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NON-SELF-ADJOINT PROBLEMS

K. W. Morton

1. INTRODUCTION

Finite element methods now dominate the solution of those elliptic problems

that are derivable from quadratic extremal principles. Their practical development
has been carried out by engineers under strong guidance from physicel principles
and subsequently their mathematical structure and error analysis studied in detail
by mathematicians - as general references see Zienkiewicz (1877), Babutka & Aziz
(1972), Strang & Fix (1973), Oden & Reddy (1978), Ciarlet (1978). From this work
it became clear that the methods could be very widely applied, using a variational
formulation referred to by the two groups respectively as 'the method of weighted
residuals’ or 'the weak form of the equations’.

However the success of these methods has sprung very largely from their
optimal approximation properties. These follow naturally from extremal principles
but are much harder to achieve for general elliptic problems that are not derived
in this way and which are therefore no longer self-adjoint. It is this question
that we shall consider in this short course of lectures. It is one of the most
important and active areas of current research in the development of finite element

methods.

1.1 A self-adjoint example

Consider the classical Dirichlet problem for Poisson's equation on an open

polygonal domain  of R2 with boundary T :

-92u = ¥ on Q (1.1a)
D on I‘. (1-1b')

u

Then u 1is also the solution of the extremal problem:

minimise I [L]vv]|2-fvide (1.2)
veHé(Q] Q
where we denote by H"(Q) the usual Sobolev space of functions with,square
integrable mth derivatives over Q and by HE(Q] the closure in this space
of the set of functions whose support is confined to the interior of Q, i.e.
which are zero on the boundary. (More generally we shall use the latter notation
to denote functions which are zero on that part of the boundary where Dirichlet

data is given).
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h .
Suppose now we triangulate @ and denote by S the set of functions V

0
which are continuous on §, linear in each triangle and zero on the boundary (in

general that part with Dirichlet datal): that is, we can write
V{x]) = oV, o6, (x), (1.3)
x) = Legy Vy 4yl

where the summation is over all the interior vertices of the triangulation and
.{¢j} are the basis functions which are pyramid-shaped: i.e., ¢j is piecewise
linear, unity at node j and zero at all other nodes. Then the Ritz-Galerkin

approximation U to u d4s given by

minimise f [i|wv]2-fvide (1.4)
VeSD 2

that is, using the notation (-,*) For the L2 inner product over @ of either

vectors or scalars, we have the Galerkin equations

h
(W, ¥.) = (£, ¢,) Voo, e sp. (1.5)

Similarly, from (1.2) u satisfies the weak form of (1.1)
(Vu, W) = (f,w) V we Hé[QJ. (1.6)

Since SE < Hé(ﬁ), i.e. we are using a conforming finite element approximation, we

can take ¢i for v in (1.6) and subtracting (1.5) obtain

_ . h
(V(u-U), v$;) = 0 V$; e Sy (1.7)
It follows, after a little manipulation, that
[lveu-u]]2 = 3] veu-va ]2, (1.8)
= Vr-;S0 N
where |[|+|| denotes the L2 norm. This 1is the fundamental optimal approximation

property of U.

tn practical applications it is often the vector field Vu which is of most interest;
and VU is the least squares best fit to it from those piecewise constant approx-
imations obtained by taking gradients of functions in Sg. By comparing with uI,
the piecewise linear interpolant of u, one readily finds that VU is generally
accurate to 0(h), where h is the maximal diameter of the triangles in the triang-
ulation (and it is assumed that the latter satisfies a regularity condition such as
all the angles are bounded from zero, or the weaker condition that they are bounded
from w - see Strang & Fix, 19873, and Ciarlet, 1878.) On the other hand, from a
well-known argument due to Aubin and Nitsche, for the error in U we have

||u-U|] = 0(h2). More generally, if SB had contained all functions which were
piecewise polynominal up to degree k in each triangle we would have

[u-ul| = or-*N but [|vee-ud]] = ocnky.
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However, a most important practical consideration is that superconvergence
phenomena enable  Vu to be estimated with an 0(h?) error. For bilinear
elements on rectangles W approximates Vu to 0(h?) at the centroid of each
element, a fact that has long been exploited by engineers and recently established
rigorously and extended to more general quadrilateral elements by Zlamal (1977) -
see also Zlamal (1978), Lesaint & Zlamal (1979). Although for triangular elements
this extra order of convergence does not generally occur at the centroids, it has
long been believed (and supported by numerical evidence) that second order accuracy
can be recovered from gradients of U along each triangle side though this has not
yet been proved (see Strang & Fix (1973) p169).

Without such superconvergence, which stems from the optimal approximation
property, finite element methods would hardly be competitive with traditional
finite difference methods, where similar divided difference results hold - see

for instance Thomée & Westergren (1968).

1.2 Diffusion-convection problems

In studying the effects of losing self-adjointness we shall concentrate on

the important class of problems called diffusion-convection problems:

- V.(aVu - bu) + cu = f in @ (1.9a)

g on TD , 9u/9n = 0 on PN' (1.90)

where T = PdJPN , Fd1FN =g and PD # @. Here the p051t1v§ scalar a can be

u

regarded as an isotropic diffusion coefficient, the vector b a convective velocity,
 a given source and ¢ a depletion rate. Equation (1.8a) represents a con-
servation law for the quantity u which might, for instance, be the concentration
of a pollutant, the temperature of a coolant or density of a population: when
b#0 it is not derivable from an extremum principle.

We may define an approximation U(x) directly from Galerkin equations like

(1.5), after first dealing with the inhomogeneous Dirichlet data on T To ensure

D"
we maintain a strictly conforming approximation, we assume that the triangulation

has been carried out so that PD consists of a set of triangle sides with no more

than one from any triangle: then define G(x) as the piecewise blended inter-

polant which equals g(x) on PD’ varies linearly in each of these triangles on the
h
UJ
consistently with earlier usage, as the set of piecewise linear functions which are

rays from PD to the vertex not on FD and is zero elsewhere. We define &

and Sh as

Zero on PD’ £

sp = (V(x)= 6x) + W(x) | Ve s"y. (1.10)
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Then the Galerkin approximation U to u is given by

(WU, ¥6,) + (7-(0U) + cU, ¢;) = (f, ¢,) Vo, € SE- (1.11)

It is readily seen that u also satisfies these equations but, instead of an

optimality property like (1.8), the most that we shall be able to deduce about

the error is the following: defining the energy norm ||'||AC for the symmetric
part of the operator by
HVHE\C = {alv, W) + (ov, v), (1.12)
we obtain for some constant K
N 2 inf B 2
||u ull2; = VESEIIU vilz. . (1.13)

The constant K will be bounded independently of h so that Vu will still
have overall 0(h) accuracy, and indeed U will be 0(h2?) accurate, but the
superconvergence phenomena are lost. Moreover, K depends on the local mesh Pé%let
numbers defined as bh/a, where b is the magnitude of b, and these may be very
large indeed. 1In practice the approximation may become very poor, exhibiting

spurious oscillations which make it worthless.

1.3 A one-dimensional model problem

The origin of these oscillations can be exhibited by a simple model problem:

-au'' + bu!' =0 on (0,1) | (1.14a)
u(0) =0, ul1) =1 ) (1.14b)

where a,b are positive constants. The Galerkin equations (1.11) for a piecewise
linear approximation on a uniform mesh of size h with Jh = 1, reduce %o
-1 1

. 1 - N _qel =
h (Uj Uj_ql(a+£bh) + h (Uj+1 Uj)( atibh) = 0 (1.15a8)
i.e. -s2U, + (bh/a) A U, = 0 , =1,2..., J-1.
82U, 0Y; J
The central differences here, &§2U, = U, . -2U.+U. and A U.=3(U, ,-U., ,), are
J s S ey 0] SRS NiF

typical of a Galerkin approximation and it has long been recognised that they may
give rise to spurious oscillation when bh/a is large. In fact, we can salve this

system explicitly to find for j=0,1,...,J and bh/a # 2
2 -

—‘ uD a _ 2"'bh/a
TR Y T e (1.16)

When bh/a = 2, ‘we have Uj =0 for J =20,1,...,J-1 which is actually the exact
solution of the reduced problem obtained by setting a = 0 in (1.14a): all the

oscillatory solutions obtained from bh/a > 2 are entirely spurious and if one

attempts to approximate the singular perturbation problem, a - 0 with bh fixed,
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one finds that the Galerkin equations become singular when J  is even and then
Uj + o for j odd. The exact solution of (1.14) is
Gox/a_

ulx) = 2 i ,» 02 % <1, (1.17)
Gb/a 1
giving an ekponential boundary layer at x s 1 as a - 0, and (1.16) is a reasonable
bh/a

approximation only so long as Uy is a reasonable approximation to e
It might be argued, see for instance Gresho & Lee (1978), that it is un-
reasonable to attempt to approximate (1.14) when h/a is large without a local mesh
refinement near the boundary layer. But in more complicated problems such layers
are difficult to locate and the refinement expensive to implement. Thus most would
agree that it is valuable to have available methods which will give good accuracy
away from the boundary layer while using ccarse meshes. What is certainly true is
that, in various norms, the best piecewlse linear fit is capable of giving an
adequate representation of the solution under these circumstances: and with an
appropriate choice of norm it can even give valuable information about the boundary
layer, such as its half-width, Unfortunately, the Galerkin method does not give
an approximation which is anywhere near optimal in any sense.
It should be noted in the above problem that, if the boundary condition at
x = 1 were the Neumann condition, the exact solution would be identically zerc.
The Galerkin equations would have an extra equation UJ = UJ-1 = 0, obteined from
¢; in (1.11), and their solution would also be identically zero for all bh/a.
Thus the problem of spurious oscillations is a product of both the lack of self-
adjointness and the boundary condition. We shall see however, in an example in
Section 4, that even for a Neumann boundary condition the Galerkin method gives very

pocor accuracy compared with other methods.

