

semi-major axis.




These laws describe a system that is often referred to as the two-body prob-
lem. They govern the motion of two bodies that attract each other, neglect-
ing the effects of any other bodies in the system. This simplifies the problem
greatly as the adddition of a third attracting body can lead to extremely

complex motion.

For the purposes of this project, the problem will be further simplified. This
is done by choosing a coordinate system such that one of the bodies is fixed
at the centre, so that the motion remains in one plane. The system will also

be non-dimensionalised, as will be shown later in this chapter.

The material in these sections follows the argument given in Chapter 6 of

David Acheson’s book, From Calculus to Chaos [1].

2.1.1 The Ellipse

To begin we shall look at the first law, and the equation that describes the
path of an ellipse in the z — y plane,

X
StE=L (2.1)

Here a and b are the semi-major and semi-minor axes of the ellipse respec-
tively and are constants. From this it can be seen that a special case of the
ellipse occurs when a = b, this gives the equation for a circle. We can assume

that b < a. Typically the ellipse is described by its eccentricity, e, given by

the following formula,



e= (1 -~ ﬁ)% (2.2)

This measures how ’squashed’ the ellipse is. We can see that if the eccentric-
ity is set to zero, then a = b and the ellipse becomes a circle. The eccentricity
also tells us the position of the focal points which are at (+ae,0). The greater

the eccentricity, the more off-centred the focal points are.

2.1.2 Equal Areas in Equal Time

The second of Kepler’s laws arises from the fact that there is a central force.
To see this, we must look at the equations of motion. For ease of discussion,
we will use polar coordinates, (r, §), although later, for the numerical scheme,
it will prove more straightforward to use Cartesian coordinates. Although
we know that gravitational attraction obeys an inverse-square law, the law
of equal areas is true for any central force, so it is this general case that we

shall look at.

To obtain the equations of motion, we need to split the velocity and ac-
celeration into a radial component (away from the centre) and a transverse
component (at a tangent to the radial direction), as shown in figure 2.1. We
can consider this to be in the complex plane, therefore the position of the
body is z = x + iy or z = re®®. To get the velocity components we differen-

tiate with respect to time,
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dz ﬁ

il G e (2.3)
dr . dé .
= d—:e'o + rae‘(“% (2.4)

giving radial and transverse velocity components ( %f, r%%). To find the accel-

eration components we need to differentiate (2.3). The resulting components

2 2 2
are (%t—;‘ —-r (?ﬁ) ,2%%%% + r%t—f). Now using Newton’s second law, and by
considering that the force in the radial direction, f(r), is towards the centre,

and that there is no tangential force, we obtain the following equations

m (gt_ (%) ) -5, (2.5)

drdf  d%

To arrive at Kepler’s second law we need to first multiply (2.6) by r,

drdd ,d%
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Figure 2.2: Tllustration of Kepler’s second law, taken from [1]

The left hand side is the derivative of 726, therefore as the derivative is zZero,

this implies that

dg
2_ o R .
T = constant (2 8)

Now consider figure 2.2. The area swept out is bounded below by sector

OPP' and above by 0OQQ', giving the following inequality for the area

5r°60 < 64 < 3 (r =+ 61)28 (2.9)

We divide by 6t and allow all the & terms tend to zero. Both sides of the

inequality then tend to 1120 and we have

d4 1 ,d¢

- = —rf—, 2.1

it~ 2" @ (2.10)
By comparison with (2.8) we can see that the rate of change of area, is con-

stant, i.e. the line OP Sweeps out areas at a constant rate,

12
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2.1.3 Period-Radius Relation

The third law, states that 772 ox a®, where T}, is the period of the orbit and a
is the semi-major axis as defined previously. This arises from the fact that

the gravitational attraction is an inverse-square law.

GMm
2

F(r) = (2.11)

Here G is the universal gravitational constant, M the mass of the central
body, m the mass of the orbitting body, and r the distance between the two
bodies. For simplicity we assume that we have a circular orbit. The period is
thus %E, where v i8 the tangential velocity, also the centripetal force is ﬂr'ﬁ

By comparison of this with (2.11), and some manipulation we find

rese(2)" o

It can be shown that this also holds for the more general case of an ellipse,
where the radius, r, is replaced by the semi-major axis, a (see pages 78 to 81

of Acheson’s text [1]).

