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ABSTRACT

We consider methods for boosting to second oxder accuracy
("superconvergence") the gradients of piecewise linear Finite
Element approximations on triangular elements.

We show that the component of gradient tangential to any
element edge is superconvergent at the midpoint of that edge but
that no points exist at which the full gradient can be sampled to
this accuracy. To "recover" the full gradient we average its
approximation over small patches of elements, choosing weights
such that - on a uniform mesh - the scheme would be exact if
applied to the interpolant of any quadratic. We present simple
schemes for recovery at any point in the domain, for example:
nodes, centroids and the neighbourhood of the boundary. We
generalise our results to non-uniform meshes. Also, Wwe compare
them with Wheeler's flux method.

Superconvergence will not occur unless precisely six elements
meet at every node internmal to the triangulation. Another
condition is that the grid of nodes must be a smooth distortion
from uniformity. We show how these requirements can be met on a
large variety of domains. Sometimes, near a smooth segment of the
domain boundary, the mesh topology will have to reflect the
behaviour of a vertex ; we show how this might be achieved in
practice.

We prove that our results apply to the approximation of any
strongly elliptic self-adjoint problem whose solution has three
derivatives. We accept numerical quadrature by the centroid rule
and interpolation of both the boundary and the data on it.

We di.sduzs the sense in which our error estimates hold



uniformly across the domain (rather than "on average" ), examining
in detail the approximation properties of a derivative Green's
function. We apply this to the question of “local”
guperconvergence: ‘there may now exist subdomains in which the

smoothnegs or triangulation requirements fail.
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5

It is well known that a Pinite Element Method will yield, in
an energy seminorm (|- |a), the optimal approximation (Ru) over
some finite—dimensional space (S) to the solution (u) of an
elliptic partial differenetial equation, thus:

lRu-ula < lé-ul,
for all ¢ € S. It is also recognised that in gpite of its
optimality, the energy error is not particularly small. For
example, let S Dbe a space of continuous, piecewise linear
functions on some partition into triangles of the domain Q < 22
on which the differential equation is posed, with maximum
triangle diameter h. Then

|Ru —ul = O(h)
(at best — i.e. provided u is sufficently smooth). On the other
hand,

|1Ru = ull = on? ,

L, (%)

even though Ru is not an optimal approximation in the L 2 norm. If
we use Ru and VRu as point-by-point approximations to u and Vu
(i.e. to the unknown function and its first derivatives) we know,
a priori, that the average err.ors involved will be O(hz ) and
O(h) respectively.

It is ironic that Pinite Element Methods should be seen to
fail to deliver a good estimate of the one quantity that they are
apparently designed to approximate. Our aim is to remedy this
position: we seek a procedure for obtaining gradients to the same
degree of accuracy as the function values. We will study the
commonly used 1linear elements mentioned above for which this

improvement in oxrder - "guperconvergence" - is readily accessible



and particularly dramatic. We will show how to construct Finite
Element solutions with superconvergence in mind. We will then
discuss algorithms which exploit this property to give O(h>)—
accurate approximations to unknown gradients for a wide range of
problems. A mathematical analysis of our methods follows in Part
II. We start in this chapter with some examples which introduce

the principal concepts.

1.2 TECHNICAL PRELIMINARTES

Many of our results are presented in the context of Sobolev
spaces; for convenience we introduce here the relevant notation
and then two key lemmas of these tools of the trade. (Compared
with much of the following, this section is abstruse. It can be
skipped and used for later reference. )

We work only with bounded open regions in 22 which have the
strong cone property (see Figure 1.2.1 and Bramble & Hilbert,
1970). Let A be such a region: typically this will be the problem
domain Q or a small patch of elements. We denote by W';(A) (m =
0,1,...) the Scbolev space of functions which together with their
generalised derivatives up to order m inclusive are in Lp(A) . The

norm and seminorm are given by

N [ x P 1/p
181, 5 A [ Egim 1P uume ]
[ « p 11/p
= L D w| ]
L .”A |x]<m
- | « P 1/p
iy oa = | Ejag=m 1P "’"Lp(A) ]

[ J'J'A ‘:'a':m 10%P ]1/p

respectively for p < w. (« is a multi-index; see e.g. Dupont &



(aQ (b)
(c) J (d) ._..;

Figure 1.2.1
The strong cone property
This excludes regions with outward-facing cusps; therefore (a),

(b) and (c) are acceptable and (d) is not.



