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ABSTRACT

We discuss the application of the Moving Finite Element (MFE)

Method to diffusion problems with solutions which develop steep moving
fronts. Attention is focused on one-dimensional examples, in particular
the viscous Burger’'s eguation, but we eventually intend to apply the
method to two-dimensional thermal conduction problems of interest to
A.W.R.E., Aldermaston.

We look at the various approximation procedures for repre;enting the
second derivative terms in diffusion equations and show the equivalence
between the use of a "recovered” function for this purpose and the method
of 6-mollification introduced by Miller. We show.also how nodal movement
is influenced by the approximation procedure and how node overtaking may be
controlled without the introduction of penalty functions.

Comparison of numerical results is made using a number of different
time-stepping schemes and the effect of each technigue on the problem of

node overtaking is considered.



1. INTRODUCTION

The MFE method for the solution of time dependent partial differential
eguations, introduced by Miller & Miller [2], has been used with considerable
success for both parabolic problems (see Miller [3], Miller & Miller [2],
Gelinas, Doss & Miller [1], Herbst [4]) and hyperbolic problems (see
Wathen [5]1, Wathen & Baines [6]1). A review of the essential details of the
method is given in section 2 below.

In section 3 we discuss the problem of the approximation procedure
for the second derivative term in parabolic problems, introducing the idea
of a recovered function as an alternative to the limiting process used by
Miller in [2], and show the equivalence of the two techniques under certain
circumstances.

In section 4 we give numerical results for a problem governed by the
viscous Burger's equation with a sharp front and show how the problem of
node overtaking places a restriction on the time steps which may be taken.
This restriction leads us to discuss (in section 5) alternative time stepping
techniques to the explicit Euler method used in section 4, and we give a
comparisaon of the effect of each of the technigues on the problem of node
avertaking.

Throughout this work we avoid the use of penalty functions to prevent
node overtaking or to resolve the problem of parallelism, as introduced by
Miller, since that approach has the unsatisfactory feature that several free
parameters must be chosen, which may be highly problem dependent. We treat
parallelism following Wathen & Baines [6], and as an alternative to the use of
penalty functions we analyse in section 6 the effect of the various
approximation procedures for second derivative terms on the movement of
the nodes and give examples of ways in which nodal movement may be constrained.

In section 7 we briefly investigate the possibility of deleting nodes

when overtaking occurs and reintroducing them so as to best preserve the



accuracy of the approximation.

Section 8 gives a conclusion from the numerical results and analysis

of the previous sections.

2. MOVING FINITE ELEMENT METHOD

In this section we review the essential details of the MFE method

using linear elements in one space dimension.

In general we seek approximate solutions to the evolutionary equation

U - L(u) =0

where L 1s some non-linear spacial differential operator.

We take a semi-discrete approximation

N
Ux,t) = }

j Uj(t]aj {x,8(t)}

/I

(2.1)

(2.2)

where uj is a standard piecewise linear finite element basis function

on the grid defined by the N-dimensional vector s of time dependent

nodal positions (see Fig. 2.2).

Partial differentiation of (2.2) with respect to time yields

N,
U (x,t) = ) U,o,(x,8(t)) + &,8.(x,U(t),s(t))
t 20 3= 73— -
J
where the . denotes time differentiation and where Bj = - %g-aj

may be regarded as a second type of basis function (see Fig. 2.3).
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(2.3)

The basis function
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The basis function Bj is given by
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Minimising the sguare of the L2 norm of the residual,

. 2
luy - L L

with respect to the ZN parameters Uj, éj yields the set of 2N equations.



<U, - L(W,a.> =0
E J (2.4)
<Ut = L(UJ.Bj> =0
j=1 >N
where <e¢,*> denotes the L2 inner product. Substituting Ut given by
(2.3) then yields the non-linear system of ordinary differential equations
Alyly = gly) 621 59
which are referred to as the MFE equations. Here
_ T
y = [U1’51""'UN'5N) ,
Aly) is the MFE matrix which is square, symmetric and 2 x 2 block
tridiagonal with blocks given by
Ggap <oy,62
Aij = (2.6)
<Bi,ocJ> <Bi,8j>
and the elements of the vector g are defined by
g-._, = <L(U),a.,>
241 * (2.7)

The system (2.5) may be solved for the Ui,éi using some iterative
technique, the generalised conjugate gradient method (see e.g. [71])
being chosen throughout the wark in this report.

Details of various time stepping techniques which may then be used
to yield Ui,si (i = 1,...,N) at the next time level are discussed in section
5, although in the averaging analysis of section 6 it is assumed that explicit

Euler time stepping is used.
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3. SPECIAL TREATMENT OF SECOND DERIVATIVE TERMS IN DIFFUSION PROBLEMS

In this section we draw attention to the limitations of
the approximation procedure described in the previous section when second
derivatives are present in L(u), such as in the case of diffusion problems

of the form

U+ fx[u) = eu . (3.1)

where in (2.1) L(u) = f (u) - eu . (3.2)
X XX

It is immediately apparent in solving

Ut = L(U)

with the approximation defined by (2.2) that L(U) does not have a finite
L2 norm since Uxx consists of a sum of delta functions. Furthermore
the solution of the MFE equations (2.5) requires the evaluation of inner
products <Bi’Uxx> where Uxx exists only as a sum of delta functions
at the nodes and Bi is itself discontinuous at the nodes (see below].