2.2 The Equations of Motion

However, for modelling purposes it is simpler to consider the problem in
Cartesian coordinates, resolving the force towards the origin. Consider equa-
tions (2.4) and (2.5) which we arrived at by resolving the velocity and ac-
celeration into radial and transverse components. If we instead use (z,y)

coordinates and set f(r) = E4™®, we resolve the force towards the origin

into a component €42 in the negative x direction, and a component Zm2

13
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in the negative y direction. As r = (22 + y2)%, we then have the following

equations of motion,

dq _ p

o =2 (2.13)
b o _ OMG (2.14)
de (‘11'|'f12)2

where (¢1,¢2) = (z,y), and p is the momentum of the orbitting body.

To further simplify the problem, we can introduce non-dimensiona,l variables.

By choosing q = 9 (thus p = B), and { = ( ) t, where d is the distance

to the origin at ¢ = 0, we get the following equations,

G .
dp q

o L. 2.16
& - @+ ar (2.16)

where ¢ and p are the non-dimensionalised position and momentum vectors
respectively. This mea.ns that distances are measured in units of d, while
time is in units of ( GM) . It is these final equations that will be used to
produce a model of the Kepler problem. From now on we shall drop the tilde
for clarity, and whenever we refer to position, momentum, distance and time,

it is in this dimensionless form.

14



2.3 Conservation Properties

It is also important to note that this problem has conserved quantities. The
two-body problem conserves both total energy and angular momentum fol-
lowing the motion [8]. This characteristic is intrinsic to the physical problem,
and will provide a useful test of the discretised equations. The expression for
the total enegy is the sum of the kinetic energy and the potential energy, in

its non-dimensionalised form this is given by,

1
E = = (p? + p2) — ——— = constant. 2.17
> )~ e 0
The angular momentum is given by
L = q;p; — p1¢2 = constant. (2.18)

15



Chapter 3

Numerical Scheme

When considering which scheme to use we are usually concerned with find-
ing one that is not only stable, but also minimises the local truncation error
arising from the discretisation, i.e. more accurate. However such methods,
although locally accurate, do not always account for the global features of
the system. Section 2.3 showed that intrinsic to the Kepler problem is the
fact that energy is conserved, thus it is essential that the model captures this
property. This can be illustrated by considering the effect of energy loss in a
model of the two-body problem [3]. The orbitting body would spiral inwards,
which is physically incorrect - planets do not spiral into the sun. Hence for

this problem accuracy is less important than the conservation properties.

3.1 Hamiltonian Systems

The Kepler problem is one example of a Hamiltonian system. Such systems

have a conserved quantity, the Hamiltonian. As discussed in section 2.3, for

16



the Kepler problem this is the total energy, i.e. the sum of the kinetic and

potential energies.

1
H= (pf +p§) — —— 1 = E = constant. (3.1)

(@ +a)s

DN} =

In addition to this, due to the central nature of the force, angular momentum

is conserved.

In recent years, the growth of geometric integration [3, 8] has attempted
to address the issue of preserving global features, and has produced nu-
merical methods which incorporate the physical constraints of the original
problem. For the two-body problem it is the underlying conservation laws
that are important. In other examples, it may be the symmetry of the prob-
lem, or perhaps asymptotic behaviour that dictates the evolution. One set
of geometric methods applied to Hamiltonian problems are particularly good
at conserving energy, and can also conserve angular momentum, these are
known as symplectic methods [3]. Because of this we will use a symplectic

method to model the two-body problem.

3.2 Numerical Scheme

Following previous work on the Kepler problem [3, 8, 13], we will use the
Stormer-Verlet method. This scheme was first used in the field of molecular
dynamics, and has frequently been used to model Hamiltonian systems. The
diagram below, taken from the paper by Budd and Piggott [3] illustrates

how well this method behaves, in comparison with the forward Euler and

17



Figure 1: Kepler trajectories computed with the Stérmer-Verlet method (SV), the forward Buler
method (FE). and the symplectic Evler method (SE). SV is included as a close approzimation to
what the true solution looks like. h represents the time step At.