1.4 Upwind differencing and Petrov-Galerkin methods

One-sided or upwind differencing has long been used in difference methods to

0 in (1.15b) by the

backward difference operator A_ can however give rise to excessive false diffusion:

avoid the oscillations described above. Completely replacing A

writing A = A, - 162, the equations for U become

0
-(1+1bh/a) 62U3 + (bh/a) A u; =0, J=1,2,...,3-1 (1.18)
with the solution of the same form as in (1.186) but with g replaced by
u_ =1 + bh/a. This is clearly always monotone but, for instance, for bh/a = 2 gives

U3;1 ® 1/3 rather than u(1-h) = 8_2, a typical example of the enhanced diffusion

apparent from (1.18).

More sophisticated schemes, using exponential fitting, go back to Allen &

Southwell (18955): here the technique gives
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-(‘4«»5gbh/a]62u‘f + [bh/a]AOU? = 0, 321,2,...,7-1 (1.19)

Whers E = cath (ibh/a) - (ibh/al™), - (1.20)

which exactly reproduces the nodal velues u(jh) of u. Moreoever, recent results
have shown that by the use of local values of & 1in a variable coefficient problem
one can obtain an approximation which is uniformly accurate at the nodes as bh/a
*> « - see Doolan et al. (1980) as a general reference for these developments.

Such results relate to one-dimensional problems. In higher dimensions

difficulties occur with cross-wind diffusion, that®is enhanced diffusion perpen-

dicular to the velocity vector b. Much less progress has been made here with finite
difference methods.

A large part of the development of finite element methods for diffusion-
convection problems has been inspired by the earlier work on difference methods.
Several techndques for generating upwind schemes have been proposed and used guite
successfully on two-dimensional problems. We shall consider these in more detail
in Section 3. The earliest of them (Christie et al.[1976] is based on a general-
isation of the Galerkin formulation in which a different set Th of test functions

0
wi, is introduced in (1.11) instead of the trial function basisg {¢i}: this

'Petrov-Galerkin approximation is then given by

—

h
(aYU’ le) & (Y"“_jU) + cl, ]’Ui)= (‘F> ‘Pl) V‘pieTo- [1_21)

The problem is how to choose TE for a given chaice of Sh. Furthermore Wwhat
criterion should be used for the assessment of accuracy and how should error bounds
be derived? In particular, how closely should one adhere to the finite difference
viewpoint, with the attendant emphasis on approximating nodal values and the
awkwardness of estimating accuracy through estimating truncation error and bounding
the inverse of the discrete operator?

All of the methods described in Section 3 %o some extent adopt the finite
difference viewpoint. 1In Section 4 an alternative approach is considered which is
based on approximately symmetrising the bilinear form in (1.11). This leads to
a near-optimal approximation to u in an integral norm which results naturally
from the symmetrisation. We shall also show that the Section 3 methods can be regarded
as approximate symmetrization in norm II-{IAC. Thus the next section is devoted
to developing the mathematical framework needed to study variational problems of
the diffusion-convection type together with their approximation by generalised

Galerkin procedures.
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2. VARIATIONAL FORMULATION AND APPROXIMATION

2.1 Abstract problems and their approximation

The theoretical basis for Petrov-Galerkin methods is provided by the following
generalisation of the Lax-Milgram lemma given by Babubka & Aziz (1972).

Theorem 2.1 Suppose B(-,+) 1s a bilinear form on Hq X H2, where H1 and

H2 are real Hilbert spaces, which 1s continuous and coercive in the sense that

there exist positive constants C, and C such that

1 2
(i) [Blv,w)| < Cq|]v||H1l|u|]H2 WeH,,  ViweH,s (2.1a)
(i1) 4inf sup '{BFT’W?{ i 2 C, (2.1b)
) v W
vcH1 weH2 H1 H2
(111} sup 150y wy]>0 Vw70, (2.1¢)
VeH1
Then for VFeHé, there is a unique quH1 such that
= i/
B(uo,wl fw) weH,, (2.2a)
and
||uo||Hq < ||‘°||Hé/‘32 . (2.20)
Proof By (2.1a) and the Riesz representation theorem, for each VGH,| there
is a Riesz representer Rv of B(v,w} in H2 such that
(Rv,w), = Blv,w) yveH,, yweH (2.3a)
H2 1 2 .
and also that
(2.3b)

[1R]] <C
LH, H)S 1

That the mapping R:H, - H2 is closed follows from the closed graph theorem:

/]
furthermore, it follows from (2.1b) that

sup |Blv,w)
R - =l > ¢ ; (2.4)
H V||H2 weH, %Iw [H2 2 HV”H1

Then by (2.1c) the mapping R must be onto: for otherwise, by the projection
theorem, Jw*#0 such that

* = a
(Rv,w )H2 0 VVCH1

which contradicts (2.1c¢). From (2.4) we then have

_1 ,
IR I|L(H2,H1) < 1/C, (2.5)

is the Riesz representer of f in H we can write u =R~1w

and if w 5 0 0

0
to obtain (2.2a,b).®
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Corollorary 1 If H, is a subspace of H, it is sufficient to replace (2.1b)
by taking the supremum over H1 and requiring that
2
|Blv,v)| = 82v||v||H1 yve, . (2.86)
Corgllorary 2 If H1 = H2 and (2.B) is satisfied then Theorem 2.1 reduces

to the Lax;Milgram lemma.

Theorem 2.2 (A generalisaticn of céa's lemma). Suppose B(-,+) on H1 X H2,
f and U, are as in Theorem 2.1 and that Mq, M2 are subspaces of H1, H,
respectively such that, for some positive constant Cg :
!
(1) inf sup [T$?f!ﬂ?hhwm—-z ch s (2.7)
H H
VeM1 WEMZ 4 H2
(i1)  sup [B(V,W)| > O VWAD, WeM,. (2.8)
VeM
1
Then there is a unique UOGMA given by
B(UO,W) = (W) vWeM2 (2.9)
and moreover,
| M] inf _
el [1+c1/c2] venl 1971 1y, (2.10)
Proof With Rv defined as in Theorem 2.1, let P be the orthogonal projection
H2¥M2 and define S, in a similar way to R, as the mapping from ﬁ1 onto M?
such that
(SV,W), = B(V,W) VVeM, , v Well, . (2.11)
H2 1 2 )
Then S 1is the restriction of PR to FH because for Veﬁq, Wéﬁé
(PRV,W) , = (RV,W) = B(V,W).
H H
2 2
Hence with Wq the Riesz representer of f in H2 and PwO the representer in
My, we can set U, = S-1Pw0 = S_1PRuO to obtain (2.9) from (2.11). Moreover,
suppose V is any element of M1, so that S"1PRV =V, then we have
g UO = (I-S PR)u0 = (I-S PRJ(UU VY
. -1 inf
o HugUglly s [lT-ser[ 0, THug-vlly
1 1 1
M, inf
< [1+C, /] V€M1||u0-v||H1 . 3B
Corollorary 3 If H1 is a subspace of H2 and (2.8) holds and if M1=M2.

7
2 reduces to Cea's lemma.

4 thus, by (2.1a) and

then Theorem 2.
B(UD—UOJV] = 0 VVGM

For, from (2.2a) and (2.9),
(2.6),
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1

1, - . -1 ~ _
||uD~UU||a1 < (C,)  Blug-Uys ugYg) = [Cé) Blu,-Uge g V)
< th/céJl|u0—u0|[H1||u0-v||H1 ¥ VeM, .
That is, (2.10) for this Galerkin case is replaced by
, tnf .
||uD—UO||Hﬂ < (c,/c)) \1/2M1|[u0-v||H1 , (2.12)

Self-adjoint case. If B(+,*) is symmetric as well as coercive, it can be
used to define an inner product and thence a Hilbert space H so that we set
H1=H2=H. Then (2.1a) is replaced by the Caughy—Schwarz inequality |(v,w]H|
< |vllyllwll, with €;=1 and (2.8) holds with CL=1. Thus, in Theorem 2.1,

R becomes the identity mepping and the solution uD is just the Riesz representer

of £ in H. In the Theorem 2.2, S becomes the orthogonal projection of ™

/I
onto ﬁz and SUD=PuD. Moreoever, we can interpret Cg as measuring the extent
to which elements of M& can be approximated from ﬁé : from (2.7) we have Cg <1
and, vV vemq,

M
[Vl = [lv-sv] |2 + [|sv]3 = [[v-sv[]F + c02[vyl ]2
. ) M
ice.  ||v-sv[]2 s [1-(c)21] V] ]2 Y VeM,. (2.13)
If we denote by UB the orthogonal projection of Ug onto ﬁa, i.e. the Galerkin
approximation, we have
| lug-Upl 13 = [ug-Ugl 13 + [ug-Ugl 13 (2.14)

Then, rewriting the last term, recalling that (uU—UU,W)H =0 Vv WeM2 and using

(2.13), we obtain

(u.-U.,Ux-U_)

- 2
Hug-Ygltl 0¥ Y ’H

o
o) 4

M 1
||u0—uol|H[1-(cz) 1 ug-ugll,

1"