It would seem that one solution is to seek an approximate solution
in a space of functions smoother than piece-wise linears, such that L(U)
will have a finite L2 norm, but this will of course lead to an entirely
different structure for the resulting MFE matrix. As an alternative, and in
order to take advantage of the structure of the MFE matrix analysed by
Wathen & Baines [6], we persevere with the approximation defined by (2.2},
but introduce a special interpretation of the inner products (2.7) appearing on

the right hand side of the MFE equations (2.5).

§-Mollification

In [2] Miller resolves the difficulty of higher order derivatives
by interpreting the limiting equations obtained by applying the minimisation

process to ‘the manifold M, of "smoothed off” or "§-mollified” piece-wise

S

linear functions, in the limit as 6 - 0. The resulting inner product% tend to

their expected limits in the sense of distributions as & + 0, but in evaluating



the inner products <Uxx’si> on the right hand side of the MFE equations
(2.6) the basis function Bi must be assumed to take its mean value
-3(m, + m) at the point s,, where ™M, = U  on element i.
i+1 i i i X
An alternative to the Miller approach is to replace the inner products
<U_ ,o0.>, <U__,B.> appearing on the right hand side of (2.5) by
xx” i xx’ 71
<w__,a.”, <w__,B.> , respectively, where w(x) is some "recovered” function
xx”’ 1 xx’ i
lying in a smoother space than U(x), such that W has a finite L2
norm. Similarly, these inner products may be replaced by <vx,ai>, <vx,6i> s
where v(x) is some function which is recovered from the gradient Ux(x]
(which for linear elements is piece-wise constant).
We now show that the inner products resulting from the process of
S-mollification are identical to those produced using a Hermite cubic function

w(x) recovered from U(x).

We replace the inner products

<Uxx' di> <Uxx' Bi>

by

<w__, a.> <w__, B.> (3.2a)

XX 1 XX 1

where w(x) 1is a Hermite cubic function defined on each element i by

at x = s,
i-1
wix) = {: (3.3)
at x = s,
i
+mg_4) oat x = 841
W (x) =
mi+1J at x = s,
Using the notation
< x £
-1 Si-q T X% 8y
elsewhere
(3.4)
- < x £
1+1 X 51 % X = 8149
elsewhere



we have,

s 51 5 5141
Slw o ] = i wdx + [w ol 2l g W dx
i "s, As X X 17s, As, X
i-1 s, i i+1 a8,
i-1 i
s w (s - < (w(el) - wis, ) - w (s.) * —— (ws, ) - ws))
x i As ., il i-1 X i A8i+1 i+1 i
(3.5)
and using (3.3) we have
<w _,0.” = m, -m, . (3.8)
XX' 1 i+1 i
Noting that we may write
B @ - +
17T Mm%y T Mg%y
then
<w B> = -m Sw ,a>-m , <w_,a>
XX i X i+1 X* i
— 1 _ _ _1
= mi(ztmi + m.+1) miJ mi+1( 3(m, + m1+1] + ml+1J
Using (3.5) and (3.3)
- _ 1 _ _ 1 N
<Wxx’Bi> B mi[mi+1 mi) : mi+1(mi+1 m. )
= -1 (m;,I -m2 ) (3.7)

The results (3.6), (3.7) are identical to those achieved by Miller's
§-mollification process referenced above.

Although this result is of no particular practical advantage in the
one-dimensional problem, the use of a recovered function for the interpretation
of the inner products on the right hand side of (2.5), rather than the
§-mollification process, generalises directly to two-dimensicnal problems, as
one may readily define two-dimensional Hermite cubic functiong and avoid

interpretations of the delta functions in two-dimensions.
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By using an element-wise formulation of the MFE equations it is also
possible to show that if we recover Uxx in the form (DU)>< where DUE&J
is some function recovered from the gradients [UxJi, lying in a smoother
space than Ux, then in order to prevent node overtaking DU(x) must be
at least piece-wise quadratic.

If we begin by looking at the inviscid Burgers' eguation
u, +f_ =10 (3.8)

then following Herbst [4] we may replace the equations (2.4), which are

given here by

U, +Ff ,0,> =0
t X i
Uy * f08;2 = 0 i=1,..N
by the equations
U, + f ,0.> =0 (3.9)
t X 1