Scott, 1980.) We make the usual modification when p =

. [+ 9
llwllm'm'A = suplal‘mllDulle(A)

X
and lw]| = supm':m |iD wl| |

m,o,A Lm(A)

We will occasionally need ‘o use norms of fractional oxrder
derivatives, defined as follows: let s = m +o0,m=0,1,... and O

< g < 1. Then (Adams, 1975, page 214)

Wollyg o2 = Wollg 58
D wix) — w(X
" B ||| 7
|xj=m c+2/p p.A
where |{||-(x.,X)1|| |p A denotes the Lp(A) norm with respect to (the

vector) x of the Lp(A) norm with respect to X.

For the mostpartwewilltakep=2andwriteﬁm TR
r

and |-l 5 for Wl , 11-1lp 5,0 |1, , , respectively. We
denote the L2 inner product thus:
( w, v )A = J.I [A I .

A
Throughout, the letter c¢ stands for a generic, positive

number, different at each appearance put "constant" in that -
unless otherwise stated — it is independent of the coefficients,
data and solution of the differe;tial equation under
approximation, any function denoted by u, v, w, & or V¥, the
element(s) or sampling/recovery point(s) under consideration and
the discretisation parameter h. It is not, however, an absolute
constant: there is an implicit dependence on the region £,
smoothness parameters (usually denoted by €) and the algorithms
employed for triangulation, recovery and quadrature.

The following result 1links norms from different Sobolev
spaces, It is a combination of the Sobolev Embedding Theorem
(Scbolev, 1950) with a simple modification, in 2 (i.e. n = 2),

of the Hlder inequality:



n(1/q - 1/p)
“u“s—k,q,A € c¢ (diam A) Ilulls’p,A

for all k, g such that 0 €« k < s and 1 € q € p.

"S.E." Iemma 1.2(i) (See Pigure 1.2.2.) Let diam A = p. Por

gome s » Oand p 2 1, let k € [0,8] and g » 1 satisfy

either k p > 2 ]
or q < p/ (1-kp/2) .
Then

Wwo(a wra

p( ) & a (a)
and

2(1/q — 1/p)

Mullgyaa S ©€P Nully, 5 4 (1.2.1)

for all u € W:(A). In particular,
-2/p

SUP,. < a luz)I <€ cp Ilulls'p'A (1.2.2)

forallyew:(A)andsp>2. HHE

We now give the Bramble-Hilbert Lemma (Bramble & Hilbert,
1970), an important tool in Sabolev space approximation theory.
It is often regarded as a non-constructive generalisation of the
Peano Kernel Theorem to functions of more than one variable. (BY
"non-constructive"”, we mean that no information can be given
about the value of the following constant c.)

"B.H." Temma 1.2(ii) Let diam A = p. Iet F be a linear

functional on W';(A) and let k = k(m,p;p) be given such that

(1) IF@1 < kIl for all w € W’;(A)

pP,A
and (ii) F(w) = (0] if w is a polynomial on A of

degree less than m.
Then

|F(w)| € ckp ol for all w € w';(A),

m'p IA
the constant ¢ depending on F, p and m only. Ak



9/ I
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t i >
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Piqure 1.2.2

Sobolev Embedding Theorem
The shaded region indicates the values of (k,q) such that (1.2.1)

holds. With the exception of the locus ( q@ = p/(1 - kp/2) } the

boundary is included. (In this example ps > 2.)