(uO—UO,(I—S)[UB-U

IA

M 1
: *_ < - 272 -
i.e. IIUO UUIIH < [1 (C2] 1 ||u0 UO]IH. (2.15)
Hence we obtain the error bound for the Petrov-Galerkin method in this case,

< t1/cg) [ Tug-ug (2.186)

IIUU_UDIIH = IIH‘

This is sharper than the bound obtained by merely putting C1 =1 in (2.10).
In particular, as Cg + 1 to give the Galerkin case, this error constant
correctly tends to unity.
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Tt was the fact that R became the identity which enabled this argument to go
through so simply. In the general case, we could introduce the adjoint operator
R* ta R and consider approximating V€M1 from R*M2 + 1f erﬁZ gives the best

approximation,

Hy-re 2 = Hllz — lre 1z
1 1 1
and
[|Row || = sup C(R*WR™W)y, - sup (V,RT),
v H We M, 1 WelM, Tl
{ 2 T[R w||H1 2 [[R wHH1
, M
. Bwsw L ISR, o B2y,
||R"‘SV||H/l E;W[EVIIHZ Ca !
) _ M o
i.e. ][v—R*wV|]2H1 < [1—[c2/c112]||v1|a1 v Vell, . (2.17)
Also from B[uO—UO,WJ = 0, VweMz. we have
(ug-Ug: R*W),, =0 v Wel,

/I
so that if UB is the orthogonal projection of Ug onto M1 (but not now the

Galerkin approximation],

* _ 2 - - *
113 UUHH1 (ugYe UD)H1
‘ _inf _ £ 11 DR
= went, (U078 %R W'y

2 1

M :
[1-(02/0132] ||ua-

A

| u,-U u
4o UHH1 OHH1

Thus in the same way as (2.18) we obtain the following corrolorary: the derivation
also indicates more clearly than (2.7) the appropriete choice of M2 to ensure

that U is a near optional approximation to u from M1. We will use this later.

0 0
Corollorary 4 In Theorem 2.2 the error bound (2.10) can be impraoved to
M, inf
[y, UUI|H1 < (C,/C,) vgmqlluo v||H1 : (2.18)

2.2 Diffusion-convection problems

We recall the general statement of the problem in (1.8a,b) and shall henceforth
assume that Neumann boundary conditions are never imposed on inflow boundaries:

that is, if n is the unit outward normal to T, then

nbz 0 on (2.19)

Ty
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It is also useful to denote by I the inflow boundary, i.e. that part of T on
which n.b < 0, and similarly by P+,F° the outflow and tangential boundaries. So
we have assumed that FNnPﬂ = 7.

In making such an assumption we have also assumed some smoothness of the
boundary. It will be sufficient to assume throughout that T ds Lipschitz contin-
Lous in the sense of Netas (1967) - see also Ciarlet (1978) and Oden & Reddy (1978)
as general references for results needed here: that is, there are a finite number
of local co-ordinate systems such that every part of the boundary is defined by a
Lipschitz continuous function in at least one of them. This means that n 1is
defined almost everywhere on T, which may have corners and edges but no cusps.

It also means that a trace operator tr is defined on H1(Q), extending the

restriction of v:Q IR to T as a continuous linear mapping tr : HL(Q) - LZ(T).

Thus we can write in a conventional way

HG(® = {veHl(@)|tr v = 0 on LN g (2.20)

By implication, too, § 1s bounded and a Poincaré—Friedrichs inequality holds:

there exists a positive constant C(Q) such that
1
vl g s c@|vl, g veHl(a), o (2.21)

is used for the usual Sobolev norm for Hm[Q)

where the notation ||<]] .
Im,Q

and |-[i Q for i=1,...,m denotes the corresponding semi-norms. Finally,
Green's formulae also hold: for example, with ueHi(Qy, Xﬁ[Hl[Q)]d, QC[Rd, d=1,2 or 3
we have

I uvevdQ = —[ vevudQ + fug;xpr. (2.22)

Q Q T

To apply (2.22) to (1.9) we assume that
0 < accd(@, b e [H1IY and Oscel, (). (2.23)

Then, denoting by L the diffusion-convection operator on the left of (1.8a), we

have for veH2(Q), weH1(Q):

(Lv,w) + (an*9v,w), = (a%v-bv, Yw) + (cv,w)

N
+(ne (bv-aVv),w)_ + (n+bv,w), , (2.24)
- - = 'p == Tn.
where (-,-)P. denotes the L, dinner product over Iy and similarly for T'p.
N

A more convenient basic definition of the bilinear form to which we shall apply
Theorems 2.1 and 2.2 than (2.24) is however the following:

Blv,w) := (avv,%w) + (Vs (bv) + cv,w) - (an-Vv,wDr . (2.25)
_— - - D

This 1s clearly continucus on H1(Q) x Hé(ﬂ) which covers most cases of interest:

in Section 4, however, we shall try lifting the condition that w=0 on PDnP-
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and this will entail restricting the class of v's,
The inhomogeneous boundary data of (1.9) is incorporated in the formulation
by assuming'that g 1s derived by the trace operator (tr]D corresponding to

r operating on some function G:Q+[R. Then we define the following linear functicnal

D
corresponding to all the data:

Fw) := (f-v.(bG) - cG,w) - (avG,vw) + (aD:yG,w)T . {2.286)
D
To ensure that this is bounded over WEHé(Q] it is sufficient to assume:

fel,(@) » g=(tr) G s.t. CeHI Q). (2.27)

Again, widerning the class of w will entail restricting that of G. We shall
furthermore assume that the convective medium is incompressible in obtaining the

following Theorem,

Theorem 2.3 Suppose that for the problem (1.8a,b) the assumptions (2.189)},
(2.23) and (2.27) are satisfied and that

y.b = O. (2.28)

Then a weak solution exists of the form u=uO+G, where quHé(Q] is uniquely defined

by
Blug,w) = F(w) vweH] () (2.29)
and B(+,+), F(.) are defined by (2.22) and (2.24).

Proof We check the hypotheses of Theorem 2.1, or rather of the Lax-Milgram

lemma, with H =H7=Hé(Q). For the coercivity we have

/]
Blv,v) = (ayv,gv) * (cv,v) + (¥-(bv),v) ;
and from (2.28), (2.18) there follows for uaHé(Q)

(Bewv,v) = (g (Bv),v) = ~(B-3v,v) + (nebv,v),

i.e. (ve(bv),v) = %(DTEV'V)P > 0. (2.30)
N
Since we have a>0, c=0 and FD 7 B, (2.21) ensures that (2.68) is satisfied for some

Cé. Similarlyﬂ and with the use of the Cauchy-Schwarz ineguality, the continuity
condition (2.1a) is satisfied for some C1. We defer until the next sub-section
discussion on the sharpest bounds attainable for the ratio C1/C2 except to note
that this will depend on bounding (b.Yv.w) in terms of (aVv,Vv) and "(aVw,Vw).
As this solution u 1is clearly uniquely defined, independently of the choice
of G, and since a classical solution of (1.9a,b) because of (2.24) also satisfies
(2.29), identification of the weak and classical solutions depends only on the
regularity of the latter. For general theorems covering this we refer the reader

to Agmon, Douglis & Nirenburg (1964).
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2.3 Galerkin approximation

The analysis of finite element methods takes its simplest form If we make the

following standard assumptions regarding the approximation properties of the space

Sh of trial functions:

(1) Sh is conforming, i.e. ShCHltﬂl;
%
(i) Sh has order r > 1 and is regular, i.e. VgeH (Q),2 2 1, there exists

an element VeSh such that for some constant K

gVl s k¥l le 5 = 0,1 | (2.31)

0.0
where yp = min (r-s, %-s).

To ensure these properties we shall assume T is polygonal and § dis sub-
divided into elements which have maximal diameter h and satisfy a regularity
condition, such as all interior angles are uniformly bounded from zerc. In R?,
elements wiil geither be triangles or guadrilaterals, with corresponding elements
in m3: parametric transformations will generally be necessary to map guadrilaterals
in global variables into rectangles in local variables and such transformations
(c. . isoparametric elements) are often used to approximate curved boundaries, but
this is beyond the scope of the present lectures.

We shall mainly consider piecewise linear approximation on triangles or bilinear
approximation on rectangles, both of which are examples of r=2 in (2.31). Piece-
wise quadratic, or biquadratic, elements similarly give r=3: generally speaking,
if all polynomial functions up to degree k on each element are contained in Sh,
and the parameters are chosen to ensure continuity between elements, then (2.31)
will hold with r=k+1. We also omit consideration of Hermitian elements, such as
Hermite cubics, so ensuring that we can write the general member VeSh in the

Lagrangian form
Vix) = z(j] Vi (x), 52.32)

where ¢j is the basis function corresponding to node (ﬁj] such that ¢j(§1]
h
§,. and hence V,=V(x,). Thus § =span .
13 Y pan {¢,}

We suppose further that T is composed of an integral number of element

D
sides so that, defining

h _ h 1
SU =5 n HO(Q). ' (2.33)
we find that Sg is gpanned by a subset of {¢j}. Then we can introduce the
Galerkin approximation UO to the solution, Ug of (2.28),
h e h
erSU : B(UO,¢i) = F(¢ij v ¢ieSO . (2.34)

Thus we have
B h - .
B(uD—UD.¢i) =0 v ¢ieSO . (2.35)
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Let us estimate the error u_-U first in the norm introduced in

(1.12). From the assumptions (2.23) on a, b and ¢ and the boundedness of

we can introduce constants P P such that

1" 2
Cwe bv)w | < P1||V|]ACIIWI|O 0 (2.36a)
and |IWIIU,QS lelwllAC. (2.36b)

We can regard the product P1P2 as a global péclet number, particularly when

c=0, as it has the dimension of bL/a where L is a scale length. We also

suppose that u: eH' (9) and that by (2.31) there therefore exists a member U

0 0
of SS such that for some constants K and F’3
ugUgl 1o s Kh gl I g (2.37a)
~ __/l -
and [Hug=Ugllae < KPa THugll, o - (2.37b)
Then from (2.30), (2.35) and (2.38a)
||u'0—u01|;\C < Blug-Ugsug=Uy) = Blug-Ug.ug-Uy)
= (ug=Ugsug=Ugd o * (TeCblug-Ugddug-Yy)
< Hugtphae [11ugTol gl Hug-pl b ] (2.38)
that is, by (2.37)
o P 15 :
[Tug-Yyllag € D1+Po/P T KPR | Jugl ] o (2.389)

Here we can regard P,]h/.F’,_3 as a mesh Péclet number which is seen to completely
represent the loss of accuracy attributable to the convection term when the Galerkin
method is used. To compare this result with that obtained directly from Céa's

lemma, (2.12), we see from (2.36) that C, in (2.1a) can be taken as 1+P1P2 and

Cé from (2.27) taken as unity: thus w; have been able to replace a global
Péclet number with a mesh Péclet number.