U, +F ,B.> =0

where éi is defined by

-1 1 -
Bl = Z[ml + mi+,l]06 . 2(m1+,| miJBl
(see Fig. 3.1). ’
Figure 3.1
Basis function éi
i |
S1-1 51 5141
-1
Eguations (3.9) may in turn be replaced by
LN
<Ut + fx,¢i > =0 1= 1.0 (3.10]



where the element basis functions ¢ii are given by

~
. < x =
) X 7 84 8.1 = %= 84
PR Asy
L 0 elsewhere (3.11)
- < x £
iv) ~ % 51 % X2 8449
¢1 = Asi
0 elsewhere
¢i
1 1 Figure 3.2
S1-1 1 141
+
¢i
| |
®i-1 ®1 51+
Evaluating the inner products in (3.10) on element 1 we have
AU
+ _ 2 AN 112, A
2UWy + by 2 =3Y; 47 3Y Ks, [3 ®i-1 " 3 51]
N - f, ) =0 (3.12)
A;si i-1,1 i-1 '
and
AU
S oA 2y - = e 2.
2V +fpt mglig 3l T TS [3 °i-1 " 3 i]
p 2, - <> J= 0 (3.13)
As, i i-1,14
where 1
<f> = J f dt
-1,
0
and £ = 55 7 X
A s
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Eliminating (U, )} or (Ui,éil between (3.13) and (3.12) yields

i-1’741i-1
AU, -
¥ -t g s 2 [3<p> - 2f - f.1 =0
i-1 As, "i-1 A s, i-1,1 1-1 i
1 1
$
and (3.14)
. A_uy 2
- _3< -
Uy 5s, 5, B s, [F,_, *2f, -3 F>i_1,i] 0 ]

Now to prevent node overtaking (using explicit Euler time stepping)

we require

At AS, z-A s, (3.15)
== & il

Using (3.45) and equations (3.14), and assuming that for a steady shock
we have Uj =0 (j=1,...,N), then in order to prevent node overtaking in
time At we require

A g
-1 2
At A"Ul v A_ 5

[3(f, ,+f,) - 6<f>, 12 - A s,
1- 1 1l- 1

. 1
i

and assuming &_ U, <0 then

A
Y

At B-s,
1

[3(F. + £.) - 6<F>, 120 (3.16)
1- 1 1-

1 1,1

If we now consider the viscous form of equation (3.8)

u, + f_ = €u
i3 X XX

and recover U><>< in the form [DU]X, then we are solving

Ui + %x =0 (3.17)

where f(x) = f(x) - S(DU]x .
Hence, using (3.16) with f(x) replaced by F(x), to prevent node

overtaking in (3.17) we require that

A
‘Ui 2

At R s,
1

(3.18)

A
[an}

[3(F, ,+f.) - <P, | .1
i-1 1 i-1,1

Hence in order to prevent node overtaking in (3.17) we need to reduce

3 (F, + £.) - <>,
1 1-

i-1 1,1
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in the change from f to F e clearly this cannot be achieved using a
piece-wise linear DU(x) and hence we must choose at least a piece-wise
quadratic DU(x).

In the numerical results given in the next section we have chaosen

DU(x) as follows. On element 1 DU(x) 1is the guadratic defined by

1 =
2[m1—1 +m,) at x = s, ,
o - 1
DU(x]) = m, at  x 2[81_1 * s4)
l =
Z[mi + mi+1J at x = s;

Note that (DU)Jx is in general discontinuous at the nodes.

On element 1 DU(x) 1s the quédratic
- -1
(x 8 _q)(x-3(s +s;_4J)

- ol
DU(x]) = As. I4s. Z(mi+mi+1]
: 1 -1

+lx-s;_,)(x-8,) (x-3(s;+s, ,))(x-s,)

s, (-ths) "' (Ihs)(-hs) (my +my )

L)
3
L)

Ni—

i
+ x[s.m, + s m, - 1-s m - §-s - 2—5 m - 1—3 m ]
i7d i-1'14 4 "i'i+1 4 Ti-1"1+1 4 “1i7i-1 4 “i-1"1-1
+ P-és S, _,m + X em o+ Lgen = 8,8, ,M
2 "i7i-1'1i 471~ 471 i 4 “i7i-171i+1
+ 1—5 2m +-1 S.5 + 1—5 2m ]
4 Ti-1 i+ 4 “17i-1"1-1 4 i "i-1

If we are solving the eguation

u_+ f_ = eu ’
t X XX

(3.19)

(3.20)

then on the right hand side of the MFE equations we require the inner products

<(DU]x, ai> <(DU]X, si> (i = 1,...,N)

Now
<[DU[xJJx,ul> = I1 + I2

(3.21)
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where
S,
i X8, 4
11 = (DU x T dx
_5'
811
5449 si+1—x
12 = J (DUIx T r— dx
S,
S =7i+1

i

Integrating by parts in (3.22) gives

- X=85 4 * 1 51
I1 = DU(X) e— - DU(x)dx
A s, A s,
i i“‘s,
S. i-1
i-1
141 1+
12 =

Si417% 7] 1
DU(x)® ——— + —— | DU(x)dx
A s, A s,
i+1 Si i+1 Si

Using (3.20) and omitting the details

i A s,
J DU(x)dx = 2 (m, , +10m, +m, )
S 1- 1 1

12 1 +1
i-1
Hence in (3.23)
I1 = i(m, + m ) - —;lhn + 10m, + m, )
2 Y i+ 12711 il i+
and
1
- -1 _t
I2 = -z(m, + mi+1J + 12[mi + ’IOmi+,I + mi+2]

Hence in (3.21)

<(DU)x,0 > = . {(m, + 10m, +m, ) - (m, + 10m, + m, )}
1 1 1+ 1

12 1 i+2 i-1 i+
Also
i
<(DUIx,B™> = - mI1 - m 12
- o (m. t0m. o+ m. )
12 i I i+1 i+2
- my(m,_, + 10m, + my .43}

The imner products (3.25), (3.28) are used to produce the numerical

results in the next section.