Figure 3.1: Comparison of Numerical Methods for the Kepler Problem, taken
from [3)

symplectic Euler methods. We see that the Stérmer-Verlet scheme gives a
more accurate representation of the orbit and more closely follows the path
of the ellipse during each orbit. This is a symplectic Runge-Kutta method,
and is second order accurate. A higher order symplectic method could have
been chosen. This would have given more accurate results [11, 12], however
it is the global properties that are of most interest here and local accuracy
is less important. As this second order method retains the global properties,
we shall use this scheme as it is simpler to code. The method is taken from
a 1994 paper by Skeel and Biesiadecki [13], and approximates the following

set of continuous equations.

dp

ST F (3.2)
dq P

% - m (3.3)

18
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The discretised equations are

P, +1
Qn+1
Fn+1

Pn+1

- P, + gF,, (3.4)
= Qn+ hm‘anJr% (3.5)
= F(Qn+1) (3.6)
= Ppyi+ %Fnﬂ (3.7)

Here P is the approximated momentum vector, Q the approximated position

vector, and n indicates the n®® time level. F is the function that describes

the evolution of the momentum, and is specific to the problem.

For our model F(Q) = m Using this, and recalling that the model is
1 2

dimensionless, i.e here the masses are unity, we have our model equations.

0
S
+

[N

h Q

P+ -———— (3.8)
2(Qi2 + Q)
Qn + th+% (3.9)
Qn+1
(3.10)
(@iap + Q2121+1)%
h
—_ Pn+-;- + EF"_H (311)

These equations are then put into code. For our numerical experiments,

we begin by using the following initial conditions, these describe the body

starting from the perihelion - the point of closest approach. The resulting

19



Piot to Shaw Paths for Diferent Eccentrioties

{h=0.001, final tine=z0)
T

X

T ¥

i
-2 -1.5 -1

Figure 3.2: Trajectories of the orbitting body

orbit then has a period of 27.

s
/p]
Y41

D2

l-e (3.12)
0 (3.13)
0 (3.14)
l1+e
— (3.15)

Figure 3.2 shows the resulting path of the orbitting body for various values

of eccentricity. In each case the program was run to a final time of 20, corre-

sponding to just over three orbits. We can see from the diagram that for each

value of eccentricity the body follows the same elliptic path on each orbit.

This behaviour is exactly what we would expect for this simple two-body

problem.

20



3.2.1 Testing the Model

From figure 3.2 we can see that the program works, giving us an orbitting
body following an elliptical path with one focus at the origin. However as
discussed previously, a true test of its efficacy would be to look at the energy
and the angular momentum. The calculation of each of these quantities was
included at each time step of the program, so that a plot of their behaviour
with time could be produced. Initially a time step of A = 0.01 was used.

Figure 3.3a shows the behaviour of the energy, 3.3b the angular momentum.

From these we can see that there is no change of angular momentum as the
time progresses, this is a good indication that the code is working. However
there is a problem with the energy - the graph shows a periodic fluctuation
after multiples of 2, i.e. at the end of each orbit. This corresponds to the
orbitting body passing the point of closest approach. Here, due to the effect
of Kepler’s second law, the speed is at its greatest value. This means that
this area is modelled by fewer time steps, and thus we would expect a higher

error due to the numerical scheme.

The fluctuations should disappear by reducing the step size to A = 0.001.
An alternative way to improve the model would be to use variable step size,
so that there is a smaller step when the velocity is greater [13]. This would
perhaps be more efficient, however because the problem is relatively simple
computation time is less of an issue. A variable step size would complicate

the code unneccessarily therefore the problem will be solved by reducing h.

21



Plot to lliustrate Energy Conservation
(h=0.01, finai time=50, eccentricty=0.5)

3.3a: Angular momentum versus time, h = 0.01, eccentricity= 0.5

0.8865

Plot to Hustrate Angular Momentum Conservation
(n=0.01, final time=50, eccentricity=0.5)

0.8684) - ioonn

08883k oo itein

o . T

0.8661—"'--': ......:. . LT e : DR - ...E..

Angular Momerttum
e
g

3.3b: Energy versus time, h = 0.01, eccentricity= 0.5

Figure 3.3: Behaviour of energy and angular momentum in the model
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Plot to (Hustrate Energy Conservation
(h=0.001, final ime=50, eccentricity=0.5)

Figure 3.4: Energy versus time, h = 0.001, eccentricity= 0.5

Figure 3.4 shows the behaviour of the energy with the new value of h. This
time we can see that the energy is constant over time. From these two ex-
periments we can conclude that the model is a good representation of the
two-body problem. However for all future work we will ensure that the step
size remains at the smaller value to ensure that we have no problems relating

to the discretisation.