1.3 BACKGROUND FOR QUADRILATERAL ELEMENTS

Gradient superconvergence on quadrilateral elements
illustrates many of the concepts that we will meet later, in
isolation from the geometrical complications which characterise
the corresponding results on triangles. As has often been the
case with the Finite Element Method, this phepomenon was first
observed in practical work and described (intuitively) Dby
engineers. A fuller theoretical treatment from the mathematicians
did not appear until later.

(We note incidentally the "guperconvergence" results of
Bramble and Schatz, 1977 and Thomfe, 1977 which concerned local
convolution operators for boosting an O(hr ) error in
displacements or their derivatives to 0(7121"_2 ). This approach,
from which the simple elements that we are interested in cannot
benefit, is not related to our variety of gradient
superconvergence and we will not mention it again.)

We start then with Veryard (1971). He was able, empirically,
to improve the accuracy of the first derivatives of biquadratic
Finite Element approximations by sampling them only at the second
order Gauss points in each element. (Observations of a similar
pature were also made by Barlow (1968) and Too (1971)). These
points of exceptional accuracy came to be known as "stress
points" and their exigtance as an example of "guperconvergence”;
though this term does have a wider meaning we associate it here
only with the estimation of gradients to one order of accuracy
higher than is generally expected.

The grand prophets of the Finite Element Method, Strang and

Pix (1973, pages 168—9) had this to say. "We believe that the



stress points can be located in the following way. The Ileading
term in the errors is gover-ned by the problem of approximating
polynomials Pk of degree k [sic], in energy, by the trial
functions... Then stress points are identified by the property
that the true stresses (derivatives of Pk) coincide with their
approximations (derivatives of a lower degree polynomial)." This
idea is at the heart of any superconvergence result, for it leads
us directly to the stress points of the "unknown" function's
inter;zlant (Barlow, 1976). Now, suppose that — perhaps only under
certain conditions - the gradient of the interpolant is at all
points a superconvergent approximation to the gradient of the
Finite Element solution. Then the stress points for these two
functions are identical. A general algorithm for obtaining
superconvergent gradients would therefore be as given by Table
1.3.

The first precise statement and full proof of superconvergence
at Gauss points was given by Zz15mal (1977) for the case of linear
and quadratic serendipity elements in up to three dimensions. His
work was later extended to cover curved isoparametric elements of
any degree with various numerical quadrature schemes (Zlfmal,
1978 and Lesaint & Z14mal, 1979). We give in Section 1.4 an
example of his method, applied to the simplest possible case:
bilinear rectangular elements for a model problem. We will later
‘adapt this to triangles and go (::n to generalise the problem under
approximation, which we now introduce in its model form.

Let u be the ("unknown") solution to Poisson's equation:

2 2
_[au + au]

Ff(=z,y) in Q
(1.3.1)



(1) Construct a Finite Element approximation whose gradient is
close to the gradient of the interpolant.

(2) Locate the stress points of the interpolant.

(3) Take values of ("sample”) the gradient of the Pinite Element
solution at these points. Use them as estimates to the

unknown gradient there.

Table 1.3

sSuperconve nce 8i ified

10




where Q is a rectangle with sides parallel to the =~ and y—axes,

an is its boundary and uE is the restriction of some given

function
1, 2
11;, € H (R) .
Let H;(ﬂ) be the completion in the Hi—norm of the space of
e
infinit-ely differ;'\ntiable functions on Q with compact support in
Q; let
Hl(n) = (vw=U_+4+v veHl(ﬂ)}
E - E ' (o] e

These definitions, though rigorous, are not very helpful. Put

more simply,
v = 0 onan for all v e Hé(ﬂ) }
and w = L on 90 for all w e H;,(n) .

The "weak solution” of (1.3.1) — obtained from it by Green's

Theorem — is a function u e H;(n) satisfying

(Vu,Vw), = (Ff,v), (1.3.2)
for all v e Hé(n) « The approximations which follow are based on
this form rather than on (1.3.1) directly.

