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1. Introduction

It is almost certainly true that the majority of practical fluid
flow calculations are presently carried out uéing finite difference methods.
In meteorology, aerodynamics, hydraulics, heat transfer and many other fields
there is a large investment of experience, effort and expense in their use
and they usually perform well enough. Finite element methods have as yet
made a practical impact only in relatively few instances, see for example
Hirsch & Warzée (1976), Kawahara (1978) and Jameson (1982). On the other
hand, there-is a very large literature covering their theory and their
development for model problems. They havé inherent advantages for equilibrium
problems governed by quadratic extremal principles, that is, where the
equations of motion are linear, elliptic and self-adjoint. But in fluid flow
problems it is generally true that at least one of these properties is far from

being satisfied.

In this paper we shall consider two particular developments of finite
element methods to enable them to deal successfully with the wider classes of
problems occurring in fluid flow. One is directed téwards the solution of
steady, linear diffusion-convection problems, which epitomise the effects of
losing self-adjointness and whose successful solution is a necessary preliminary
to tackling the Navier-Stokes equations at moderate to high Reynolds numbers.
The other is concerned with evolutionary problems governed by hyperbolic
equations. Both involve generalisations to the Galerkin formulation, from

which the finite element method has drawn many of its advantageous properties.
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Consdder the following extremal problem for functions v defined

in a region 9,

minimise ﬂlTle - 2<F,v>), (1.1a)

the solution u satisfying the equation
T*Tu = f, | (1.1b)

where T dis a linear differential operator of order m, T*¥ is its adjoint,
f is a given function and <+, «>, |-| denote respectively the L2 inner
product and norm over Q: in the minimisation v is to lie in H"(Q), the
space of functions with square integrable mth derivatives. Leaving aside
the important but rather technical issues of how the boundary and boundary
conditions are approximated - for which we refer the reader to standard texts
such as Strang & Fix (1973) - suppose u is approximated from the conforming

finite element space Sh cH' (@), spanned by basis functions ¢j(x], that is,
s = (v M@ Vix) = T Vb, (x)}. (1.2)
(33 373

Then carrying out the minimisation in (1.1a) over Sh gives the approximation

U which satisfies the Galerkin equations

h

<TU, Tp> = <Frpp> Vg es . o (1.3)
Since u also satisfies these equations we have

<T(u-U), T¢£> = 03 ' (1.4)
and from this it follows that

I Tee-un | = Tin | Tew-v)| | (1.5)

ves
This equetion expresses the crucial optimal approximation property of the
valerkin method: U is the best approximation to u from the trial space
Sh in the energy norm determined by T. Both the theoretical error analysis

and the practically important superconvergence properties follow from this

equation.
Similarly, for the hyperbolic evolutionary problem

au
3t * Lu = 0, (1.86)



where L i1s a first order spatial operator, suppose u at each time t 1is
approximated from Sh. Then the ordinary differential equations for the nodal
parameters U, (t) may be determined by Galerkin equations

J

~oU S L h
<§f + LU, ¢£> =0 v ¢i €S . (1.7)

In many cases these again have important superconvergence properties: for
example, with piecewise linear elements on a uniform mesh one obtains fourth
order accuracy. Moreover, by multiplying each equation by Ui and summing,

one obtains

d, 2 = :
dtz||u|| + <LU, > = 0. (1.8) .

Thus, Jjust as for the exact solution u, the L2 energy of the approximation
is conserved or dissipated according to whether L is conservative or
dissipative, i.e. <Lv,v> = or 2 0. By similar arguments one can show that

the method has valuable non-linear stability properties.

In the next section we consider diffusion-convection problems and the
Petrov-Galerkin methods which have been developed over recent years for their
solution. We shall show that the widely used upwind schemes, including the
streamline diffusion method, can be placed in a unified framework which
provides a useful basis of comparison and sharp error bounds. This framework
is based on symmetrizing the bilinear form associated with each problem,
which can be done in two natural and distinct ways and yields approximations
which are therefore optimal in alternative norms. Upwind schemes can generally
be regarded as approximations to that symmetrization which leads to optimality
in thg Qirichlet norm, i.e. that arising from Poisson's equation: the
alternative corresponds to that used by Barrett & Morton (1980) which leads

to optimal approximations in a near least sguares sense.

Petrov~Galerkin methods have also been developed by several authars
for hyperbolic equations. However, in sectlon 3 we present a generalisation

of the Galerkin method which is based mére directly on the use of characteristics.
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With plecewise linsar basis functions it is shown to be extremely accurate

for smooth advection problems and to lead to several practiéally useful
approximate schemes both in one and two space dimensions: these require

little more computation than Galerkin methods and give large gains in stability
and accuracy. With pilecewise constant basis functions, the approach leads

to methods for shock problems which are closely related to the difference methods

of Engguist & Osher (1981).