3.2.2 Testing the Sensitivity

In the following chapters we shall often have to add a perturbation to the
initial conditions. Before we can do this we need to see how sensitive the
model is to the initial conditions. We would run in to difficulties later if the
model required exactly those conditions given in equations (3.13) to (3.16) in

order to give stable results. We have therefore run the non-linear model with

23



various perturbed initial conditions, given by (Qp + 6Qo, Py + dPy) where
(QO’ PO) is given by (313) to (316)7 and (6Q076P0) = (’YQO)'YPO)’ where Y
is a scalar. We have also looked at the effect on ellipses with different values

of the eccentricity.

The results of these tests are shown by figure 3.5. From this we can see
that a stable ellipse is produced as long as the perturbation is sufficiently
small. However we can also see that the eccentricity has an effect on the size
of perturbation that can be tolerated. When we consider the example of a
circle, shown in figure 3.5a, we can see that the model becomes unstable only
if the perturbation reaches a similar magnitude as the original initial condi-
tions. However, if we increase the eccentricity, as in figures 3.5b and 3.5¢, we
note that the results become unstable at a tenth of the unperturbed initial
value, and this is more noticeable the higher the eccentricity of the ellipse.
Note that the scales on these graphs vary, so that the ellipses do not look
quite as they should, in particular figure 3.5a gives the results for the circle
despite appearances. These results should not however cause a problem, as

we shall mostly be working with smaller perturbations.
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Figure 3.5: Graphs to show sensitivity to initial conditions for different ec-

centricities; a, e=0; b, e =0.5; ¢, e = 0.9
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Chapter 4

Linearising Kepler’s Problem

This chapter will discuss the linearisation of the numerical model, in order
that we can test how well it conserves the global features. It is essential that
the linearisation behaves correctly if we want to use a 4D-Var assimilation

to input observational data into the model.

4.1 4D-Var Data Assimilation

Although we are not producing a complete 4D-Var assimilation scheme in
this project, it is important that we understand why we are testing the lin-
earisation. Much of the theory here is based on the lecture series by Bouttier

and Courtier [2].

Data assimilation involves the integration of observations into a model to
give a state that most accurately describes reality. However this is most
frequently used in numerical weather prediction and there are often huge

amounts of data, and also a huge state vector. A direct solution would in-

26



volve the inversion of a matrix that is too big to be achieved computationally.
Data assimilation involves trying to find ways to approximate the problem
to make it solvable. Variational methods do this by producing model states
that most closely fit the observations and the background state, whilst obey-
ing the model equations and retaining, if necessary, any physical constraints.
They work by looking for the analysis which minimises a cost function, J.
4D-Var data assimilation includes data that is distributed in time as well as

space, its cost function is defined as

J(x) = (x = %) "B (X — X3) + 3 (¥n — Hu[%a]) "R (Yn — HulXa]). (4.1)

n=0

Here the subscript n denotes quantities at observation time n. y, are the
obsevations and x,, the model state, H, is the observation operator, so that
¥n — Hy[x,] is the innovation vector, describing the difference between the
observations and the model state. The matrices R, and B are the observa-

tion error and background error covariance matrices respectively.

The 4D-Var problem is defined as the minimization of (4.1) subject to the

strong constraint that the model states, x,,, are a solution of
Xp = Mosn(Xe)  Vn, (4.2)

where x¢ is the initial state vector, and M, ,, is the model operator that
predicts the model state at time 7 from the initial conditions. Thus we have
a non-linear constrained optimisation problem that is numerically dfficult to
solve. In addition the minimisation algorithm is an iterative process that

involves the calculation of the cost function and its gradient at each step.

27



The minimisation can be made simpler by making a series of assumptions.

¢ The observation operator H,, is linearized,
e Causality,

e Tangent linear hypothesis.

For the purposes of this project, the first of these approximations is not
relevant. The remaining two, and in particularly the latter, are important in

the linearization stage, and so I shall look at these in more detail.

4.1.1 Causality

This assumption requires that the model can be expressed as the product
of intermediate model steps, reflecting the causality of nature. Usually this
is the integration of a numerical model with given initial conditions, with n
denoting observation time as before. The causality requirement is written

mathematically as,

Xp = Mp(Mpa (... (Mi(x0)) . ..)), (4.3)

where M,, is the non-linear model acting at the n** time step, and is defined
such that x; = M;(x;_;). If we consider our numerical model, we can see
that it does obey the causality assumption. The new values of the position
and momentum are found by applying the discretized model equations at
each time step to the values from the previous step, starting with the initial

conditions given in chapter 3.