If we wish to use the Finite Element Method to approximate the
solution of (1.3.2), we must first partition § into smaller,
polygonal regions, which meet only on common edges oOr common
v.ertices (as in Rannacher & Scott, 1982). (We assume for now that
this can be done exactly.) In this example let us take the
elements to be the rectangles 4., k =1,...,k $

k maxr

ma:z:k dtam Ak = h

}(1.3.3)
mtnk edge length Ak = ch for some ¢ > O

and S cHl (1) to be the gpace of continuous functions which are
bilinear on each element, i.e. piecewise of the form
cx1 + cxzz + ota\/+ aﬂ R (1.3.4)

We let SE be the subset of S whose members interpolate nodal

11



on AL
values of uy on the boundary 9Q; similarly let ¢= olfor all v «

S . (Note that S_ &H'(9) but S_ e H'(Q).) We define the Finite

(o] E E 0 (o]

Element approximation Ru e« SE to u by analogy to (1.3.2):
(VRu.Vd’)n = (f.ob)n (1.3.5)

for all ¢ € SO. The equations (1.3.5) are known as the "Finite

Element” or "Galerkin" equations.

We illustrate the use of S.E. and B.H. (i.e. the lemmas of the
last section) for investigating the error inherent in VRu by
proving the familiar result, given in Section 1.1, that the
difference between the approximate and true gradients is O(h):

|Ru — u|1'n € ch |ul (1.3.6)

2,0
for all u € Hz (). Note that this result; is "global" (the
sampling point is integrated over Qi to give an average error) and
that we have to strengthen the smoothness of u:

u e Eym n H@ . (1.3.7)
A useful consequence of (1.3.7) and S.E. (1.2.2) is that the
interpolant Iu e SE of u is now guaranteed to exist. (This is the
function which has the same values as — "interpolates™ - u at
every node in the partition of Q.) It has a central role in the

derivation of our estimates.

Now, by (1.3.2) and (1.3.5),

2
1,2

= (V(Ru-uw), V(Ru-1u))g

|Ru — u|

= ( V(Iu -~ u) , V(Ru — u) )Q

Kk
max
= L, R (1.3.8)
where the Fk are linear functionals on u defined by
F (v = (V(Iu-u), W )Ak

and we have set

y = Ru-u eHl(n) .

12



From S.E., (1.3.3) and the definition of S we have

|Iu|1'Ak
<€ ch |Iu|1'm’Ak
€ ¢ “Iu”Lw(Ak)
< c :ul |L¢o(‘k)
€ och ”"Hz,ak ’
vhence
IFk(U)I
< |Iu - u|1’Ak N"1,Ak
< [:"'LAK t lull,Ak] WlI,Ak
< ch ||u||2'Ak N"I,Ak . (1.3.9)

Purther, it is clear that if u is linear on Ak then Iu = u there;
therefore Fk(u) = 0 for all linear u on A,.
so, by (1.3.9) and B.H.,
\F (u)l < ch ""z,Ak N”I,Ak .
(Note that both this and (1.3.9) are abstract error bounds: they
hold for any u satisfying (1.3.7) and any ¥ € Hl(n), without
reference to concrete externals, such as the differential

equation.) We now return to (1.3.8) and, summing over k, apply

Cauchy-Schwarz:

2
| Ru ull’n

kma:::
< ch u

£k=1 | |2'Ak Nll,Ak

2 1/2 [ 2 ]1/2
DI [Ek 1¥15,a ] L, W2
K k

= ch |u|2'n |Ru — ull'n . (1.3.10)

We therefore arrive at (1.3.6) by dividing both sides of (1.3.10)
by |Ru - u|1 Q" (In the trivial event that Ru = u, (1.3.6) .is

obvious anyway.)