2. Diffusion-convection problems

Consider the following problem in two or three dimensions:
- Ve(aVu - bu) = f in @ (2.1a)

u=g on T du/dn = 0 on T,. (2.1b)

D’ N
Here a 1is a positive diffusion coefficient, b a convective velocity and ¥
a given source. We shall assume that the convective medium is incompressible,

Veb = 0, and that of the boundary FDU r, of Q, the Dirichlet part T

N D

includes all the inflow boundary; that is, if n is the outward normal

then b*n20 on T A typical configuration is indicated on Fig. 1 and the

N
non-dimensional Peclet number blL/a, where L is a characteristic length,
may have values ranging from 102 for pollutant dispersal in a river to 104

and higher in heat transfer problems.

As is well-known, the Galerkin method in these situations often leads
to wildly oscillatory solutions: in effect, central difference approximations
to the convective term are generated and the discrete equations become almost
singular. The remedy with difference methods has long been to use upwind
differencing for this term and, in order to avoid the excessive damping
associated with a wholly upwind scheme, to adopt a mixed strategy such as that
advocated by Allen & Southwell (1955): in one dimension, for -au" + bu' = Q

on a uniform mesh, this gives



-a82, + bh[(1—g)A0 + EA_JU, = O (2.2a)

J J
i.e. -(a+ ;sthGZUJ * bhagU, = 0, (2.2b)
whgre h 1is the mesh spacing, AOUj 1= %[Uj+1 = Uj—1) and
62UJ 1= Uj+1 = 2UJ + UJ_1; with the exponentially fitted choice of mixing
parameter,
£ = coth (ibh/a) - [%bh/a]_q, (2.3)

this scheme gives exact nodal values for this simple model equation.
Problems of accuracy still occur in practical situations through excessive

crosswind diffusion and with variable flow fields and source terms.

Zienkiewicz (1975) seems to have been the first to recognise that
various upwind schemes could be generated with finite elements if the
weighting or test functioné ¢i in (4.3) were modified. There is now a
large literature on such Petrov-Galerkin methods and the reader is referred:
to the review by Heinrich & Zienkiewiczlt1979] together with the other
articles in the conference proceedings edited by Hughes (1978). Most methods
aim to reduce to the Allen & Southwell scheme in the form (2.2a) by an
appropriate choice of parameters: Hughes & Brooks (1979, 1981) on the other
hand develop their streamline diffusion method from the form (2.2b) by adding
an extra tensor diffusivity to the problem before using the Galerkin method,

though this can also be regarded as a Petrov-Galerkin method.

A seemingly alternative approach was taken by Barrett & Morton (1980, 1981).
Their aim was to choose a test space in such a way that the bilinear form
associated with (2.1) was symmetrized and thus the optimal approximation property
(1.5) restored to the method. However, as Morton (1981) has pointed out,
both classes of method can be viewed from this objective of symmetrization,

the difference being in the resulting symmetric form which is aimed at.
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2.1 Alternatlve symmetrizations

Introducing the fTirst order operators

1 1
Tqv 3= a‘y , TV i= a‘yv - [Q/a%]v,

equation (2.1a) may be written as
* =
T1T2u + in @

demonstrating the lack of self-adjointness. Similarly, by introducing

the bilinear form
Blv,w) := <aWv, Ww> + <V-(bv), w>

we obtain the weak form of (2.1) for u eH; as

Blu,w) = <f,w> Yw eHg,
where Ht = {ve:H1[Q]| v=g on T.}
E ' D
and H1 =I{W€|ﬁ1[Q]] w=0 on T.};
0 D-°°’

then this may be written as

<T2u, T1w> + ( benuwdS = <f,w> Yw eH;.
T
N

(2.4)

(2.5)

(2.8)

(2.7)

(2.8a)

(2.8b)

(2.9)

There are two obvious symmetric forms related to this: one is the symmetric

part of B(*,*) and can be written in terms of T,I as

B1tv,wJ <T1V,T1w> + 1 f benvwdS
T

N

n

i[B(v,w) + Blw,v)];

the other is that used by Barrett & Morton (4980) and based on T2.
B, (v,w) := <T2v,T2w> + fr be nvwdS

N

= <aVv, W + <(|b|2/a)v,w>.
(Barrett & Morton actually introduce a weighting function p in their
definition of BS which we have taken as a—1). The objective of
approximately symmetrizing B(¢,*) can be sought through either form.