To obtain an error estimate 1in a lower order ncrm, in particular in the L2
norm, we use the device due to Aubin and Nitsche. We let VOGHZ(Q) be the

solution of the adjoint problem

* = -yl
B (vo,w] ( Lb,w) VWCHD (2.40)

g~
for which, by the ellipticity of the eguation, there must be an estimate of the

form

HVDHZQ < P4||UD—U0H[],Q : (2.41)

Then taking w=u —Lb in (2.40) we obtain

0
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_ 2 - * - - I
ll“g UUIIO,Q B (VD,UO UOJ B(uU UD,VO)

= B(uU—UU. VO—VOJ

: |[”0'Uo||Ac[}lVo‘V0||Ac ' P1||V0_Vo|lo,é]' ey
Here, 00 is any member of SB and we can assume it is chosen so that bounds

analogous to (2.37) hold with r=2. Then substituting also from (2.32) and (2.41)

we ocbtain
N 2 r -
g UDIIO,QS [1+P,h/P 1% K K PoP,h IIUD,lr,Q : (2.43)

Thus the usual extra power of h is obtained but at the cost of extra constants,
in particular a further factor from the mesh Péclet number. Note that as &>0,

= . 25 -

4@ we also have P3 a® and so P3 P4 = 0(1).

It is worth noting that this same technique can be used to obtain the pair

although P

(2.37 a and b). Suppose UB is the optimal approximation to Uy in ||°IIAC’
that is
h
—1|* = A S A
(ug-Ug.¢ ), = 0 vV eSy (2.44)
Then we can introduce Wq by
B (1% 1
(wo,w)AC (uD UD’W) Y W€HU (2.45)
for which we shall have a bound Ilwollz,g < PZIIUO_UalIO,Q and an optimal approx-
. . * . L% * '3 » . -
imation W} with Hw0 WOIIAC s KP4 hllwollz,g' Hence we obtain, in the same
way as (2.42},
—1* *p* ¥
[Tug-Ugll g o5 KoPEPARITug-UE] ac (2.48)
and substituting this in (2.38) obtain
- i L=k )% 2 47
[Tug=Ugllac s D1+ P PEPERD | Jug-Us| | (2.47)

We again see that K2P1P§P2h can be regarded as a mesh Péclet number and, with
*
a bound on lluO_UDIIAC’ (2.47) can be used to replace (2.39).
Thus, too (2.47) shows that as h»0 the Galerkin approximation UO
eventually becomes "near optimal” and one can expect superconvergence results to
hold: the practical difficulty is that this will occur for only extremely small

h when the Péclet number is large.

2.4 The one-dimensional model problem

We conclude this section by applying some of the results in the earlier sub-

sections to the model problem (1.14). We reformulate and generalise this to

= 1t t H ] =]
aup +buO £, uO(D) u0(1] 0, (2.48)
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with f=-b giving for U=Uq+x the same result as (1.14). Working in Hé(o,ﬂ]
equipped with the norm I]v|[%c = a[]v']l%, the mapping R of Thorem 2.1 can be

explicitly derived:

1 1
Blv,w) = f (av'w!' + bv'wldx = f a(Rv)' w'dx v v,weHé
' 0 0
i.e. a(Rv)' - ay' + bv = const. = bv
X
i.e. (Rv)(x) = v(x) - (b/a)( fvit)-v]dt, (2.49)
1 0
where v = vdt: R* has the same form with the sign of b changed. Similarly
, 0
we find
- X = = - - 5 1 -
(R Tw) (x) = [ L2 L tyat L1078/ [ebX/a~1]( e Pt (t)at.
0 0 (2.50)
It is clear directly from (2.6) that Cé=1 and from (2.49) that
4 -
RV 12, = V] ]2, + (b2/a) Jo(v—v)zdx : (2.51)
it is therefore evident that ||Rn1||=1 and from a Fourier analysis one can show
1
i [IR|| = (4+ b2/4n222)%, (2.52)

This then is the constant which appears in Ced's lemma (2.12).

For the Galerkin approximation using piecewise linear elements on a uniform
mesh we can also carry out the analysis leading to (2.47). It is easy ta see
that P1=b{a% and PZ=1/a and elementary approximation theory gives K2=1/ﬂ
with P§=a2. Thus (2.47) becomes

1 + bh/ar] (2.53)

HugUgllpe s T [ Tugugllaee
a much sharper result than that given by Ceg's lemma.

Moreover, Uy Ug is given explicitly by (1.16) and (1.17), and it is easy

to see (cf. (3.1) below) that UE actually interpolates Ug: Thus we can
readily calculate the ratic of the two norms in (2.53): we find that
u-U [ |2, = blg-u 2y T Mo + oce SELey (2.54a)
0 O'TAC 0
& -b/a =
[Mug-ugll2. = E "R ] + Dle ), (2.54b)
where Mg is given by (1.16) and y=e h/a , 80 that the ratio does not take a
simple form. However, denoting bh/a by B8, the two limiting forms:are as follows:
23
- _(1* 2
ug UDIIAC/HUU Ul ac ~ 1+ 5758 as B ~+ O (2.55a)
1
~ (3hB)” as B = «, even J. (2.55b]

Apart from the fact that it diverges, this second limit is not particularly useful

since even Ua is a very poor approximation to u in this norm: dindeed this

0
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1
+(ihR)* and

limit follows directly from the observations that lluﬂllAc/l,uillAC

1
||L5||AC/||uD||AC+t2/e)2 as B - o,
A more dramatic demonstration of the inadequacy of the Galerkin spproximation

when B8 1s large is provided by looking at the discrete equations which represent

/l

the approxihation pracess UU=S_ PWO' Here w the Riesz representer of -b

Ul

in H is given by

AC’
wO(x] = -1(b/a)x(1-x)

and P corresponds to taking nodal values. Then from eguation (2.489) for R,

we obtain for SUOEPRUO=pWO
= ) 5 5
U, -8 % u; = dh Y ul| = -38h303-1), 4=1,2,..,3-1;
J i {
1 q
here {Uj, j=0,1,...,3} are the nodal values of UD(x) and the prime on the

0

—
N
O]
o))
—

first sum indicates that only éug is dncluded. It is readily seen that for even
J the vector {0,1,0,%,...,1,0} 4is annihilated by the operations in the square
brackets. This is the vector for which the norm ||8—1||=1 is attained and there
will always be a component of this of order of magnitude B in the solution UU:
thus it is that for even J the Galerkin solution exhibits unbounded oscillations
as B+ «. One can similarly see why for odd J the oscillations are much less

violent.

3l PETROV-GALERKIN METHODS USING EXPONENTTIAL, UPWINDING AND STREAMLINE-DIFFUSION
TECHNIQUES

In surveying these three (overlapping) techniques, we shall generally introduce
them for the 1D model problem (1.14) before indicating their developments for more:
defined

A
in (1.12). This is a particularly appropriate norm in this case, in view of the

general problems. We shall also work in the spece HAC with norm ||°

motivation of several of the key ideas by finite difference methods. For, if the

trial space SE consists of piecewise 1linear functions with nodes {xj}. J o= 0.1,

veesd, g0, xJ=1, the best fit U*esg to u in this norm satisfies
1
af (u'- U*")¢t dx = 0, J = 1,2,...,3-1
0 J
* = *
. q A [u[xj]~UjJ _ A, [u(xj] Uj] . (3.1)

A _x, A x,

- J +

Denoting the common value by B, we find by multiplying each ratio by the denomin-

ator and summing that D=0 : hence u(x )—U; = constant = 0. Thus the best piece-

3

wise linear fit in this norm is also the best (i.e. exact) fit at the nodes.
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3.1 Use of piecewise exponentials

As with finite differences, several early methods exploited the exponential
character of solutions to one dimensional diffusion-convection problems. Three or

four differing approaches have been adopted.