i3



1.4 SUPERCONVERGENCE ON QUADRILATERAL ELEMENTS

In this section we give the full statement and proof of
Z1&mal's result for the bilinear elements introduced above. We
note first that the O(h) global result (1.3.6) does not make
direct use of the shape of the elements or of the way that the
nodes are connected to each other (the "mesh topology”). In our
example each ninternal™ node (i.e. not on 3Q) is connected by
single edges to exactly four other{; equivalently each internal
node is enclosed by exactly four elements. This property is a
simple observation here, but on an apparently reasonable
partition of a general region Q into elements which cannot all be
rectangles, it need not hold and for some superconvergence
results it must be stipulated. (See the preamble to Theorem 5.1
of Lesaint & 2Zlémal, 1979.) When we move on to consider
iriangular elements, the mesh topology will have a greater
significance; however for this example we stick to the sufficient
condition that the elements are rectangles.

We write each element in the form of a Cartesian product of
intervals

Ak = (a:_k—s:l:k/z,:nk+8.t,/2)
x (Y~ ka/Z B Byk/z )
(k = 1""'kma.t) and let Gk = ( Ty v Uy ) be the centroid of each
Ak. Now, if u is quadratic on Ak then, owing to the geometry of
the elements,
{ v(Iu - u)]Gk = 0 (1.4.1)

(where [-]Q gtands for sampling a value at Q). For if u e

(1,x,y,xy} then Iu = u throughout Ak . Also, if u = :1:2 on Ak then

2 2
Iu = z:m.'k—a:k+5:clz4 ;



hence

T
[VIu]Gk = ( sz , 0) = [Vu]Gk 8
similarly (1.4.1) holds if u = y2 on Ak . So it holds for a basis

of quadratics and thus for all quadratics (since [V(I — 1).] is a
linear operator). Pollowing the intuitive argument of the last
section, we therefore hope that
: 2
| [V(Ru - w1, | = om")
k

k = 1""'kmar . (Note that (1.3.7) must be strengthened, even if
only to guarantee that Vu can be sampled at the points Gk .)

We now state the precise result. ILet O be partitioned into

rectangles, as above except that, for convenience, (1.3.3) is

modified thus:

max, ( 6x_ , 8y_ } = h
k k A }(1.4.2)
and m'Lnk { Sxk ’ 6yk } = ch (c > 0) .
Let
u e Hya) N (%) (1.4.3)
and Ru € §E satisfy (1.3.2) and (1.3.5) respectively.
Theorem 1.4 Under the above conditions,
2 11/2
[ | v - o [?]
2
< ch |u|3’n . (1.4.4)

Proof We follow the outline suggested by Table 1.3; our first
task is to show that |V(I — R)u| is O(h°). We define the
functionals

(w) = (V(Iu-—-u), %), ., b €S,

k
(These differ from the previous Fk only in the restriction on o;

F
k.,

the following derivation of (1.4.6) is similar to the proof of

(1.3.6) above.) From (1.3.9) we have

-1
Py p(Wl S en Hlully, 10l . (1.4.5)

I,Ak

Also, Fk ® vanishes if u is quadratic on Ak . As 1in the
’ ,

15



demonstration of (1.4.1), we need only show that this holds when

u = mz. Iet ¢ have the general form (1.3.4) on Ak . Then
2 2 2 2
Fk'¢(m) = (V(z:l:tk—.tk+8:tk/4—m )

v( x +<x2.t +<x37+ qH ))A

S

[J(“z*'“a:y)d"]