(2.10a)

(2.10b)

(2.11a)

(2.11b)



Since B(v,w) 1s continuous on Hg X Hg and an equivalent norm on
Hg may be defined from either Bq[v,v] or Bz[v,v), one may deduce from

the Riesz representation theorem that operators R, and R2 exlst such that

1

for m=1, 2 Blv,w) = B (v, Rw) W, weHg : (2.12)
Leaving aside for the moment the problem of explicltly representing Rm,
or its inverse, consider the Petrov-Galerkin method for U in a trial space
SE with basis functions ¢i, the subscript denoting that the essential
boundary condition U =g on PD is satisfied, and based on test functions
wi spanning a test space TB c Hg:

BIU,Y,) = <F,p> Vi, eTB. (2.13)
Since u satisfies the same equations we have the projection property
%or the error |

B(u-U,$,) = 0O vy, e Th. (2.14)

i i 0

Now suppose we were able to choose the test functions so that, for m =1 or 2,

! : 1 h h 1
% - =] v =
span {mei} span {¢i eHO} Sy i=8'n HU . (2.16)
Then denoting the corresponding Petrov-Galerkin approximation by U; and
noting that u - U; eHg, we have from (2.12)
B (u-U*,6.) = O Ve, esh (2.17)
m m'ri i "0 ’
and hence the optimal approximation property holds,
| ]* = min _ ‘ -
fu-urlg = Gogh Nuvly - (2.18)
m E m

In fact consider any test space TB which has the same dimension as

SB, and for which the positive definiteness of B(v,v) ensures the non-singularity

of the stiffness matrix in (2.13): and suppose the closeness with which

SB can be approximated by RnTB is described by the constant A such

that
Moy Jv-R W < al v VVesh (2.19)
WeT0 m™ B By 0° i o
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Then one can shown for the corresponding Petrov-Galerkin approximation U,

lu-uly = [1-A2]”%|IU*U$|lB . (2.20)

m m
In particular, one can deduce that the Galerkin approximation falls short
of the optimal approximation by a factor dominated by the mesh Peclet number

| b| hv/a.

2.2 Schemes derivable from Bq(v,w] symmetrization
Now let us consider how closely we can in practice approximate either
of the ideal test spaces given by (2.16). For m = 1, the relation (2.12)

can be regarded as an equation for w with R,w given, which takes the form

1
<aY[w-R1w) + bw,V\> - 3 f Q'Q[R1W]Vds =0 Vv<aHg. (2.21)
T
N
In one dimension, on the unit interval with a and b positive constants

and Dirichlet boundary conditions at x = 1 as well as x = 0, it becomes
aw' + bw = a[wa]' + const., w(0) = w(1) = 0, (2.22a)

the constant being determined by the two boundary conditions; and with a

Neumann boundary condition at x = 1 it becomes
aw! + bw = a(Rw)' + zb(R,w)(1),  w(0) = 0. (2.22b)

When the trial functions are piecewise linear, one obtains from these
equations as the ideal test functions the negative exponential functions
used successfully by Hemker (1977): on a uniform mesh, they are proportional

to ¥, (x) - ¥(h 1x-3) where

-1<ts<o0
P(t) = (2.23)
e - e 0sts 1,

and B = bh/a. These not only give the Allen & Southwell scheme but for

-au" + bu' = f they give exact nodal values for any source function .

This is consistent with (2.18) for m = 1 because optimality in this nomm
for piecewise linear approximations corresponds to linear interpolation between
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the nodas.

For large values of B the exponentials in (2.23) are awkward to deal
with and in any case it is difficult to see how (2.21) could be solved 1in two
diménsions. However, simpler functlons can be used which reproduce the
Allen & Southwell scheme and approximate (2.23) sufficiently well as regards
modelling the effect of the source function. They include the quadratic functilons
used by Christie et al.(13876) and Heinrich et al. (1977) which, again 06 a

-

uniform. mesh, become

v(t) = ¢(t) + ao(t) (2.24a)
with
-3t (1-]t]) [t] <1
o(t) = (2.24b)
0 [t] > 1
choosing the parameter o > 1 - 2/B ensures no oscillation in the solution,
while taking o = &, given by (2.3), gives the Allen & Southwell scheme.
Moreover it is easy to extend this scheme into two dimensions using bilinear
elements on rectangles. The trial basis functions are given by the product
(y) and the test functions can be taken as

b5 0xy) = 4, (x)¢

J J

wij(x.y] = [¢i(xl + a1oi(x]] [¢j(yl'+ azcj(yJ] (2.25)

with (!1, a2

based on the two components of b.