(3.22)

(3.23)

(3.24)

(3.25)

(3.28)
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4. NUMERICAL RESULTS

The numerical results in this section refer to the test problem given
in [4] which is described below. A particular solution of the viscous Burgers'
equation

U * uu, = eu (4.1)
may be obtained using the Cole-Hopf transformation, giving

ulx,t) = f(&) E=x-ut -8 . (4.2)

f(g) = [L + o + (p-adexp F%%}/[ﬂ + axp Fg%j (4.3)

where o, B and p are arbitrary constants. This solution represents a steep

Here

wave front initially at x = B travelling with speed 4.

Initial and boundary conditions are obtained from (4.2) as

ulx,0) = flx - B) (4.4)
ulo,t) = f(-pt - B) (4.5)
ul1,t) = f£(1 - pt - B)

The values of the arbitrary constants were chosen as p = 0.6,
oo = 0.4, B =0.125 and € = 0.01 throughout the results given below.

The time-dependent boundary conditions may be approximated by Dirichlet
boundary conditions

UU = 1.0 UN+1 = 0.2

This approximation is accurate for small values of € , but in cases where the
approximation is not sufficiently accurate we may proceed as follows.

Consider. the .general praoblem

u, - L(u) =0 x € [a,bl

t
with time dependent boundary conditions
ula,t) = f1(tJ

(4.8)
ulb,t)

u

FZ[tJ
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We seek a piecewise linear approximation

N+1
Ulx,t) =) U., (4.7)
3=0 JJ
where the nodes s S are fixed at the end points x = a, x = b.

07 "N+1

Partial differentiation with respect to time in (4.7) yields

D
U, = .0, + 8,8,
t =0 33 33
. L N
= Upog * UyiOyeq §=1 sy * 858,

N
£, (day + £ (8o o+ § U, + 8.8, . (4.8)

. 2 .
Minimising ||U. - LU}l with respect to U., &, (j = 1,...,N) then
t L2 J J
yields the MFE equations

Alydy = gly) (4.9)

where é(ll differs from g(y) in (2.7) for fixed boundary conditions as

follows:

g/] = g/l - 'F,][t) <OLD,U41>

B, - gy (1 = 3,..., 2N-2) (4.10)
Bon-1 7 Ban-q T T8 oy,

Bon = Boy T Tolt) Uyq.8

Hence the extension of the method to a problem with time dependent
boundary conditions has resulted in a simple change to the vector on the right
hand side of the MFE equations, with no change in the MFE matrix itself.

The initial nodal positions are calculated using an equidistributing
principle, following Herbst [4]. An approximate equidistribution of []u"l %dx
over each element is achieved as follows.

Let g(x) denote a piece-wise constant approximation to the second

derivative of the initial condition f(x). i.e.



_15_

g(x) = |[F" (x)] x € [0,1] . (4.11)

The approximation is taken over a large number of equal sub-intervals of
[0,11.
Define

X 1
I(x) = J (g(p))3dp - (4.12)
0

The initial nodal positions s; are given by

i . . \
f (g(p))idp = N%TJ (g(p))3dp (4.13)
0 0
giving 8y * T T e (i =1...,N) (4.14)

where N is the number of moving nodes, and hence N + 1 the number of
elements.

In the results given below explicit Euler time-stepping is used throughout,
and where results using Miller's method are given it must be emphasised
that no penalty functions have been used, parallelism being treated as in
Wathen & Baines [5].

Figures (4.1) and (4.2) show typical solutiens for the test problem
described above at intervals of 0.1 time units, using 10 and 20 moving nodes
respectively, with a fixed time step At = 0.0005. The broken lines give the

analytic solution at the corresponding times.

Accuracy of Approximation

We look at how the accuracy of the approximation is affected by the time
step and by the number of moving nodes used. The error in the approximation

is measured in terms of

U - ull
LZ

and
o - ull

which are calculated over each element using eight pdnt Gaussian quadrature.
Table (4.1) shows the effect of reducing the time step on the accuracy
of the approximation, comparing the solution obtained using Miller’s method

and by quadratic recovery (QR) from Ux as described in section 3. The results
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in Table (4.1) are taken at time t = 1.0 and eight moving nodes are used.