(1) Liouville transform (Guymon, 1870). If in the 1D model problem (1:14) we set

_1
wix) = e 2bX/au(x) (3.2a)
the problem is symmetrized to
~ tt 2 _ _ —%b/a o
aw'!' + (b2/4alyw = 0, w(0) =0, w(1) = e . (3.2b)

This may then be solved by a Galerkin method to give a best fit in the mixed norm

1
f [aw'2 + (b2/4a)w?]1dx, (3.3a)
0
which tends to the L2 best fit as b/a + ». However, any errors will be

amplified by exp(ibx/a) on transforming back to the original variables and this
ig ill-conditioned in the singular perturbation limit. Equivalently, we can see

that after transforming back we have an optimal approximation in the narm

1 B
r av'? g bX/adx (3.3b)

0
which concentrates attention away from the boundary layer near x=1 which is of

most interest. Guymon et al. (1970) have also extended this technigue to two-
dimensional flow problems, but the above arguments indicate that it should be used

only with very great care.

(i1) Exponential trial space (K.E. Barrett, 1874, 1877). When any inhomogenous term

in the equation is such that the solution 1s predominantly expaonential in character,
the following basis functions (on a uniform mesh) would seem a natural choice for

the trial space: with pB=bh/a and ¢j(x)=¢(h_1x-j) we set

eBt N e_B -1 <t <0

_-"B _
(1-e P)g(t) e

1 0<t< 1. (3.4)

The Galerkin method for the model problem then of course gives the exact exponential
solution. For the more general problem -au''+ bu' = F(x), u(0) and ul(1) given,
then by (2.12) and (2.52) the approximation U has an error bound

inf

u-Ul [ 5o sU1 + b2/472a2) VeS

2||u~v||AC. (3.5)

On this basis when b/a is large the trial space of exponentials has to be capable
of very close approximation to the solution if the method is to be used with
confidence: although from the previous section we might expect this factor to be

Id
replaced by a mesh Peclet number, we shall not pursue these estimates further and
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instead we will consider below the accuracy attained at the nodes. 0One could

also use these trial functions together with piecewise linear test Functions:

such a metﬁod is considered by Griffiths & Lorenz (1978), who show that this gives
a lower error bound than any of the alternative upwind test functions (3.12)
discussed in the next sub-section. When the coefficients a and b depend on

X, local values of B can be used in each trial function and a similar error

bourd to (3.5} abtained.

(iii)Exponential test space (Hemker, 1877). This is motivated by some of the
earliest work on superconvergence at the nodes, by de Boor & Swartz (1973) and
Oouglas & Dupont (1973). Consider a general one-dimensional problem, let szx)
be the Green's function of the adjoint problem and denote the delta function

§(x-g) by SE(X]. Then the weak form of the equation for GE is

- = ~141 2
B(v, GE)_ (Gg,v) v(g) v vcHD. (3.8)

Now suppose U 1is a Petrov-Galerkin approximation to u obtained with a test

space Th so that

B(u-U,W) = 0 v WeT™, (3.7)
Then (3.8) and (3.7) together give
u(§)-ULE) = Blu-U,G7) = Blu-U,65-W) . v WeT", (3.8)
and from (2.1a) we have
inf
futy)-ute)]| < C1||u—U]|AC WETh||GE—WI|AC. (3.9)

As G* has a discontinuous gradient at x=f, the last factor here will be reason-
ably small only when & is a mesh point. Then for any sensible choices of Sh
and Th the order of accuracy at the nodes should be double that in the ||'HAC
norm: 1t should be noted, however, that for linear elements this is no improvement
over the L., error bounds obtained by the Aubin-Nitsche arguments as in (2.43).

(A

In the 1D model problem G; consists of piecewise negative exponentials
and hence, on a uniform mesh, we should take as test basis functions ¢ij] =

w(h—qx-j], where

q-g BLEFT) “1st<0

o B ” - - .
(1-e ™) y(t) o Bt B 0<t <1 ; (3.10)

these are the reflection of the trial functions given by (3.4) about t=0. Then
GE is approximated exactly and nodal values of u are exactly reproduced even for
-au'' + bu's f{x), for general f, and any reasonable choice of trial space.

For a piecewise linear trial space, an alternative interpretation based on the

error bounds of Section 2 is possible. From (2.17) and the subsequent argument,
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it is clear that R*TB should be such as to épproximate Sg well., An explicit
expression for R was given in (2.48) for the operator in the model problem and in

the norm. From this it is an easy caleculation to show that indeed

[+ ac
RY = %t1+e"83¢j 351,2, 000,31 (3.11)

exactly, wheré the {¢j} are the piecewise linear basis functions. Thus the

resulting approximetion is optimal in I|-||AC and hence exact at the nodes.

One of the disadvantages of using exponentials as either trial or test functions
is the difficulty of evaluating the inner products involving these rapidly varying
functions. Hemker (1977) has dsveloped specialised guadrature formulae for this
purpose. He also considered using these test Ffunctions only where the solution
varied rapidly, as has Axelsson (1981) who used the very similar technigque of intro-
ducing the negative exponential as a weight function in the bilinear form. More
fundamental difficulties arise when any of these exponential-based techniques are

extended into two dimensions and little progress has so far been reported.
8.2 Upwind methods

Zienkiewicz (1975) seems to have been the first to raise the possibility of
choosing the test space in a Petrov-Galerkin scheme in order to obtain the same effects
as upwind differencing. Mitchell and his colleagues quickly took up the challenge
and a number of promising techniques were developed - see Christie et al. (1978),
Heinrich et al. (1977) and the survey article Heinrich & Zienkiewicz (1379).

For the operator in the 1D model problem, it is apparent from the foregoing
that either a positive exponential trial space in a Galerkin formulation or a negative
exponential test space in a Petrov-Galerkin scheme will reproduce the Allen-Southwell
difference operator: but clearly many other test spaces could achieve this. One of
the simplest that may be used with a piecewise linear basis on a uniform mesh,

{¢j}, is the following: with wj(x] = w(h_1X“j) and cj(x) > d(h_qx-jJ we set

Pplt) = ¢(t) + qolt) (3.12a)
with i [
- {33L[1 |t]) [t] <1 &, i)
o 0 lt] > 1.

We see that (¢j,0{) =0 for 1 <1, J £J-1 so that the terms in the stiffness
matrix arising from the diffusion operator do not depend on the parameter o:

but for the convection terms we obtain

j=i#1
1=1
0 [3-1]>1 .

(3.13)

- Ni-=

(¢j"oi) = _(¢jJO':’i_) B

Thus for the 1D model problem we obtain
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~as2y . + bh(A U, -3a8?U,) = 0 . (3.14)
i 01 i

Setting a=1 gives the fully upwinded scheme of {(1.18) and any choice such that
2a+oabh>bh, that is ©>1-2a/bh, avolds an oscillatory solution to the difference
scheme by ensuring that it satisfies a maximum principle. The Allen & Southwell
exponentially-fitted scheme is obtained by setting, as in (1.20)

coth(ibh/a) - (?,:bh/a)_,I

cothif-2/8 . (3.15)

a = L:

n

It 1s easily seen that g wvaries smoothly from -1 to +1 as B ranges Trom
-» to +w, with g-~B/B as B~0 and 5;1—243 as R- @,

It is interesting to see what choice of o 1is indicated by the error bounds
in Theorem 2.2, and its Corollorary 4, when the norm ll.llAC is used: a detailed
analysis is given by Griffiths & Lorenz (1978). 1In Theorem 2.2 only CE of (2.7)
is affected by the choice of test functions, which should thus be chose; to maximise
||S—1||. Denoting by A and B the stiffness matrices representing the difference
operators - a§2 and bhAO, we see from the defining relation (2.11) that an expression
for S"1 can be obtained from the following (we denote by vV the vector of nodal

values of VgSB and similarly for WGTE)!
(1+362)ALSV) = [(1+3ap)A + BIV . (3.16)

The matrix on the left represents the inner product (.")AC in the basis (3.12a)
of TB, obtained using (3.13) and the fact that (oj,o{) = 3(¢5.¢{). Then using

Fourier analysis we find

(MBS

C! = min JJ?Y!JﬁQ = [1+3a2]—%[(1+%a832 + Lp2tanZwh 1. (3.173
TV g
The maximum value is given quite accurately by neglecting the term tan?imh, 1leading
ta the choice o = B/6: this agrees with (3.15) for small @& but at first sight
seems quite unreasonable for large B .
Before considering this point further, let us derive the choice of o obtained

by optimising the error bound in (2.17) : in particular, we choose o to minimise
3 .* -
min | YR 95705112800 (3.18)
Y
Using the expression for R 1in (2.49) and exploiting the fact that g'= -B6(¢-1),
it is a straightforward computation to obtain
1 VI
||YR*¢j—¢j|[2AC = (a/h) f Y20 (1-y 114} +(B-6a) ¢ +3a+aBo]2dt (3.19)
-1
and to find that this is minimised by

o = %6(32+3)/(32+1o)_ (3.20)
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This gives the correct behaviour, o-~p/G, for B0 and very similer behaviour to that
derived from (3.17), namely o~5B8/3 for B = «. Moreover, the latter is very easily
understood in terms of the Ffunction fTitting needed to minimise (3.19) @ since ¢
and the constant 3o are the only even functions, one needs o=0(R):; then yoio
is of very similar form to ¢', the best fit being given by yaB=5/3.