We are therefore left to consider only the final assumption in our investi-

gation into the linearisation of the two-body problem.
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4.1.2 Tangent Linear Hypothesis

If we make the assumption that the model can be linearised, we find that the
minimisation problem is simplified to an unconstrained quadratic problem
that is far easier to solve. If we consider the Taylor expansion of a non-linear

model, M, around state X, we thus have
M(x + 0x) = M(x) + M'(x)ox + -;—M”(x)cfx2 +... (4.4)

The tangent linear hypothesis says that the model can be approximated by
retaining only the linear terms, neglecting terms of higher order. Therefore

if the linearisation is valid we have,
M(x + 0x) = M(x) + R(x)6x, (4.5)

where R(x) is the linear model, defined by R(x) = M'(x).

Thus we can see that it is vital that the assumption is shown to be valid.
If the linearization of the model does not retain the original features of the
non-linear system, such as conservation properties, then the tangent linear
hypothesis is not a good assumption, therefore the 4D-Var assimilation can-
not be simplified. The aim of the remaining part of the project is to demon-
strate that the Kepler problem can be successfully linearised, thus allowing
the possibility of a 4D-Var scheme.

4.2 The Linear Model

We now need to produce the linear model of the two-body problem. To do

this we need to consider again the equations of motion discussed in Chapter 2.
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Recall the non-dimensionalised, canonical form.

dq

D= (4.6)
dp .

—_— = 4.7
& (@+a)f il

These describe the time evolution of position and momentum. Now, if we

consider the time evolution of a general state vector, x, we thus have

dx

T =F(x). (4.8)

After discretisation, we have numerical model M, such that
x(t) = x(t+T) = M(t + T, t)x(t). (4.9

We linearise around X which is a solution of equation (4.8), i.e. we substitute
X = X+ 0x into the model, and drop non-linear terms. We can then find the

tangent-linear equation [14],

déx

E’ x(t) (SX (410)

where F'(x) is the Jacobian of F(x) with respect to state vector x(¢). This
describes the evolution of the perturbation, to first order, in the vicinity of

trajectory x(t).

We then discretise to find the tangent linear model R

ox(t) — ox(t+ T) = R(t + T, t)6x(t). (4.11)
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If we consider our system of equations, we can thus find the linear equations
by differentiating equations (4.6) and (4.7). The resulting non-dimensional

equations governing the evolution of the perturbation are,

ddgq

L (4.12)

dép dq 3q(q:10q: + q2d¢s)

— == + (4.13)
dt (2 +a3)* (% + a3

These are then discretised using the same numerical scheme, the Stérmer-
Verlet method, as for the non-linear model. Note that in practice we linearise
the discrete numerical non-linear model, rather than disretise the linearised
model. There are some cases where this distinction is important [9], however

in this example the result is the same. We then have our tangent linear model,

P — P, — h [ £ 3Qn(Q1n0Q1n+Q21 Q2 4.14
OPns} "T2garedl 2 @i+en) (4.14)
5Qui1 = 0Qn + héP,, 3 (4.15)
OF = Qn+1 3Qn;|:1§Q1ni15Q1ui1+Qan;tlJQ2uil! 4.16

e (Qlﬁ+1+qﬂﬁ+1) + (Ql?,+1+02?5+1) ( )
6Ppy1 = 0P, 1 + 30F 0y (4.17)

Here 0Q, and 0P, are the position and momentum perturbations respec-
tively at time level n. The vectors Q, and P,, are found using the unper-

turbed non-linear model.

31



4.2.1 Testing the Linear Model

In order to test the code, we need to check that the tangent-linear model
is the correct linearisation of the non-linear model in the vicinity of a given
trajectory. Consider a general state variable x, and perturbation éx. From

equation (4.4) we have,

M(x + 6x); — M(x);
[R(x)dx];

= 1 + higher order terms, (4.18)

where M is the non-linear model for two different initial conditions, R is the
tangent-linear model describing the evolution of the perturbation, and the
subscript ¢ denotes the % vector component. As we have seen the tangent
linear model is valid only if higher order terms are negligible, therefore if we
take the limit as dx tends to zero of the right-hand side and subtract one

then the answer should tend to zero, as shown in the following equation.

lim M(X + JX),' — M(X),‘
%40 [R(x)0x];

~1=0. (4.19)

In addition, this limit should be reached linearly, proving that the linear part
of the Taylor series is explained by the tangent-linear model. This is known

as testing the correciness of the model [14).