Initially lu - u||L = 0.006199
2
and ||U - u_||, = 0.25778
X XL
2
-
Ju - ul] Ju, - u |l
L2 X X L2
At
Q.R. Miller Q.R. Miller
0.008 0.01934 h 0.31407 &
0.004 0.01935 0.02069 0.31360 0.30261
0.002 0.01935 0.02068 0.31335 0.30246
0.001 0.01935 0.020689 0.31332 0.30249
0.0005 0.01935 0.02069 0.31311 0.30226
TABLE 4.1

Results for Miller's method with At = 0.008 are not given as the nodes
overtake in this case.

It may be seen from Table 4.1 that decreasing the size of the time
step has virtually no effect on the accuracy, and one may take as large a time
step as 1s possible before the nodes overtake with very little loss of
accuracy.

Table 4.2 shows the effect of the number of moving nodes used on the
accuracy of the approximation. A fixed time step At = 0.0005 is used

and the results are given at time t = 1.0.
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T =20.0

No.

of |[U—u“ [lU -u l U-u U ~-u

s S ((ES N N LRl I 19 = 2l

Q.R. Miller Q.R. Miller
20 0.00111 0.10882 0.00795 0.00897 0.14843 0.14676
10 0.00414 0.21224 0.01542 0.01672 0.26343 0.25551
9 0.00498 0.22578 0.01786 0.01818 0.28538 0.27621
8 0.00619 0.25776 0.01935 0.02088 0.31309 0.302289
7 0.00784 0.28412 0.02357 0.02468 0.35126 0.33585
6 0.01030 0.327899 0.02609 0.02733 0.339049 0.37538
5 0.01411 0.38627 0.03457 0.03492 0.47807 0.443384
4 0.02041 0.45195 0.04349 0.04089 0.54259 0.52039
TABLE 4.2
From Table 4.2 it may be seen that, unlike the size of time step,

the number of moving nodes used has a significant effect on the accuracy of

the approximation.

From Tables

4.1

and 4.2

it may be seen that there is very 1little

difference in the accuracy of the two methods (Q.R. and Miller) used.

Node Overtaking

Table

4.3 gives the maximum explicit Euler time step which may be

taken before node overtaking occurs, using both gquadratic recovery and

Miller's method without penalty functions for various numbers of nodes.
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Number of nodes Max. At(Q.R.) Max. At (Miller)

20 0.0008 0.00086

10 0.005 0.00275

g 0.0055 0.003

8 0.0098 0.0045

7 0.0105 0.0055

B 0.0175 0.011

5 0.018 0.011

4 0.0385 0.025

3 0.045 0.024

2 No restriction No restriction

TABLE 4.3

It was hoped that by using larger numbers of moving nodes to model the
second derivative term more accurately the nodes would be less likely to
overtake, but it may be seen from Table 4.3 that, for both, the restriction
on the time step before the nodes overtake becomes increasingly severe as
we seek a more accurate approximation by using more nodes. Comparing the two
methods it may also be seen that using the method of quadratic recovery a
time step of up to two times larger than that which may be taken using Miller's
method is possible before the nodes overtake. Further analysis of the problem

of node overtaking is given in the next two sections.
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5. ALTERNATIVE TIME STEPPING TECHNIQUES

As shown in the previous section the problem of node overtaking
places a restriction on the maximum time step which may be taken, this
restriction becoming increasingly severe as we seek a more accurate
approximation by using a larger number of elements. As an attempt to overcome
this problem we have considered a number of different time stepping schemes as
alternatives to the explicit Euler method used in the previocus section,
these being

(i) Mid-point rule

(ii) Explicit 4th order Runge-Kutta

(iii) Predictor-Corrector schemes.

The same test problem described in the previous section was used to
test these alternatives.

The mid-point rule, with starting value given by explicit 4th order
Runge-Kutta, gave no improvement over the explicit Euler method.

Results for the 4th order Runge-Kutta method are given in Table 5.1

below.
Number of nodes Max. At(R-K) Max. At (Euler)

20 0.0015 0.008

10 0.012 0.005
9 0.010 0.0055
8 0.015 0.0088
7 0.0175 0.0105
8 0.0275 0.0175
5 0.03 0.019
4 0.0675 0.03895
3 0.075 0.045
2 No restriction No restriction

TABLE 5.1
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Comparing the results using Runge-Kutta with those for the explicit
Euler method we see that the maximum time step is increased by at most a factor
of about two. At each time step the 4th order Runge-Kutta scheme regquires the
evaluation of four coefficients, each requiring inversion of the MFE matrix,
hence each Runge-Kutta time step requires about four times as much work as
an explicit Euler step.