To understand the fact that these error bound arguments lead to o- « as
B = w, instead of o > 1 as B » « in the Allen & Southwell scheme, we need to remembor
that they were based on the form of the problem (2.48) with homogenous boundary
conditions end general data f. In the singular limit, the Allen & Southwell scheme
drops the right-hand boundary condition and the data that goes with it and approximates
bu'=0, u(0)=0 by bA U=0, U(0)=0: and for a general piecewise linear data function

F  the Petrov-Galerkin method based on (3.12) with o=1 will give

I
ba_U, = gL6+82-381F,

1 I - :l.b...—-—
i.e. b(U,-U, ;) [

4.0 M
T50Fy 1+8Fiur. 1, (3.21)

i-1

not a very convincing approximation to bu'=F. 0On the other hand with o «, the

scheme for UO=U—x with homogeneous boundary conditions at each end becomes
bs2U, = ha (F-b). (3.22a)

Constant data clearly gives a null solution and this takes the place of a boundary
condition being dropped: for one integration can be effected and (3.7%2a) reduces

for U to

,b[Ui"Ui— Y=ih(F +F, 40, _ (3.22b])

1 -1
a much more satisfactory epproximation.

We should perhaps not consider these results for high 2 as too significant,
for we have alraady seen that IIUO—UB|IAC for the optimal approximation UE is
very little reduced below IluO"AC' Thus, although (3.17) may seem heavily

dependent on a, it is not surprising to find from (3.19) that

(3.23)

. (1+1qp)2 |
min| yR*y.-¢.|]%,. = |1- ko b, 112
Y I i J|| AC 1+3a2+%82+ﬁ—a25%-|| J|| AC

10
which depends very little on o for large f. In the limit B8 - <, the numericel
factor in (3.23) quickly approaches 1/6 for any unbounded o and is 23/38 even for
a=1. .
In addition to (3.12) with a=£& and (3.10), any choice of test space that
reproduces the exponentially-fitted Allen & Southwell scheme has the advantage that
the corresponding discrete Green's function is exactly equal to that for the con-

tinuous problem with both arguments taken at node points: that is, in an obvious

notation, GjK=G[jh,kh]. Thus for the simplest such finite difference scheme
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applied to (2.48) for u the nodal errors éra given by

Ol
1 J-1
uO[jh)jug = f Gljh,ylf(y)dy - h 2 G(jh,kh)F(Kh) (3.24)
0 k=1

and are therefore wholly attributable to the trepezoidal rule applied to the integral

of G(jh,«)f(+). Similarly, for such a Petrov-Galerkin scheme the nodal errors are

given by
0 J-1
uO(Jh)—Uj = E=1 Eo (3.25a)
where for instance for kazj,

-1 BBJ--’I 1

E. = —— | [g, (t)-g (O)y(t)-g (MY (t-1)]F(kh+th)dt (3.25bh)
Jk eb/a_,I 0 kK 3 k™

g (1) = &/ Blket) (3.250)

We can assume that ¢(0)=1, ¢(#1)=0 so that the kernel in (3.25b) is zero at the
two ends of the range and the error depends on how well Y(t) matches exp(-Bt)
between these limits, (3.10) giving the perfect match.

In variable coefficlent problemsthe choice of ¢, . and in particular of the
parameter a, can be made locally and similar error estimates to (3.25) derived. In
two dimensions, precise error estimation and selection of Y 1s considerably
more difficult but the extension of (3.12) to bilinear elements on rectangles is
straightforward: as in this case the trial basis functions are given by ¢ij[x,y3 =

¢i(x)¢j(y], the test functions can be taken as
¢ij(x,yJ=[¢i(x]+aqoi(x]][¢j(y]+u2oj(y]] . ) (3.28)

where (a1,a2) are chosen relative to the two components of E=(b1,b2)T and
the mesh spacing in the x and vy directions. With quadrilaterals one can use

such product functions of the isoparametric co-ordinates.

3.3 Streamline_gifFusiQn methods

As has been remarked previously, the Allen & Southwell scheme can be interpreted

as having had extra diffusion added before the Galerkin method is used. Thus with

a enhanced by 2abh piecewise linear elements reproduce (3.14) and o=f gives

the Allen & Southwell scheme, but of course with ¥ replaced by ¢ 1in any inhomo-
genous terms and in the error expressions (3.25). To extend this to two dimensions
with a scalar diffusion would lead to excessive "cross-wind diffusion”, that is
normal to the direction of flow b. Hughes & Brooks (1979, 19881) have therefore

used in extensive computations a tensor diffusion given as follows: in {1.9) we

replace -V:(aVu) by

9 [ N N 12 =
Vi (AW, where A =ab, +ab b /|b|2. | (3.27)
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On a uniform rectangular mesh with spacings h,.,h the suggested choice af the
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parameter a is

- .
a = 2(£1b1h1+g2b2h2) (3.28)

-1
3 -4 -1- bl ;1— = = 8
with ) Em E coth(zbmhm/a) (gbmhm/d) i m=1,2
Though this choice is rather arbitrary it seems to work well in practice.
In their more recent paper, Hughes & Brooks have put this scheme into a Petrov-

Galerkin framework by noting that
(AW, V$) = (a%v,¥p) + (b+¥v,(a/|b]2)b-¥¢) . (3.28)
Thus, assuming V-«b = 0, the scheme is equivalent to using test functions

wij = q)ij

on just the convection term. For most trial spaces these functions will be

+ (é/lgl?—lp_-zqsij {3.30)

discontinuous, which is quite acceptable for the convection term, but with wijéH]
use of such test functions leads to consideration of so-called external approximations
which is beyond the scope of these lectures. It is enough to note here, however,
that if a dis constant and U dis bilinear then V-(avl) = av2l = 0 on each element.
Hence, with the proviso that the term (aVZU,E-z¢ij) 1s evaluated in this way the
streamline diffusion method defined from (3.27) can be regarded as a Petrov-Galerkin
method using test functions given by (3.30).

Alternatively, Johnson & Ndvert (1984) have analysed a modification of this
scheme in a way related to that followed in the next section. Starting from the

reduced problem, (1.8) with a = 0, they use the fact that its solution also satisfies

(1-8b:¥) (bevVu+cu) = f-6b-Vf. (3.31)

Then the streamline diffusion method, with @ modified right-hand side, is obtailned
by applying the Galerkin method to this eguation with an appropriate choice of 8.

They therefore obtain an error bound in a norm which depends on §.

4, APPROXIMATE SYMMETRIZATION AND OPTIMAL APPROXTMATION

4.1 Motivation

The methods described in Section 3 were mainly motivated by the aim of high
accuracy at nodal points or, equivalently for linear elements in one dimensicn,
achieving a nearly optimal approximation in the ||-||AC norm. In addition, two of
them involved a symmetrization of the problem: <the Liouville transform did so
divectly; and, from the definition (2.3a) of the Riesz representer R and relation

(3.11) which together imply

B(u.xpjl = (U,R*xpj)AC = (U.¢j)AC, (4.1a)
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the use of exponential test functions leads Lo an approximation given by the symmetric
system

_ w1 h
(U'¢j)Ac = (f,R ¢j) v ¢jeso . (4.1B)

The adherence to the norm throughout the discussion of the constant

11T
coefficient model problem was deliberate, though most authors adopt the eguivalent
Hé norm: it emphasises the derivation of the norm from the original problem and
hints at its deficiencies when c¢=0 and the singular limit a -+ 0 is approached.
These deficiencies were apparent in the very small reduction from to

| Ju-u*

ol e
ilAE achieved by the optimal approximation U*. An alternative interpretation
is as follows: from the optimal approximatieon one wants to deduce as much information
as possible about u, a problem in optimel recovery (see Micchelld & Rivlin, 1876);
but for a sharp exponential boundary layer as in the model problem, the point value
one mesh spacing inside the boundary gives very little information. The difficulty
can also be attributed to the fact that the coefficient of the dominant convection
term does not appesr in the norm. Thus this term has its effect only in the rather
awkward exponentisl which appears either in the test function or in the operator
R*_’I appearing in (4.1bJ,

However, when =0 in the problem (1.8), the operator can be factured and a
symmetrization effected in an alternative way which has been exploited by Darrett &

Morton (1880, 1881). Dencting the operators V and aV-b by L,l and L.

o respectively.

the operator in (1.%a) is L*L_. and (4.1b) is based on the identity

172
. = * S Ha M
(Lqqu,L1w) (L1V,L1R1w) (L2v,L1w) v oviweH, . (4.1¢)
in which R1 can be regarded as the Riesz representer of L, 1in a norm based on
L

L1 and defining the Hilbert space H1. The alternative is to introduce a Riesz

representer R; for which

*y, = f . ‘,}
(L2v,L2R2w) (L2»,L1w) v viwet, (4.2a

and which can be regarded as the Riesz representer of L1 in a norm based on L2
and defining a Hilbert space H then an approximation U is genereted from a test
/I

2:
| h_px 1N 't
space TO—R2 SD giving

-1 h .
| £ * ’ -C \ .
(_2U,L2¢j) (P,R2 ¢j) b¢jc50 (4.2b)
Clearly if qu in (4.49¢c) spanned the same space as L2v in (4.2a), we should have
RE:qu, R§_1=R,| so that in the model problem with R1 given by (2.49) no

exponentials would be involved. Unfortunately, such a relation does not hold exactly
and some approximation is involved in aiming for optimality in the norm based on

L2 without the use of exponentials. In this section we consider how this is done
first for problems in one dimension and then for those in two.
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4.2 One dimensional problems
Consider the variable coefficient Dirichlet problem for u:

-lau’}' + (bu)! T on (0,1) (4.3a)

I

u(o) = g u(1) g (4.3b)

Then, from (2.25), we have for veHl, wcHé
Blv,w) = (av',w') + ((bv)',w) = (av'-bv,w') . (4.4)

We introduce a symmetric form with an arbitrary positive weighting function p(x):