As noted above, the methods of Hughes & Brooks (1979, 1881) are
prompted by the form (2.2b): the oscillations produced by the central
differencing for the convective term b<*Vu are damped by introducing extra-
diffusion, while still retaining the Galerkin test functions. In two
 dimensions the convective differencing is approximately in the streamline
directign and thus they add the extra diffusion only in this direction: that

is, the diffusion a 1in the term -V+*(aVu) 1s replaced by a tensor

diffusivity,

~¥e (AV = o 2
Ve (AVu), where A, =af, +ab, bm/lpl . (2.26)



On a uniform rectangular mesh with spacings hq. h2 the suggested cholce of
the parameter a 1is
a = 3(Ebhy + Ebyh)) (2.27)
-1
K o 1 = 1 ]
with %n coth (mehm/a] (;bmhm/a) , m=1, 2

This scheme seems to work well in many practical situations. To place it in
our general framework, we note that in their more recent paper Hughes & Brooks

(1981) show that it is,in part at least, a Petrov-Galerkin method since
AW, V> = <aVy V6> + <b-W, (a/|b]|2)b-v6> . (2.28)

That is, it is equivalent to using test functions

N = 2%h -
Vig = byt (a/|b]?)b Vo 5 (2.23)

on just the convection term. For linear or bilinear trial functions these
are discontinuous test functions and lie outside our theoretical framework:
but if that part of B(U,wij) arising from the diffusion term and the

b V4, |

term in (2.29) is evaluated element by element, it gives no
contribution since V2U = 0 on each element. In this way (2.28) can be
regarded as a test function used in the whole of the bilinear form. Although
Hughes & Brooks did not originally use the test function (2.29) on the source
term, Johnson & Navert (1981) in their analysis of the streamline diffusion
method for the singular case a = 0 do in fact modify the source functicn in

a way that is consistent with applying (2.28) and Hughes & Brooks (1981) now

apply (2.29) consistently on source and time derivative terms.

Thus to summarise the m = 1 case, in one dimension the exact test
functions (2.23) of Hemker, those advocated by Heinrich et al. (1977) and
typified by (2.24) and those in effect used by Hughes & Brooks (1981) and
given by (2.28) all reproduce the Allen & Southwell difference operator but.
differ in the way in which théy sample the source function. These three test
functions wi for typical values of the mesh Peclet number B are plotted

in Fig. 2a. The last two appear to differ significantly from the first:
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yet from Filg. 2b, which shows in each case the extent to which R1wi can
repraoduce the trial basis function ¢i' we see that eilther of them is very
effective. These figures give a rough pictorial representation of the
approximation properties of each scheme as defined by (2.19) and (2.20).

Actual calculations of the parameter A in each case and in the Galerkin case
give the results in Table I. Though there is little to choose between the

two main practical methods in this simple case, they differ much more markedly,

and of course much more importantly, in the way im which they extend to 2D.

Table I Ratios of Petrov-Galerkin error to optimal error,

=1
given by (1-A2) % from (2.19), (2.20) with m = 1.

B Galerkin Heinrich et al. Hughes & Brooks
2 1.1547 | 1.0060 1.0924
5 1.7559 1.0468 1.1509

50 | 14,468 1.2022 1.1547

500 144.34 1.2344 1.1547

10° 28868 1.2383 1.1547

2.3 Symmetrization using Bz(v,w)
Turning now to the case m = 2 adopted by Barrett & Morton (1380, 1981),

the equation corresponding to (2.12] and (2.21) becomes

<Ww - [Y(sz] = a-1Q(R2w]], avVv - bv> + f benlw - Rw) vds = 0

Iy

Vv cHg. (2.31)

In one dimension, on the unit interval with a and b positive constants

and Dirichlet boundary conditions, this becomes

whos (Ryw)' - a'1btR2w) + const.e P%/@ | 4(0) = w(1) = 0, (2.32)

the constant again being determined by the boundary conditions. Clearly

the negative exponential plays a less important role in this case and it is

41



a straightforward matter to compute the ideal test functions defined

by (2.16) for any choice of trial functions. It 1s, howsever, unnecessary

to db this computation and it is preferable to move directly to the symmetrilzed

form of the equations. Assuming for simplicity that the Dirichlet boundary

conditions are homogeneous, the Petrov-Galerkin equations (2.13) with the

test functions (2.16) can be written, using (2.12) as

i} : h
B, (U, ¢,) = <F,y2> Y ¢, €Sy

Now suppose that instead of solving (2.16) we solve

* P o
RS = f
where R; is the adjoint operator to R2. Then (2.33) becomes
o h
* N
B, (U, ¢,) = <F,¢;> V ¢; €S

a symmetric system of Galerkin eguations using a transformed source

function. For the simple one-dimensional problem we ocbtain from the

equation corresponding to (2.32)

FIX) = £(x) + a b [F(x) - F1
where
X _ 1 _ - §
F[X] = [ 'F[y) dy, F o= [ e bX/aFdX/[ e bX/adx.

This is easily generalised to variable a, b and to general boundary

conditions. The main two points to notice are that, firstly, the discrete

(2.

(2.5

(2.

(2.

operator on the left of (2.35) which one obtains With‘linear basis functions

is no longer the Allen & Southwell operator but instead

~a82U + bhB(1 + %62Ju,

whiéh'cprresponds to the self-adjoint differential form -au' + a—1

secondly, approximations to this ideal scheme are obtained, just as in the

m = 1 case, by approximating the source function term - for instance,

by omitting F in (2.386).

_1 2-.

b2u;

(2.