To carry out this test on the numerical model, we need to run the non-
linear model twice, once with initial conditions (Qy,Py), as given by equa-
tions (3.13) to (3.16) then with (Qq + 6Qq,Po + dPy). We also need to

run the tangent-linear model with initial perturbation vector (§Qo,6Py) =
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(7Qo, YPs), where 7 is a scalar. We are then able to calculate the left-hand
side of equation (4.19) for decreasing values of the initial perturbation. In
the model we run the model for eight initial perturbations, with y decreasing
by a factor of ten each time. The graphs of perturbation versus the value
found for the left-hand side, which we refer to as the error, have been plotted

using a logarithmic scale on both axes.

Figure 4.1 shows the graphs for three different values of the eccentricity,
e =0, e = 0.5, and finally e = 0.9. Each was run to a final time, ¢ = 20,
where the time is in the non-dimensionalised unit described in chapter 2. We
can see from these that in all three cases there is a definite tendency to zero
to the limits of computer accuracy, and this does occur linearly. However,
there is a noticeable difference between the three graphs. The circle (e = 0)
produces the best results, tending towards a smaller number for the smallest
value of v, and behaving more linearly for larger y than the higher eccentric-
ity examples. Thus giving the idea that the higher the eccentricity, the more

non-linear the behaviour of the Kepler problem.

Figure 4.2 gives correctness graphs for various lengths of model run, t = 5,
t=20, ¢ = 50. We can see that for a shorter run time, there is a tendency
towards a smaller value for the error at lower 7 values, and the behaviour is
more linear for larger initial perturbations. The longer the run time, the less
linear the behaviour for larger v and for small y the error is larger than with
a shorter run. This is as we would expect, as any errors due to linearisation

would become magnified with time.
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From these tests we can see that the tangent-linear model code is correct.
Even for the longer runs, or larger eccentricities, the linear tendency towards
zero is pronounced enough to reach this conclusion. We are now able to
carry on and see if the linear model is a good approximation for the non-

linear problem, and whether it conserves the global properties.

36



-

—

[

Chapter 5

Numerical Experiments

We have found that the code for our linear model of the two-body problem
is correct. However this does not neccessarily mean that the tangent linear

hypothesis holds for this problem, we need to do some further tests.

5.1 Validity

The validity of the model is the length of time under which the linear model
is a good approximation of the non-linear problem. There are of course errors
associated with linearisation, and these will increase as time progresses. The
model is valid only where the linear model mirrors the behaviour to a reason-
able degree of accuracy of the original problem. To do this, we need to track
the evolution of a perturbation in both of our models. We run the non-linear
model with two sets of initial conditions, (Qo, Py) and (Qo+6Qo, Po+JPy),
where vectors Qg and Py are the same initial conditions as listed in equations
(3.13) to (3.16), and the initial perturbations, (6Qy,Py), are as described

in section 4.2.1. The same initial perturbation is used as the initial con-
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ditions for the tangent linear model, this also uses the data from the first,
unperturbed run of the non-linear model as the linearisation state. We then
compare the result of the tangent linear model, which returns values for 6Q
and 0P at each time step, with the difference in position and momenta pro-
duced by the two model runs of the non-linear scheme. The validity time
is thus the point at which the non-linear and linear model results begin to
separate greatly. We have done this for various sizes of ¥ and eccentricity.
The graphs below show only the results for the Q; component in most cases,
however we include the graph of the P, component for v = 0.01, e = 0 (see

figure(5.3)), to illustrate that the other vector components behave in a very

similar manner.

Figure 5.1 illustrates the effect of changing the size of the perturbation,
whilst keeping the eccentricity fixed, e = 0. We show the results for y = 0.1,
¥ = 0.01 and v = 0.001 respectively. The solid line indicates the results
given by the non-linear model, the dashed line those produced by the tan-
gent linear model. These graphs confirm that the validity time is longer for
smaller perturbations. This is as we would expect, the smaller the size of
the perturbation, the smaller the size of the non-linear components that have

been neglected in the linear model.