We have also used two different predictor-corrector type schemes as

follows. At each time level we solve the MFE equations

Assuming MP at time level tn is known we then generate ¥h+1

at time level tn by one of the two methods given below

+1
. . n, . N+t n. _ n
al  Predict : Aly I lyg y ) = At gly) (5.1)
n+1 n+1 _ Ny _ n+1
Correct : Aly, My, ,q ~ ¥ ) = At gﬁlk )
k =0,1,2,

bl Writing the right hand side of the MFE equations in the form

gly™ = c(gﬁ) + ed(y"), where the contribution to the vector d(lp) is
o,
from inner products of the form <Uxx,31> s then we have:

Predict : A[¥h1(18+1 - y™ = 8t (ely™ + ed(y™)
Correct A(f)(lm -y = attely™) + eadly”) + c1-8)dly] )

K =0,1,2,... (5.2)

For (5.1) each iteration of the corrector requires inversion of the MFE

matrix, but for (5.2) in which we only correct on the diffusion term A_1[yn]

may be stored and used for each correction.
It was hoped that these predictor-corrector schemes would, by adding some
degree of implicitness, allow larger time steps to be taken before node aovertaking

occurred, but in fact no noticeable improvement was achieved, and indeed in some

cases the corrector iterations actually produced node overtaking fram a

predicted solution in which no overtaking was present.
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Hence it would appear that,unlike the problem of classical stability
in finite difference schemes for diffusion problems, the problem of node
overtaking in the MFE method is not reduced by increasing implicitness in the
time stepping scheme.

This failure to improve on the maximum time step which may be taken
before node overtaking cccurs leads us to look more closely in the next
section at the effect of the approximation procedure itself on the movement

of the nodes.

6. FURTHER ANALYSIS OF NODAL MOVEMENT

The restriction on the size of the time step which may be taken before
node overtaking occurs, even when using higher order explicit or predictor-
corrector type time-stepping schemes, has led us to analyse further the
movement of the nodes, and in particular the effect of our choice of approximation
procedure for the second derivative term on this movement. We aim to constrain
the movement of the nodes to prevent them overtaking, without having to choose
ad hoc free parameters, as is the case when using penalty functions.

Consider again solving the viscous Burger's equation

Ug *uu, = eu {(6.1)

and seek as before an approximate solution of the form

N
ulx,t) =)  U,a,(x,s(t)) . (6.2)
J
Then
)
U, = U, + 8,8
t 3=1 JJ J J
N au, N
w, =L U —r=-1 us., -
3=1 J 3=1 JJ
see e.g. [5]. Suppose also we recover U><>< with some function w><>< where
N
W =) c.a, +b.B, . (6.3)
xx Gy T3 373

The approximation (6.2) lies on a finite dimensional non-linear manifold
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M in a Hilbert space, and both Ut and W, are restricted to lie in the

tangent space Tu of M at the point U, which is spanned by the basis

functions {uj} and {Bj} (see Fig. 6.1 and Miller [2]). Note that w, is

piecewise linear and possibly discontinuous at the nodes.

Substituting in (8.1) we have

N N
U, + 8.8, - U.,B,) = 0 B.
§= Wymg v =58y - Y58y €§=1 gy * ByBy)

1
and hence

N
0, - o, 5. - U, - JB, =0 .
( ; eCJ]aJ + § (4 uJ sbJJBJ 0 (6.4)

Since the Bj are discontinuous at the nodes Sj the only solution of

(6.4} is
§, - U, -eb, =0
J J J
and
U, - €, =0 ,
J N
i.e s.=U, +€eb
J J J
(6.5)
and U, = ec. .
J J

Now cansider the case in which w(x) is recovered from U(x) by fitting
a cubic spline. In this case wxx is piece-wise limear and continueus at the
nodes, i.e. we have bj =0 (j=1,...,N) in (6.3).

Setting bj = 0 1in (6.5) yields

s
]
cC

(6.8)

Hence in this type of recovery the éj are the same as for the hyperbolic
equation (e = 0), and we may expect nede overtaking to occur exactly as in the

hyperbolic case. It is therefore not possible in this dase to. control the movement
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of the nodes by the choice of coefficients Cj in (6.3).
Next consider the situation when in general bj # 0, i.e. when wXx
is discontinuous at the nodes. We have
)
W = c.,o, + b,B
XX 3=1 J JJ
and hence
(w ), =c., - b.m
XX ] J JJ
[W ]4.-: - Db,m, ’
Xx"J J J 3+l
A_Uj
where m‘j Sy
- J
If we define the jump in Wy o at node J to be dj then
d, = (w ). - (w, ); =~ b( ) = -b,A
N xx'3 T Py Myer T M7 T TEAT
i
Hence bj == .
J
and froem {6.5) we have
ed,
s, = U, -
J J A+mj
U, = ec. .
J J
Now in order for node j not te overtake nede j+1 1in time At we

require that

At A S,
+ ]

> - A s, .
+ ]

Hence using (6.7) in (6.8) we need

At A {U,
+ .

Edj ]
- T > -A s,
3oam il
A s,
il
At

(6.7)

(6.8)

(6.9)
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It follows that if we choose a fixed time step At then we may choose
the coefficients dj so that (6.9) holds, and there will be no nods overtaking.

A simple algorithm used to implement this procedure is as follows.

(1) Evaluate dj (j =1,...,N) from Ulx,t"). For the guadratic (DU)(x) as

defined in section 3 the jumps dj are given by

_ 1 - _
dj = 2A_sj+1 ( ij + 4mj+1 mj+2]
N { (m - 4m, + 3m )
2h sy 31 3 3+1

For Miller's method, i.e using a Hermite cubic w(x) to recover w(x)
from U(x),

d., = e — [—ij + 3mj+1 - mj+2]

i 3 [mj_1 = Smj + 2mj+1) .