33)

35)

36)

37)



The most important distinctlon, however, between this m = 2 casse

and the m = 1 case is that U* 1s a best fit in the norm.given by (2.11b),

2

which for large Peclet numbers becomes the L2 norm, while U; was exact
at the nodes. This means that in a sharp boundary layer UE exhibits
oscillations, but of a controlled kind: indeed the extent of the overshoot
is a valuable measure of the thickness of the boundary layer. The general
problem of recovering information about u given its. L2 best fit has now
been studied by many authors - see, for instance, Barrett, Moore & Morton
(1982) and the references therein. The formulae correspond in some sense
to the interpolation formulae that are needed to recover u from its

nodal values: one of the best known gives accurate nodal values from the

nodal parameters of a best linear fit on uniform mesh,

I IR

‘h) -
[utin 77 U5 + 1005 + U ==

J+1
We shall see that L2 best fits play an important rBle in the next section
too. Thus although it is inappropriate to dwell at length on the recovery

problem here, it is important to note that there are few disadvantages and

(2.38)

often some advantage (as in the boundary layer case) in a method yielding an

L2 best fit rather than nodal values.

To continue the discussion of the m = 2 case, there are several

ways in which two dimensional problems may be treated. 1In Morton & Barrett

(1980) tensor products of the one-dimensional ideal test functions were used,

as with the method of Heinrich & Zienkiewicz (1979). These are both

somewhat awkward to use and less successful with strongly curved streamlines

than the mixed method used in Barrett & Morton (1981) and forming the
natural extension of the form (2.35). Without attempting to solve the

equation for f, we introduce the flux function
v = bu - aVu
and can then write the equation (2.7) for u as
B, (u,w) = <f,w> + <a—1g-y,w> '/ welﬂg.

_13_
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This 1s approximated by

. -1 h
BZCU,¢iJ = <F,¢i> + <a p-y,¢i> Y ¢i €Sy (2.41)

with V obtained by approximating the equation Vev = £, Then one finds
that, 1f S* dis the best L2 fit to a 'bey From sg. one has

-1

Ilu—ugllB < I el M@ My - 54 . (2.42)
2

Although it is far from clear that the best procedures for approximating
V, or rather b-+V, have yet been found the results obtained so far are

encouraging.

2.4 A test problem

We end this section with a few numerical results for a test problem
which is a modification of one put forward by Hutton (1981)}. The flow field
b is indicated in Fig. 3 and is derived from a stream function (1-x2)(1-y2).
In Hutton's test problem a tanh input profile for u was specified on
y =0, -1 £x £0 with Dirichlet conditions on the tangential boundary
consistent with pure convection: the main test was for the output profile
for various values of the Peclet number. We have tested the Heinrich et al.
scheme using [2.25], the Hughes & Brooks scheme using (2.29) and the Barrett
& Morton (1981) scheme and all performed reasonably well on this problem with
the Hughes & Brooks scheme giving the best results, pfesumably because of its
small crosswind diffusion: a two dimensional version of the Allen & Southwell
scheme by contrast gave very poor results. Our modification to the problem
is to specify u = 0 on the input and all the tangential boundaries except
X = 1, where we put u = 100: this models a situation where a cold fluid

is channelled past a hot plate.

The interesting profiles are those for fixed values of y. In Fig. 4
we show the profiles for each scheme at y = 0.9, v = 0.5 and. y = 0. when the
mesh Peclet number B = 20; Fig. 5 shows corresponding results for g = 100.

Despite their objective of non-oscillatory solutions both the Heinrich et al.
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scheme and that of Hughes & Brooks show considerable oscillation,
parficularly the latter. The Barrett & Morton scheme, on the other hand,

is aimed at a best fit in the norm defined by (2.11b) and would be expected
to be oscillatory for these values of B. Indeed the variation of the
boundary layer thickness with y,' which is most obvious in Fig. 4, can be
calculated from these results and each thickness is within a few per cent of

that calculated from an asymptotic analysis.

More analysis is clearly required to fully explain the behaviour
in this two dimensional example of the two schemes which were motivated by
the Allen & Southwell difference method and which we have associated with
the B1 symmetrization. However, when the results are combined with those
for the Barrett & Morton scheme and viewed in the Confext of the general
analysis given above, they add to the growing evidence that generalised
Galerkin methods can successfully handle a wide class of diffusion-convection
problems: the important point is that their output must not be viewed as

if it came from just another fancy difference scheme.