Figure 5.2 shows how changing the eccentricity effects the validity, whilst
fixing v = 0.01. We use this value of 7 because it is large enough to observe
differences in behaviour due to the change in eccentricity, but small enough

to avoid the possible instabilities we noticed in figure 3.5.
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Figure 5.3: Evolution of the P, perturbation for the non-linear and linear

models, for different v (h = 0.001, e = 0, v = 0.01)

We have shown the results for e = 0, e = 0.5 and e = 0.9. From these we see
that the validity time is shorter for larger eccentricities. For e = 0, the two
models exhibit similar behaviour, and the validity time is long. However for
e = 0.5, the linear model stops being a good representation for the non-linear
model after only two orbits, after this the behaviour becomes increasingly dif-
ferent as the perturbations evolve. This is exaggerated further for e = 0.9,
here the linear model departs from the non-linear almost immediately, and
produces unstable results. This qualitative relationship between validity time
and eccentricity backs up the results found in chapter 4, giving further evi-

dence that more eccentric ellipses exhibit more non-linear behaviour.

Figure 5.3 illustrates the evolution of the P; component in both the non-
linear and linear models. By comparison with figure 5.1b, we can see that

the position and momentum perturbations behave in a very similar manner.
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5.2 Conservation Properties

We have discussed throughout this report that one of the most important
features of this problem is its energy and angular momentum conservation
properties. We may wish to use these conservation laws in order to intro-
duce observations into a 4D-Var assimilation scheme. For example, we may
accurately know the position of the orbitting body but not its momentum.
"The two conservation laws would then allow us to find the momentum and
include it in the assimilation. However this will only be accurate if the linear
model retains the same conservation properties. In order to carry out this

test we need to linearise the energy and momentum equations.

Recall equations (2.17) and (2.18), energy is given by

1
E == (p? + p}) — ————— = constant, (5.1)
3 0 +24) (¢ + ¢3)?
angular momentum by
L = q,p» — p1gs = constant. (5.2)

In thisOnce linearised and discretised, the expression for the linearised energy

is as follows,

PSP, + PP + QIJQ; + Q:(in = constant, (5.3)
Q1+ Q3):

and for the angular momentum we have

(5Q1P2 . P1(SQ2 + Q16P2 e 6P1Q2 = constant. (54)
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The equations above are found by linearising around @ and p. We can
also find non-linear expressions for the energy perturbations, obtained by
calculating,

6E = E(q+ 6q,p + 6p) ~ E(q, ), (5-5)

where E is the non-linear expression for energy given by (5.1). We can find

a similar expression for the non-linear angular momentum perturbation.

We can now do four different tests, looking at the behaviour of the energy
only. We will later include an example of the angular momentum to show
it behaves in a similar manner. We will be investigating the two different
expressions for the energy perturbation, the linear expression for JF given
by (5.3) which we shall refer to as E;,, and the non-linear expression, Eyy,

given by (5.5).

We again carry out two non-linear model runs, with the same two sets of
initial conditions as described in section 5.1. This gives us our non-linear
perturbations for the position and momentum. We also run the linear model
to find the linear position and momentum perturbations. We can thus investi-
gate the behaviour of Eny with both the non-linear and linear perturbations,

and Ep;, for both sets of data, thus giving us our four tests.

Figures 5.4 to 5.6 show the results for the energy for different eccentrici-
ties, e =0, e = 0.5, e = 0.9, fixing v = 0.001. Each figure is split into a and
b. Figure a shows Ey; with the non-linear data and Ep;, with the linear

data, b shows the results from all four of the tests.
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Because the non-linear energy expression with the linear data swamps figure
5.6b, figure 5.7 does not include this so that we can distinguish the behaviour
of the linear model with the non-linear data. Figure 5.7 shows the evolution

of the energy perturbation as given by FEy;, with the non-linear data.

We initially consider the results for the circle, shown in figure 5.4. Fig-
ure 5.4a shows the behavior of Eyy with the non-linear perturbations, and
Ey;y, with the linear data. We can see that these behave as we would expect,
they remain constant in time with values very close to zero and the difference
between them is negligible. When we include Ey;, with the linear data, and
Eyp;n with the non-linear perturbations, we can see that they behave in a very

similar manner, both diverge from the constant line, and at a similar rate.
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This is because the linear and non-linear perturbations are almost identical,

as we can see in figure 5.1.