(ii) Modify dj s0 as to ensure no overtaking : starting with j = N-1 check that

d, A s,
il
Y A+Uj + tolerance (6.10)

_1
A+mj+1 €

with dN unmodified. If (6.10) does not hold then replace dj by the value
given by egquality in (6.10). (If A+mj = 0, 1.e. in the event of

parallelism set dj = 0 and define éj as for the case € = 0J.

(iii) Update éj, Oj using

s. = U. - €b
J J J
U, = ec
J
where -d,
b, = —=
J A.m



and B . _ d,
1
c. =4 [tw 3. + (w ). - —L (m, m, ,)
XX XX A m, +1
] N I Amg 3 3
+ o+
Using the notation (w__J. = r.
XX ] J
(WXX]J = rj
then 1 - +
. = 5—— (m, ,r, = m,r. J .
°3 By 1Ty T
(iv) Set 3§ = j-1 and return to (ii).

Although this procedure guarantees that the nodes will not

overtake

for a given time step At, it does not necessarily guarantee preservation

of monotonicity in the solution.

It is possible to derive a condition
in the solution will be preserved for the
such that

to choose the coefficients dj

practice it was found that for time steps

similar to (6.10) such that monotonicity
fixed time step At and we attempted
both conditions were satisfied. In

larger than that used in section 4

monotonicity in the solution was not preserved when the nodes were constrained
not to overtake and the choice of a suitable tolerance to satisfy condition
(6.10) and that for monotonicity preservation was difficult to achieve.

It is possible to control the movement of the nodes by using a
constrained minimisation technique such that the recovered function w><><
is restricted to lie in a part of the tangent space spanned by {uj}, {Bj}.

If we write

N
Wy & z c,a, + b,B,
3=1 JJ JJ
then Wxx lies in the tangent space and we may solve
u, * Uu_ = €w (6.11)
it X XX
exactly.
The error in solving
Ug *uu o= oeu
rather than (6.11) is e(u, - Wyw), and this may be minimised by choosing cy bj
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such that

2

IlUxx B Wxx” L is least.
2

If we control the movement of the nodes by choosing the bj to satisfy

equality constraints, e.g. imposing one of the conditions

bj = 0 : nodes move as for the hyperbolic problem
b, = —e'1u. : nodes do not move, 5, =10
J J J
As
A(Uj + sbj] = —e-z%- 0 < 8 < 1: no overtaking in time At,
' 2
then we minimise “Uxx N Wxx’|L2 ove? the Cj only
(j =1,...,N), yielding
<a,, U -w > =0 {3 =1,...,N) . (6.12)
J XX XX

We may write (6.12) in the form
Ac = g (6.13)

where ¢ = (01,...,0 )
The matrix A 1is the standard piece-wise linear finite element mass
matrix, with

A, =<oa,,0,> -
ij i3

The right hand side vector g 1is defined by

N
Ty ™ —<ui, Z_ bj8j> + <ui,Uxx>
J=1
= 1-AU b + 1-(AU + AU b, + i u b
6 i“i-1 %) i i+1° 71 6 i+171i+1
+ (m, -m,)

where the bi are given by the equality constraints. By using equality constraints
we have avoided interpretatien of the inner products <Bi’Ux£> .

If we minimise ||[U _ - w_ ||
XX xx ' L

with respect to b, and ¢, (j = 1,...,N)
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subject this time to inequality constraints of the form

As

A[Uj + Ebj) ¥ = —K%- (i.e. no overtaking in time At)

then we are minimising a quadratic functional subject to a system of linear
inequality constraints; hence we have a guadratic programming problem. Note
that minimising over béth the bj and Cj also means that we must interpret
the inner products <U ,B.>.
xx” 1
We hope to pursue this technigue of constrained minimisation at a later

date and obtain numerical results.

7. MERGING OF NODES

In this section we introduce a method which treats the problem of
overtaking nodes in a different way. This consists of merging nodes when they
overtake and, to avoid depletion of nodes, introducing them elsewhere so that
the accuracy of the approximation is maintained.

At each time level t" one may compute, for each node, a time step which
will cause the node to overtake : in fact the node j-1 will overtake node j

in time Atj given by

( if Aéj > 0 then the nodes will not overtake and we set Atj = 0).
We then set

At* = min Atj . (7.1)
322, .4, N

In practice it is found that it is not always advantageous to take
the time step At* given by (7.1), as too large a time step results in the
subsequent At*'s given by (7.1) being very small. To overcome this problem

we set a maximum time step Atmax so that if

At* > At
max
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then we take a time step Atmax' and the nodes do not overtake, but if

At* ¢ At
max

then we take a time step At* and one of the nodes just overtakes the next,

say s;_, and s; 1in Fig. 7.1.