3. Hyperbolic equations

Any method for approximating hyperbolic equations sacrifices a good
deal if it takes no account of the presence of characteristics. The semi-
discrete Galerkin equations (1.7) yield such methods: thus as soon as a
standard time discretisation is introduced, disadvantages to the Galerkin
formulation appear. First of all, a reduced stability range for explicit
schemes 1s generally obtained. For example that for the leapfrog method
is reduced by a factor v¥3: while Euler's method applied to Uy + au, = 0

gives the central difference scheme which is well-known to be stable only

for At = 0(h?). 1Indeed the phenomenon in this latter case is very similar
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to that in the previous section and some form of upwinding ;9 strongly
indicated. One of the conssequences of this loss 6F stabillty is that the
schemes cannot be used when the CFL number is unity, while most common
difference schemes are exact in this limit, a fact which improves their

accuracy over the whole stability range.

Many authors have sought means to remedy these defects and several of
them are based on a Petrov- Galerkin approach. Thus suppose a one-step method

-

in time is used and wu(x,t) is approximated at nAt by
n n
U (x) = o ULe, (x). (3.1)
z(JJ J¢J

Then test functions wi(x] are sought for the eguations

n+1 n

< U - U n+1

+ Lou™ "« T8UN) > = 0, (3.2)

Morton & Parrott (1980} introduced special test functions xi[x], corresponding
to the use of linear trial functions ¢j for the model scalar problem

ut + au = 0, which have the property of giving exact results when the CFL
number W = aAt/h 1is unity (the unit CFL property): because the Galerkin
method is highly accurate for small u they therefore used in the general

case

¢i = (1-—v]¢i * Xy (3.3)

with v =y or v = p2, determined by a Fourier analysis. Highly accurate
schemes which are closely related to well-known finite difference schemes

result for either Euler's method, ® = 0, or Crank-Nicolson, 6 = %. A

Nl

similar scheme was given for leap-frog time differencing and both this and

the Crank-Nicolson scheme retain conservation of U though not of U2: the
leap-frog scheme is 4th order accurate in both At and h. Convenient
generalisations were given for hyperbolic systems and the use of bilinear
elements allowed Morton & Stokes (1981) to extend the methods to two dimensions.
However, limitations were found with the Petrov-Galerkin formulation when
triangular elements were used and an approach esven more closely based on the

characteristics was introduced.
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3.1 Fuler characterilstic Galerkin method (ECG Method) in one dimension

Consider the scalar conservation law in one dimension

Btu + axf(u) = 0, (3.4a)

or atu + a(ulaxu = 0.. (3.4b)
where aflu) = 3f/du. Then u d1s constant along the characteristics

dx/dt = a so that, if we write u"(x) for u(x,nAt) and similarly for

a and T, we have for smooth flows

-

W ey) = WNx) where y = x + a"(x)At. (3.5)

Thus the L2 projection of un+1 onto the trial space Sh spanned

by {¢'J.} is related to that of u" by

n

<un+1 - un,¢.>

0o B ﬂ_
i f—wu (x) [¢j(y] o ¢j(x]]dx

n

f—w u (x) [E§ fx ¢j(z)dz]dx

— Bxu (x) L ¢j(z)dz]dx. (3.6}
—c0 X

On a uniform mesh with ¢j(x) = ¢(h—1 X -j), we introduce the upwind-

averaged test function

1 (5
o(s,u) = —-f ¢ (o)do (3.7)
Wig
and set
() = sth 1 x -5, a"xaat)
1 x+a (x)At
e e f ¢j(z]dz. (3.8)
a (x)At X

This test function @(s,u) is plotted for various values of u 1in Fig. 6,
where it is seen to have its maximum at -ip: this corresponds to @g

peaking midway between jh and the foot of the characteristic drawn back

from (jh, n+1At) to time level n. From (3.68) and (3.8) we then get

<™ u”,¢J> + At <a“axu”. ¢} = 0. (3.9)
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This exact relationship does not of course allow complete tracking

of the svolution of un, as does (3.5), since only the projection quantities
<un,¢j> are obtained at each level and these are insufficient to calculate
the second term of (3.9). But several approximation schemes can be based on

this relation.

We refer to the following as the (exact) Euler Characteristic Galerkin

(ECG) Method.

n+1

<™t U”,¢J.> v at <atuMa U, <1>g> = 0, (3.10)

where U7 is given by (3.1) and is assumed continuous and ¢g is given by
(3.8) with a"(x) taken as a(U"). We leave the second term in the form
a(U]BxU because a(l) will cancel: but the evaluation of this inner product
still involves considerable computation and various approximate schemes will be
considered below. The merit of (3.10), however, is that the only error involved
is that due to the projection at each time step: if the initial data is
projected into Sh then this is carried forward exactly through the first time
step before being projected again, and so on. Thus if the objective is to carry
forward the L2 projection of wu(t) onto Sh this is the very best that can

be achieved by a one-step algorithm using the time step At.