When we consider figure 5.5, with e = 0.5, we notice that the behaviour
is different. If we consider figure 5.5a, we notice that the energy perturba-
tions are no longer constant in time. There is a fluctuation occurring after
multiples of 2, i.e at the perihelion, this could be the beginning of an in-
stability due to the discretisation. When we carried out the test of energy
conservation in our non-linear model (see section 3.2.1) we were looking at
the energy, here we are considering the energy perturbation, thus the numbers
are of a smaller magnitude. Thus we may now be seeing a problem with the

discretisation which was not previously apparent.

When we look at figure 5.5b, we can see that again FEy; with the linear
data and Ey;, with the non-linear, diverge from the constant line. This time
however Ey; with the linear data moves away at a slower rate, suggesting
that the errors due to linearisation are worse when linearising the expression
for energy, than when linearising the actual model. The peaks that are ob-
served here are probably due to the fluctuations in figure 5.5a, and indicate

that perhaps there is an instability.

Figures 5.6 and 5.7 illustrate the results for e = 0.9. By looking at the
y-axis scale we can see that the system has become unstable. If we consider
figure 5.2, we had already observed instabilities associated with this highly

eccentric orbit. Figures 5.6 and 5.7 are likely to be a result of this behaviour.
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Although there were problems with large eccentricities, we can still consider
the circle when looking at the conservation properties. From this we can see
that we would have to be cautious when considering the possibility of using
the conservation laws to incorporate observations into a 4D-Var scheme. To
do this we would probably want to put linearised data into the system using
Eyy,. Our results show this is not a conserved quantity, and that we would
be adding energy to the system, thus destroying the conservation of energy

within the non-linear model.

As the behaviour for the angular momentum is very similar to the for
energy, we have not included extensive results. However figure 5.8 illustrates
this similar behaviour by showing the angular momentum perturbation evo-

lution for all four tests, with e = 0.5. We can see by comparing this figure
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to figure 5.5b, that although the angular momentum perturbation peaks are
slightly smaller, they occur at the same time as the energy perturbation

peaks.
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Chapter 6

Conclusion

To conclude we shall discuss the success of the various stages in setting up the
linear model. We began by producing a numerical scheme to model the non-
linear equations of motion. The Stérmer-Verlet method was decided upon,
and this second order Runge-Kutta scheme proved to be a good choice, suc-
cessfully conserving both angular momentum and energy once the step size,

h, was made sufficiently small.

We then went on to linearise this model, in order to investigate whether
the Kepler problem could be successfully linearised. We carried out correct-
ness tests on the code to show that it was working. These tests behaved
exactly as we would expect, as the initial perturbation decreased in size, we
noticed that the linear model and non-linear model values converged, and
that this happened linearly. We thus concluded that the code was correct,

and we could look at the viability of the linearisation.

The next test involved looking at the validity time, this is the period over

51



which the linear model is a good representation of the non-linear model.
To do this we compared the evolution of the perturbations in each case.
We looked at the effect of changing the size of the initial perturbation, and
found, as expected, that the smaller this initial perturbation, the longer the
two models coincided. This again confirms that the linear model is correct.
We then went on to investigate the effect of changing the eccentricity. We
noticed that the validity time for the case of a circle was much longer, and
that even at later times, after several completed orbits, the linear model be-
haviour was still similar to that of the non-linear model. However as the
eccentricity increased, the validity time decreased, and for highly eccentric
orbits instabilities were observed. Thus we can see that the non-linear com-

ponents of the Kepler problem become larger as the eccentricity increases.

Finally we looked at four different cases for energy conservation, Ey;, using
both the non-linear and linear perturbations, and Ey,, with the two different
sets of data. We noticed that for a circle, the two expressions for energy were
conserved if their appropriate data was used, although the two values differed
slightly. However if the opposite data (e.g. Eny with the linear perturba-
tions) was used the energy begins to diverge, for a circle the magnitude of
the divergence is similar because the linear and non-linear pertrubations are
of a comparable size. As we increased the eccentricity, the divergence was
greater, and we began to notice fluctuations in the results, indicating possible
instabilities. For highly eccentric orbits the problem became unstable. This
is possibly a result of discretisation, and could possibly be overcome by im-

plementing a variable step size scheme. This would allow the region around
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the perihelion to be modelled by a greater number of steps, thus improving

the model accuracy.

[7 | We can see from this that although the Kepler problem can be successfully

r linearised, particularly for more circular orbits, we must still be cautious
‘ l when considering the use of the conservation laws to incorporate data into
an incremental 4D-Var scheme. Were these to be used, we may destroy the
conservation properties of the non-linear model, and add energy into the sys-

[ E tem.
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