+8a:/2
(a:k-a:)d:c]
—-B:z:/z

So by (1.4.5) and B.H.,

2

IFk'O(u)l € ch |ul "“1A

3.8y "
Let us take ¢ = (I - R)u (€ S). Then by (1.3.2), (1.3.5) and

Cauchy-Schwarz,

2
1(1 R)u|1 a

(V(Iu=-u), %), o

= Z‘.k Fk ¢( )
< ch }:k |“|3,A ""1,;;
2 k 13
< ch |u|3"z (I —R)ull'n ;

therefore

I (I - R)u| < ch? 1 (1.4.6)
1,0

'3,n *
(Incidentally, one direct consequence of (1.4.6) is that the

Finite Element solution is exact at the nodes — i.e. Iu = Ru
throughout § — for all quadratic u.) Now, in addition, for any ¢

eSandanypointhAk,

| [%]g | < maz, Vel

< clel, , / (measay'/?
'3
So by (1.4.2) and (1.4.6),
2 1/2
n e | ver - Ru
[ | s - o [2]

) 1/2
< o[ 10 - mul? / (meas &) |

k

16



< c |(I—R)u|1n
r

2

<€ ch  |ul 3 (1.4.7)

3,
this completes the first stage of the proof.
For the second, we define a new set of functionals (or, to be
precise, functional pairs):
Fk(u) = {(V(Iu — u) ]G .

k
We have already shown — (1.4.1) — that these vanish when u is

quadratic. But by S.E.,
-1

\F, (u)l € c(h IHull + |ul )
k Lm(Ak) 1,m,Ak
-2
< ch Ilull =
3.a
So by B.H. we have
\F (u)l < ch ""3,Ak
whence
_ 21/2
I [Ek | [v(Iu “”Gk l ]
_ 2 11/2
= n [ g 1r0? ]
<€ chz jul . (1.4.8)

3,8
Finally, we obtain (1.4.4) by squaring (1.4.7) and (1.4.8),

applying "(a + b)2 < 2(a2 + b2)" to each term and summing over
k. HHE

We remark that the result (1.4.4) is a bound on the 22 (i.e.
root-mean-square) average error over the stress points Gk . This
average is necessary to the proof if we are to de;'ive (1.4.7)
above - or any other bound on |V(I — R)u| — from the Galerkin
equations (1.3.5) in a reasonably straightforward manner. An
alternative approach, which involves PFinite Element
approximations to a Green's function, delivers a pointwise
result; this will be the subject of Chapter 5. Incidentally,

Z1&mal's first results (1977) bounded the 2 1 average error. They

17



can Dbe obtained from (1.4.4) by a simple application of the

cauchy-Schwarz inequality and (1.4.2).

1.5 SUPERCONVERGENCE ON TRIANGULAR ELEMENTS

It has been suggested (e.g. Moan, 1974) that the Galerkin
least—-squares approximation to gradients - i.e. (1.3.5) - is
"almost local" and can therefore be analysed in one element in
complete isolation from all others. Now, any non—local behaviour
of a Finite Element approximation is entirely due to the inter-
element continuity ©restriction in the definition of the
approximation space S. (Indeed if this continuity were removed,
aim (S) would be increased by a factor of approximately four for
bilinear elements and 8ix for 1linear triangular elements.)
FPurthermore, it is only because ¢ € S is continuous that an
immediate consequence of (1.3.2) and (1.3.5) is

( VRu , v¢ )0 = ( Vu , Vo )ﬂ . (1.5.1)
If Ru and ¢ are assumed to behave as if S is not a space of
continuous functions (so that the support of ¢ could be a single
element) and if (1.5.1) is assumed nevertheless to hold, then it
is indeed true that |V(Ru — u)| = O(hz) at the centroid of each
element. But neither of these assumptions is justified and the
success on quadrilateral elements of their combination is
entirely fortuitous. It does not work for triangles. In fact,
stress points in the sense of Section 1.3 do not exist at all on
these elements. We will pursue this line further in Chapter 3;
for the time being we restrict ourselves to a very simple example
of the sense in which stress points do exist.