3.2 Approximate ECG schemes

We confine ourselves here to piecewise linear basis functions ¢j
and to schemes which are exact when a(U) is constant and the CFL number
w = adt/h lies in (0,1). 1In this case; (3.10) involves only three
‘neighbouring nodes and their coefficients can be correctly reproduced by

either of the following replacements for @&

J:
% 6l .= (1-1 N 1, 1-3- -1
EI R A IR I 2 S R BT
(3.11)
- 1 | . o
+ M[(¢j ¢J_1) + 2(¢j ¢3_1]]l
-~ 1 1 .
¢, <I>§’[><J t= gle 0x) + 46,(x * Juh) + ¢, 0x + yh)1. (3.12)
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In the first alternative, where the superscript 7T denotes that the integral
(3.7) has been approximated by considering Taylor series expansions, M may be
any smooth.function of ¥ which tends to zero at either limit wu =+ 0 or 1:
ons ﬁossibility is M =0 and another, M = %ﬁf1—uﬁ » makes ¢:; the best

L2 fit to QJ by a linear fit 1in each interval; ths latter is shown in Fig. 7.
For ¢T only one extra set of inner products needs to be evaluated as

compared with the Galerkin method, '<¢i,¢3> as well as <¢£‘¢j>' In the second
alternative, given by (3.12) where the supefscript’ S stands for "shifted”

or for Schoombie (1982) who introduced such test functions in a Petrov-Galerkin
setting, two extra sets of inner products need to be evaluated: moreover,

these also depend on the value of p so that in more general cases they cannot

be evaluated once and for all.

There is a third possibility besides (3.11) and (3.12) which approximates

directly the inner product <¢£,®j> needed in the linear case of (3.10):
<pyee> = (1-p)2 <$j.0p - NEEN! <6300
+ ]J[S"Zu) <¢i,¢j - ¢j"1>. (3-136]

Here there are no extra inner products needed at all. Moreover, integrating

by parts we see that this scheme is equivalent to using a test function

v oL em (4024 - (- _ X _
0 % 0 0x) i (1-w)%¢, - wl1-ulgy_; + ul3-2y) f (6,.478;)dy,  (3.13b)

-00

which is shown in Fig. 8 where we see that it is an exact match at =1

and extremely accurate at p = Z.

There is clearly no stability limit on (3.10) while there will be such
limits on the approximate schemes given above. For (3.11) this is independent
of M and is actually -} < ﬂ < g- although for reasons of accuracy one would
wish to keep u in (0,1). .

The application of either (3.11), (3.12) or (3.13) to a general scalar
conservation law is straightforward: omne merely replaces u in the formulae

J

by the local CFL number a(U™)At/h. However, because a(U") does not cancel
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P
as 1t does in (3.10), ecither some of the speed advantage has been lost
through having to 1lntegrate inner products which contain atu™ explicitiy,
or some accuracy is lost by replacing au™ by the constant a(U?) and
absorbing it into the coefficients in (3.11), (3.12) and (3.13). An

alternative is to use the product approximafion strongly advocated by

Christie et al. (1881): that is, to use the approximation

N n !
3, Flu) = Z(j]f(Uj]¢3 : | (3.14)

Such an approximation is of particular advantage when coupled to (3.13a),
the amount of computation then differing little from that for the Galerkin
method applied to the simple advection equation wu, + au = 0.

t X

3.3 Test results in one dimension

We will show a sample of results obtained with these schemes: a
more complete account will be found in Morton & Stokes (1882). The first
tests are for pure advection. Fig. 9 shows the results for a Gaussian profile
and for a ramp function as compared with Gadd's modification of the Lax-Wendroff
method (Gadd, 1878). A Fourier analysis shows that the error generated in the

L2 projection at each time step is given by
error ~ 5% w2 (1-p2)g (3.15)
where & = kh and k is the wave number.

Fig. 10 gives results obtained for the non-linear advection equation
u, + uu, = 0 with an initial isolated cosine wave. Each picture shows the
leading edge of the wave at t = 3 where t = 2/m is the time to first
breaking: on the left are results for Crank-Nicolson-Galerkin (the most
reliable second order accurate time-stepping for Galerkin), the exact ECG

scheme (3.10) and the approximate ECG scheme (3.11); on the right the

same schemes are used but coupled with the product &pproximation (3.14).



Taken together these two sets of recults demonstrate impressive
accuracy for the ECG methods and this is confirmed by results obtained by
other authors experimenting with similar schemes - Bercovier & Pironneau (1981)
and Benqué & Ronat (1982). Note that all the results presented for the finite
element schemes should be interpreted as approximations to best L2 fits.
The particular interpretation that is used is unimportant for linear constant
coefficient problems but is very importarit for non-linear problems - see
Cullen & Morton (1880). Finally we should point out that similar test functions
can be developed for other basis functions and for other time-differencing
schemes and these will be found in Morton & Stokes (1982). In particular, though
one has to generalise the development of the algorithm to deal with discontinuous
basis functions, it can then lead to methods related to the upwind schemes
presently used in shock modelling: thus piecewise constant elements. plus an
exact Riemann solver to replace (3.5) gives the method of Godunov (1959) while
simpler extensions to (3.5) can lead to the basic method of Engquist & Osher

(1981).