B_(v,w):= (pa?vt,w') + ([ph2 + (pab)'Iv,w) (4.5&)

(av' - bv, plaw'-bwl) v veHl, weHé . (4.5b)

In addition to the usual assumptions on a and b, as in (2.23), we assume that p

is normalised to have unit integral and is chosen so that on (0,1) we have:

(1) plx)i= p(x)a?(x) > O, (4.6a)

(11)  q(x):= p(x)b2(x) + (pab)'(x) = O, (4.6b)

(1i1) alx):= p(x)Ib(x) + (pa)'(x)=> alx)b(x) = 0. (4.6¢)
This is easily achieved by, for instance, taking (pal! = 0 where b' 2 0 and
(pab)' = 0 where b' < 0; then q = pb? and ob = pb%. These assumptions ensure

that BS(-,-J is a coercive form and that if B(«,«) is coercive relative to the
. 2 .- -
1 ac 2 &= B ().
Establishing the coercivity of B(.,] through (2.8) would require us to assume
that there exists a 6 > 0 such that

norm then it is also coercive relative to |]~

1 )

(1—6){ av'2dx + 1 [ btvZdx = O VV(—_H[I]- (4.7
0

However, we shall see in a moment that (2.1b,c) can be satisfied under much weaker

conditions. Then we can apply either the Lax-Milgram lemma or Theorem 2.1 in respect

of Hs’ the Hilbert space formed from Hé equipped with the | °[|S norm, and,
retaining the notation of Barrett & Morton (1881), introduce a symmetrizing operator

N:Hb = Hé such that
Blv,Nw) = B (v,w) v v,weH%] ‘ (4.8)

Indeed, it is not too difficult to construct N explicitly: we require from (4.4)
and {4.5b) that

f[av'—bv] LNw)' - plaw' = bw)]dx = 0 v VGHé
and introduce z = e_xveHé, where
X
Alx) = {(b/a)dt, {4.9)
OA

so that av'-bv = az'e” ; then, as with (2.49), we hava
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(Nw)' = p (aw' - bw) + const. e /a (4.10a)
from which a 1little manipulation gives

1 -
(Nw) (x) = (paw)(x]) + J (aw - Ke A/a)dy (4.10b)
X

and tha constant K is such that (Nw)(0) = 0. We have given the form which is

appropriate for A > 0, or b = 0, and it is also useful to note that N its adjoint

in the L2 inner product is given by

INYFI(x) = (paf)(x) + a(x)[F(x) - FI , (4.11a)

o

where F{x):= { flyldy

L1 30 1T
and  F r (e © Zaldx := f (e © /alFdx. (4.11b)

0 0, -

It is clear that N and N involve an exponentisl kernzl e "/a unless o = 0,
which would require instead that o be proportional to the same exponential kernel.
It is also clear from this construction why only the positivity of a 1is necessary
to establish the hypotheses of Theorem (2.1): for if in B(v,w) we set w = eﬂkv

we have

_— 1

{%ap ar SSL} Blv,w) 2 Bletu,w) = J aex(w'lzdx. (4.12)
0

An optimal approximetion to u in the norm l

|S can now be constructed using

the symmetrizing operator N. If the trial space ‘Sh is spannred by {¢j}, taking

the test space as Tg = NSE in a Petrov-Galerkin method gives U*CSE such that
h
B(U*,N¢p,) = (f.N¢p, S.. (4.13
¢J ( ¢J) ) Qje 0 )

Subtracting from a similar equation for u and using (4.8) establishes the optimality
of U*,
B (u- Ut¢,) =0 VI (4.14)
S j ¢j€ 0

It is important to note too that the discrete eguaticns for U* only involve the

operation of N and N*  on the dats and the test functions never need to be obtained

explicitly: if g and ¢, are the basis functions corresponding to the datae g
and gg ON the left and right respectively, we have from (4.12) and (4.8)
* _ - - g _ oh / (=
B, (U*-g ¢, gR¢J.¢j] (N 1°.¢J.) B(gL¢O+gR¢J,N¢j] Y ¢£Sg - (4.15a)
This in turn can be reduced by (4.10) to
* = N - ] h
BS(U .¢j) (N f,¢j) qjlx(gL¢O+gR¢J) v ¢jeso . (4.15h)
1 _
fls=s a, i= j e, oix (4.18)
J D :] II
and ., (W) (e /a)dx := J (e7a) (aw' -bw)dx. (4.17)
0

In this form we can see that the exponential kernel is involved only in the calculation
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of the averages F, Qx(¢01 and gk(¢J]' We can also regard the+equation for U* as
obtained by operating on (4.3) with the symmetrizing cperator N and then using the
Galerkin method: this can then be compared with the streamline diffusion method in the
form (3.313.

In their consideration of one dimensional problems, Barrett & Morton (1860, 1881)
eschew exponentials completely by approximating the averages (4.11b) and (4.17) by
a weighting function e(x), normalised to unit integral, or a delta-function at
x = 0 : they denote the corresponding operator (4.10) by Nc or NO and the
corresponding linear functional (4.17) by £€h or QH. In the former case Ne:HééHé
gives a proper Petrov-Galerkin method with TO = NESO:

is not exactly achieved and instead of (4.14) we have for the approximatiocn UN.

but the symmetrization (4.8)

N N, ot h :
BS(U ,¢j) + anE(U ] = (Nef,¢j) v ¢j€a0 , (4.48)

When the delta function is used ND is defined by {(4.10) with K = Q, for no values will
ensure that (Now]fO] = 0 if w(0) = 0, and N; by (4.11a) with F = 0. Thus the
resulting method is not strictly of Petrov-Galerkin form but the approximation still

satisfies equation (4.18), with 28 and N; replaced by ¢ and N; , and indeed

0
is the simplest to use and the most appropriate in the singular limit b/a + «,

Introducing V*eSE such that

h i
* .
BS(V ,¢j) aj v ¢jeSD i (4.19)

Barrett & Morton (1981) show that for a problem with no turning points, b(x) > O,

UN is uniquely determined if € 1is chosen to ensure that 1+2€(V*J # 0 and

N . N
Hu-U"12 = [fu-us] ]2« [ Ju=-uT] ]2
: i 2
= | |u-u*|]2 « _L[leﬁgm Lo {u-U*1]2 . (4.20)
N KRS A - -

This estimate also holds for broblemg with a homogeneous Neumann condition at x = 1

but for the Dirichlet problem it is easy to show that |!V*||S < 1. The same result

0
conditions QD(V*) > 0. Precise error bounds may then be derived: thus we have

holds using N, and 20 and in that case the authors show that under quite general

N .
[u-U"]12 < [{u-u*[[2 +. @)U (0) - U (0)]2 (4.21)
and, for example with constant coefficients and linear elements on a uniform mesh,
N N 1
- i . [ tn -
3 aiU,I UO - 'F(O]l"' _U__I e bx/a b/a
b 2b 0

N_ %
Iuj—ujl 2 o= , Cfix)-£(0)]dx|+ O(e ). (4.,22)

Similar results are given for variable coefficient problems. They show that when
b/a or A(1) is large and f(x) 1is nearly constant near x = 0 then UN is very

close to U*, the optimal approximation . in ||-||s. Even some turning-point problems
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can be approximated well in this way. For a éingle turning point at & with
b(x) £ 0 for x <& and h(x) 20 for x 2 £, the delta function is placed at &
and comparable error bounds obtained.
To compare these methods with other Petrov-Calerkin methods, consider the constant
coefficient problem with p also taken constanl: then from (4.10) the test functions

are given by
/l
b (x) = (N 6, )(x) = ad,(x) + b | (¢, - ¢.,e)dy. (4.23)
Vs 6%y’ ¢, fy liy = GeElE)
These are not localised functions though linear combinations of successive pairs can

be localised. The choice e(x) = 1 corresponds to the H_/| least squares formulation
of Bristeau el al. (1880) which, as Darrett (1980) shows, 1=z not very accurate for

the simple model problem when h/a 1is moderately large. On the other hind, the
localised upwind test functicns (3.12) car also be related to (4.23): we have already

noted that O'=6(E;¢), so that these test functions can be written as
1
P, (x) = ¢,.(x) + (Ba/h)( (¢, - ¢,/2h)dy. (4.24)
J J % J J

That is, they correspond to taking a different weighting function for each ¢j'
equal to (1/2h) over the support of ¢j, iT the parameter o i1s taken as o = B/§
To conclude this section we consider a numerical exemple together with the

resulting recovery problem. The example, taken from Barrett (1980), is for
-10"3u'" + [{1.0-0.988x)ul' = O, u(0) = 1 (4.25)

with either ths Neumann condition u'(1) = 0 or the Dirichlet condition u{1) = 49.95
which gives the same solution. The table below gives various approximations for esch
case using piecewise linear elements on a mesh with h = 0.1y only the last three

U
nodal values are given. The Galerkin approximation is UG and U ig the Petrov-

Dirichlet case Neumann case

Node j - 8 9 10 N FF-hB é ‘ 10 o

ulih) ”2:73 9.31 49,95 | 4:;5 9.3 M_ZQ.QS-H_
.—Izih 5.73 18.41 " -_‘“_;.85 1.76 - 25.34

U;J 4,70 5.71 " 4,70 5.70 50.03

u? 3.57 5.35 " 3.57 5.35 1264

u? 4.75 7.01 " 4,85 5.77 45.29

UR[jh] 4.57 9.83 & 4,85 8.60 50.03

TABLE Results from approximating (4.25) with linear elements.
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Galerkin result using the upwind scheme of Heinrich et al. (1877), that is with test

functions (3.12), and o given the nodal values of o A 1-2/8. The row labelled
N cri

UL corresponds to test functions wj = ¢1e—x, the case of exact symmetrization
obtained from (4.10b) with o = O, pme—ki\ this also corresponds to using an exponential
weighting in the innmer product as in Axelsson (1981). The penulfimate row gives UN

obtained from (4.18) using N, and p = 1 in the Dirichlet case but

p(x) = (1.0—0.98><)_/I in the ﬁeumann case in order to give more weight to the right
of the interval.