Ulx,t")
Figure 7.1
\
We now replace the nodes at s, and s, by a single node at s¥* = s, = 5,.
i-1 i 1 i-1 i

In order to choose the nodal amplitude U; corresponding to s; so as to best
preserve accuracy in the approximation under consideration we look at the

effect of overtaking and merging on the basis functions ai-1’ui and the

consequent new basis function a;. When the nodes overtake we have the

situation shown in Fig. 7.2a, and on merging 51_1 and 85 we obtain that

shown in Fig. 7.2b.

S 1+1 i-2 i i+

Figure 7.2a Figure 7.2b
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Hence the two basis functions %,y and oy have been merged into

one basis function a;. We now choose U; to minimise

2
+ U0, - u;a;IIL (7.2)

||Ui—1“i—1 1%5 i

with respect to U;. This gives

<a*, U + U,o, - U*a*> =0
1 1 1

. A0, L0,
i-11-1 i i
Hence

U, <o*,a, > + U.<o*,a.,> - Ua*,a*> =0
i-1 i 7i-1 A R § i i’

and, evaluating the inner products, we obtain

1 - .
3 88;85q * 3 8sy,4Uy mglhey + sy JUF = 0

and

AsgUjq ¥ Bsy,gYy
u* = . (7.3)
i Asi + A51+1

This is the amplitude set for the merged node.

It is not clear where one should insert a node to replace the node
which is deleted in order to best preserve accuracy, so at present we have
used the following ad hoc procedure.

Suppose node 1 has been merged with node 1i-1, and that we have N

moving nodes, then

N
. 3yl . - * * = - -
a)l if i > we introduce a new node N such that s\ = syt {1 9][SN+1 SN]
where 0 < 6 < 1 and choose Uﬁ to lie on the straight line
joining UN’ UN+1’ as shown in Fig. 7.3.
Uix,t™ Uy
A
*
UN
UN+’l
..__) X 1 | |
S S S
N (1-0)as . A
e N -~
Y -

Figure 7.3
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bl if i

1A
N[=

we introduce a new node s: such that s: = 8, +-6[s,l = SDJ

where 0 < 6 < 1 and choose U: to lie on the straight line joining
UU'U1’ as shown in Fig. 7.4.

Yo

—
c
*

Utx,t™)

m

w
RS =
w

GAS,J

/\OE

14

Figure 7.4

This method was used on the test problem described in section 4 using
10 moving nodes, and results are given in Thble 7.1 below are taken at time
t = 1.0. We use the method of guadratic recovery.for the Uxx term as
described previously, and the results show how the accuracy of the approximation
is affected by our choice of the parameter 6 which determines where new
nodes are introduced. As stated above it was found to be beneficial to
impose a maximum time step th as the time step varies from step to step the
average time step up until t = 1.0 1is also given.

The accuracy of the approximationand the size of the time step may be

" comapred with the numerical results in section 4.
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At max ] Average At lu - u||L2 ||Ux ) uxHL2
0.01 0.3 0.00844 0.02145 0.45168
0.01 0.4 0.00826 0.01502 0.40530
0.01 0.5 0.00926 0.01886 0.37183
0.01 0.6 0.00309 0.02206 0.45863
0.01 0.7 0.00885 0.01443 0.29844
0.02 0.3 0.01587 0.02245 0.62161
0.02 0.4 0.00934 0.01087 0.30401
0.02 0.5 0.01408 0.04015 0.63267
0.02 0.6 0.01538 0.00505 0.32620
0.02 0.7 0.01408 0.02539 0.56814

TABLE 7.1

For the sake of comparison with the previous results, using 10
nodes with a fixed time step At = 0.0005, and using the quadratic recovery
method (see Table 4.2)

lu-ull| =o0.01542
2

||u>< - ”x||L2 = 0.26343

The accuracy of the approximation is seen to be highly dependent on the
value of the parameter © , although in some cases the method works very successfully.
It is hoped that a more sophisticated means of introducing nodes, combined with
this merging technique, may improve the results.

Figure 7.5 gives the solution at t = 0.0 and t = 1.0 wusing the
method described above, with € = 0.6 and Atmax = 0.2.

Figure 7.6 gives a comparison with Figure 7.5 using a fixed time step

At = 0.005. .
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8. CONCLUSION

The introduction of a recovered function to model the second derivative
term in diffusion problems, as an alternative to the method of §-mollification
used by Miller, has been successfully introduced in the one-dimensional
problem, and may be extended readily to two dimensional problems.

Experiments with different time stepping schemes suggest that we should
persevere with explicit Euler time stepping and either control the movement
of the nodes by limiting the size of the time step, or use the idea of merging
and introducing new nodes in order to allow larger time steps to be taken.

It is hoped that combining the methods of controlling nodal movement
and the merging of nodes, together with some more sophisticated method of
introducing new nodes may with further investigation provide an effective
alternative to the use of penalty functions, which as well as introducing ad
hoc parameters also require a stiff solver to cope with the resulting
stiffness introduced into the 0.D.E.'s.

It is proposed to apply the method to more complicated ocne-dimensional

examples before we extend it into two dimensions.
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Figure 6.1 : Non-linear manifold M with tangent space H:
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