3.4 ECG schemes in two dimensions

For the linear advection equation

d,u + a*Vu =0 (3.16)

the exact Euler Characteristic Galerkin Method uses an upwind-averaged

test function completely analgous tb (3.7) and [3.8]f However, for plecewise
linear elements over triangles, the computation of the test function, or

of its inner products with a<VU, is clearly a considerable task. Fortunate}y
either (3.11) or (3.13) extend in a natural and economic manner to give very
accurate results. The vector -aAt extends from the node Jj into a triangle
for which this is one vertex and defines the foot of the characteristic drawn
back from node J at time level n+ 1 to time level n: the approximation
to ¢J uses the basis functions, and with (3.11) their gradients, corresponding

to all the vertices of this triangle - see Fig. 11. Using the notation of this
..21_



figure, the generalilsation of (3.11) is most simply given in the local
co-ordinate system based on node j 1n which the trlangle becomes a canonical
right triangle as shown in Fig. 11 and gAt becomes fuq,uz). No choice of
coefflcilents gives an exact match to the perfect test functlon but there is a
two parameter family of methods corresponding to (3.11) which give third order
accuracy: the simplest, corresponding to M = 0 in (3.11), takes the

form

o ¥ oy 1= Um3ugmhuplen * ugdp * Bupig

11 i} 1
+ g Legrg )9, (6a70g) + Fugdy i]

IR 1.
+ dupl Gogug )3, (oxmde) + g9y gl (3.17)

Stability also depends on the choice of parameters and the stability region
of (3:17) has been shown to include u% + u% < 1, and therefore all cases

where -aAt 1lies in a triangle with node j as a vertex.

Numerical tests on this and related -schemes have so far been carried
out with advection of a Gaussian, both on straight line tracks and around
a circle, with excellent accuracy. Fig. 12 shows radial cross sections for a
Gaussian carried round a circular trajectory after travelling a quarter, a half,

three-quarters and a complete revolution. The prablem is solved on (-1,1)x(-1,1)

1

with right-triangular elements, Ax = Ay = 15"

At = 0.8Ax, circle radius %
and standard deviation %V@: aftep 160 time-steps the phase error is about one
mesh length,

The present objective is to apply the method to the shallow water_
equations. The test function (3.17) is applied to just the advection terms
and the Galerkin formulation used for the remainder: it may be desirable
however to use the alternative time-stepping schemes referred to briefly
at the end of the previous section. The immediate aim is to improve the
stability range and accuracy reported for model problems in Cullen & Morton
(1980) and obtained with schemes which generalised the purely Galerkin approach

only in regard to modelling the non-linear terms by a two-stage Galerkiln
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procedure.

4. Conclusions

'Diffusion-convection problems and hyperbolic equations provide two
related but distinct problem areas where the deficlencies of the Galerkin
derivation of finite element methods are most apparent. We have shown
that generalised Galerkin methods can be formulated that can, in the one' case
completely and in the other very largely, restore the optimal approximation
properties that make the Galerkin approach so successful with self-adjoint
equilibrium problems. These ideal methods are not completely practical but
we have also shown how a number of existing methods can be viewed as
approximations to them and also how they provide guidelines to the development

of new practical algorithms.

A few such algorithms have been presented along with results for model
problems. But, as indicated in the introduction, much work has yet toc be done
to develop them into competitive techniques for typical practical fluid flow

problems.
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Figure 1

¢ A typical diffusion-convection precblem in 2D.
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Figure 3 : A test problem modified from Hutton (1881).



Fipgure 4 : Results for the testproblem of Flg. 3, showing the boundary layer near
x = 1 for various values of y. The mesh Peclet number B = 20 and the
methods used are Heinrich et al. (HHMZ), Hughes & Brooks (HB) and Barrett &

Morton (BM).
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Figure 5 : Simllar to Fig.

4 for - = 100
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Figure 6 : Upwind-averaged test function &(s,u) for n =0, £, &, 2, 1



Fipure 7 :

The approximate test function ¢T(8,u3. with M = n(1-u)?2,
compared with the exact @&(s,n).




Figure 8 : The approximate test function @I[s,u) compared with the exact
¢(s,u). e : ,
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Figure 9 : Advection of a Gaussian profile and & ramp 1"unc1,ion by the ECG
scheme and Gadd's scheme, for u = 0.8.
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Figure 10+ : Non-linear advection by Crank-Nicolson-Gelerkin (ENG), exact ECG and
approxlmate ECG [ECG_T) schemes : product approximation is used in the
right-hand gset. .
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Figure 11 : Layout of triangle for calculation of approximate
ECG test function from (3.17).
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Figure 12

Convection of a Gaussian after ¥, 4, # and 1 revolution with

approximate ECG scheme.
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