None of these nodal values is particularly accurate, except UUE1) in the
Neurmann case which results from UU satisfying a simple flux conservation relation.

However UN does not purpert to have accurate nodal values: it aims instead al heing

a nearly optimal fit to u in the I 's norm, which is close to a weighted L2
norm in this case. This optimality property can be combined with any Turther a priori
knowledge of u, such as smoothness, monotonicity, positivity, etc., to give more
accurate estimates for u. For the present problem, in the Dirichlet case, we expect
U to be well approximated by an exponential in the boundary layer near x = 1, of the

form

G2 (=1 (4.26)

uR(x) = Aq 3

for some constants Aq, and Aa- One equation for determining these parameters

A
2
is provided by the boundary condition UR(1) = 49,95 and the other two can be cbtained

by assuming that leocally UN is a best fit to Up and hence

: _ N - e B i
BS(UR U ,¢j) 0 J J-2, J-1. ) (4.27)

The result of this procedurs is given in the table: it can be seen that the value
for ul(0.9) is accurate to 5%; and the boundary layer half-width can be predicted as
0.0384 as compared with the exact value 0.0447.

In the Neumann case, in order to satisfy the boundary condition we take

Azfx—1)2
48 * Age (4.28)

uR(xJ = A
One equation for the parameters is obtained from integrating (4.25) over (x,1) to

obtain a relation of the form
-au' + bu = const. = b(1Ju(1), (4.29)

and others can be obtained from equations of the form (4.27), including j = J.
However, if only u(1) is required, substitution from (4.29) directly into
BS(u—UN,¢J) = 0 provides a good approximation: this is the value given in the table,

together with interior values obtained for (4.28) and (4.27).
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4.3 Two-dimensional problems

Before extending these techniques of approximate symmetrization to two dimensions,
it is useful to place them more carefully in the abstract framework of Section 2.

Leaving aside for the moment the case when ¢(x) 1s a delta function, we can wark in

H_, thet is Hé equipped with the ||-
Ao h. - , T N p
TU = NESDLHS. For the approximetion U given by

IP norm, and define N8 so that

BUN, W) = (£,W) = Blu,W) v WeT) (4.30)
we have, from defining R* as in (2.3a),
8_(u-U",R*w) = Blu-uN W) = 0 v wet) (4.21)

Suppose now that the constant Ae[0,1) dis such that

inf h
;QTB [v=-rRewl | < s [V v VeS (4.32)
Then with U* given by (4.14) and repeating the argument following (2.17), we have
||u*-uN|]§ = Bstu—uN,u*_uNJ
= Bs(u—UN,U*—UN—R*W] v WETB
< Allu—UN||S||U*vUN||S : (4.33)
Thus from ||u~UNH2 = [Ju-U*]|2 + ]IU*~UN']2 we obtain
s 5 s
_1
Hu-tV | < c-a2y 73| Ju-us] ] (4.34)
s s

It is clear that a good approximation is obtained if in part?cular R*NE is close to
the identity: that is, comparing (4.31) to (4.8), we take Nc to approximate
R -,

When using NO by taking e(x) as a delta function, we generate test functions
W which for non-turning point problems are not in Hé and for turning point problems
may not even be in Hl: in two dimensions the corresponding test functicns would not
be zero on the inflow Dirichlet boundary FDnP". Though it may be posgible to extend
the definition of R* to such functions and hence to establish an approximation
result like (4.32), it is difficult to do this so as to maintain (4.31). For B(v,w)
to be defined by (2.25) so that (2.24) holds one needs to have V2VGL2(Q): thus as a
minimum in (4.31) one needs to assume greater smoothness on u; and to define R* by
(4.31) using the Riesz representation theorem one needs to work in sinoother spaces
than Hs' We shall therefore regard the approximation derived using NO as a
limiting case of those obtained from Ne' In the one dimensional problems treated
above this mainly required establishing a uniform bound on IIK—1I| as 28 > QO’

where K 1is the stiffness metrix for the system in (4.18).
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We consider then two dimensional problems covered by Theorem 2.3, with the added

restriction that ¢ = 0, and in the space Hq with the definition of BD(-,-J

o

extended from (4.5) to

B_(v,w) :=(p622y,Vw)+ ([pb? + V- (pab)Iv,w) (4.35a)
= (aVv - bv, plavw - bw)) + (n+bv, paw)r 5 V€H1,W€Hé- (4.350b)
N
The assumptions made in (4.8) are generalised in a natural way with o := ph + Vipa)

and o+b 2 0. Then if all these coefficients are sufficiently smooth B(:,-) satisfies
the hypotheses of Theorem 2.1 in H5 x H_ . Thus there exists a symmetrizing operator
N satisfying (4.8) which reqguires explicitly that
(avv-bv, [V(Nw) - p (aVw-bw)]) + (n-bv, [Nw-paw])r = 0 v VGHé A (4,38)
N’
In case that the vector field E/a is irrotational a scalar X can be introduced, as
in (4.9), such that VX = b/a and with A = 0 at some inflow point. Then intro-

ducing z = e_Av and using the divergence theorem, the problem for Nw becomes

z-(aeAEﬁNw]] = z;[apek(azw—gw]] in @ (4.37a)
9 : I \ .
CE (Nw) + n+b(Nw) = pa“ = an lN , Nw =0 on PD ; (4.375)

This is not particularly useful as a starting point for approximating N¢., to

J
obtain test functions in a Petrov-Galerkin method. One could introduce a stream
function ¢(x,y) to take the place of the constant in (4.10) and for which one

would then have
_ N -\ . n
ax[Nw] = p(aaxw bqu] + (e /alayw (4.38a)
- _ I
By(Nw) = p[aayw bqu (e /alaxw , (4.38b3

with the boundary conditions on ¢ obtained from (4.37b). However., such an approach
has not so far been followed up directly, though it does motivate one of the two
approaches that have been used.

This, the most direct extension of the one-dimensional technigue, was reported
in Morton & Barrett (1980). As with the upwind method based on (3.28), it uses

bilinear elements on rectangles and correspondingly generates test functions given
by

L (x) (y) '
(N€¢ij](x,yl = (N€ ¢i)(x].(N€ ¢j)(y], (4.39)
(y)

€
defined similarly. The results for standard test problems in which b has a fixed

where N£X) is as in (4.23) but based on a(x,yj] and bqix,yj] with N

direction are quite good but the method is not edeguate when b corresponds tovery

curved flow lines.
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An alternative approach has been given in Barrett & Morton (1981). Corresponding
to (4.14), (4.15) the exact solution u 18 easily seen to satisfy

h
DS(u,dl;j] = (pa?,¢j) + (bu ay_u,g_(bj) Y q)jeSD . (4.40)

Thus suppose we introduce the flux funmction v = bu - aVu and approximate it by V.

Then an approximation UGSE to u can be obtained from
h

B (U.g,) = (pat,g ) + (Vg ) v $,eSy (4.49)

and any approximation scheme for V. Defining U* now by (4.14) one obtains
h

* - " - o R .

B, (U u,¢j3 (ar (v yl,qu) v o64¢S, (4.42)
Moreover, if we define s as o-v and denote by &* its best L2 fit in Sh
such that s = $* on FD’ then

h

i * = (G%-goe =5

BS(U U,¢j) ( g_!,¢j) Y ¢jC)U
and hence

*_ 2 17 Tax A *_

[Jus-u]12 s []]al "s* - &evl]-[1]a] wr-w]].

where §_= E/Iﬂl‘ Introducing the constant vy such that
ng_ + Vipa) 2 < y[pb? + V- (phal] ' (4.43)

we obtain the following relationshilp between the deviation of U and V from their

"optimal" approximations:
[Jus-ul], < v/ fad ] [s* - a-v]] - , (4.44)

Thus V should be constructed by approximating the equation V-v =+ 1in such a way
that o+V is close to S*: boundary conditions can be obtained by setting
V = bU - avl on the inflow boundary and U and V obtained from an alternating

iterative procedure. 0One such scheme was given in Barrett & Morton (41981) but what

is the most effective scheme is not yet clear.

To conclude, we believe that some cort of symmetrization is the most useful basic
approach to approximating non-self-adjoint problems by finite element methods. Other
more economic methods of adequate accuracy may then be derived from these. 1In Section
3 use of the exponential test functions turned out to be such a basic approach, based
on the symmetric part of the operator L being used to define the norm ]]-[IAC:
then the Allen & Southwell difference operator cen be regarded as a practical shortcut
to forming the stiffness matrix and various other upwinded test functions as approx-
imating the Green's function in (3.25) in order to model the effect of the inhomogeneous

data F. In this last section a natural alternative symmetrization based on the norm

ls has been presented. It gives quite a different type of approximation, much
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less closely linked to finite difference methods, and can yield so-called sub-gridscale
information. The further development of these two approaches for two-dimensional
problems should show which is the more useful.

It is a pleasure to acknowledge the valuable discussions with Dr.. J.W. Barrett

that have taken place during and prior to the preparation of these lecture notes.
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