As before let O be a rectangle with sides parallel to the

iR



coordinate axes, partitioned this time into identical rectangles
of dimension 8x x 8y such that
max { 6x , 8y } = h ,
(1.5.2)
min { 6x , 8y } = ch (c > 0)

and thence into triangular elements Tk ,

k=1,...,K by means of
a diagonal of positive slope in each rectangle. We redefine S &
HI (2) now to be the space of continuous functions which are
linear in each triangle, i.e. piecewise of the form

*, + T + xy .

We will employ 1later a grouping of the triangles Tk into
triangle pairs with common edges parallel to the x—axis, denoting

the resulting parallelograms by Ak k= 1'“"KA .

There will be
a number of single triangles, whose edges parallel to the x—axis
lie on a0 and for which this paA‘.'ring is therefore not possible; we

So (see Figure

denote these elements by Bk , k= 1,...,KB .
1.5.1),
K K
_ K _ A A
@ = o T = (U Ak)U(U B ) .

Note that the centroid of each pair Ak is the midpoint,
Mk = (:z:k + &x/2 , yk ) (1.5.3)
say, of an elements edge. We call the two triangles which share

that edge Tkt H

a = T, VT o, k=1..,K ;
= 2 + - .
Trs a 0 ((zy): *2y-y) >0}

(See Pigure 1.5.2.)

Now, "exceptional points for one stress component need not be
exceptional for the others. The midpoints of an edge seem ... to
be exceptional for derivatives along the edge but not for
stresses in the direction of the normal.” (Strang & Fix, 1973,

page 169.)

19



FPigqure 1.5.1

Grouping of elements

In this example KA = KB = 8. One of each of the triangle pairs Ak

and the boundary elements Bk is shaded.

20



Fiqure 1.5.2
!k_t};iﬁﬂ_glﬁﬂ (Bk)

21




triangles analagous to Theorem 1.4. We note first the role of
uniformity in the triangulation of f. The superconvergence result
on quadrilaterals was derived by considering error contributions
from each element in isolation. However, on triangles it is
necessary to allow error terms to cancel between neighbouring
elements (this is linked to Moan's mistake and the non—existence
of stress points for the full gradient). The simplest way to
achieve this is to require that the union of any two elements,
which share a common edge, be a parallelogram (e.g., the Ak).
Under this condition all the diagonals must have the same slope
and, incidentally, each internal node is enclosed by exactly six
elements. (See Chapter 2 for more general triangulations.)

Let u be a function known to satisfy (1.4.3) and (1.3.2). (Fox
numerical evidence of the necessity of the smoothness condition
(1.4.3), see Levine, 1982.) We define the subsets SE and so of S
as before and the Finite Element approximation Ru € S to u by the
Galerkin equations (1.3.5). We claim that the M, are x—derivative

k
stress points:

Theorem 1.5 Under the above conditions,
K
A a_ _ 2 1/2 2
h [Ek=1 [aa_(Ru u) ]Mk] € c¢h |u|3'n . (1.5.6)

Proof We follow, in outline, the proof of Theorem 1.4,
considering first the x—derivative term in
2

(1 - R)uly o
= (V(Iv-u) , V),
[a_(ru -u), — ]
ax ax Ja
(1.5.7)
+ [a—(ru - u) L ]
ay "oy Ja '

where as before ¢ is taken to represent the function (I — R)u €

S . We observe first that if u is quadratic on A, then, by

k
(1.5.5), d(Iu - u)/éx is linear there -— and in particular
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Indeed, suppose that (working with the piecewise 1linear

elements introduced above) we define the functionals

9
Fk(u) = [ az(Iu - u) ]Mk , k= 1""'KA P
where again Iu € S interpolates the nodal values of u. Then Fk(u)
vanishes when u is quadratic on Ak . Por if u is linear then Iu =
u throughout Ak ; therefore gimilarly to Section 1.4 it is

gufficient to show that F (u) = O when u & (x2,2y,u%). But

(recall Figure 1.5.2)

if u =27 in & then I = 2(z, + &T/2)=
. (..":k + Saz)a:k in Ak H
if u = xY :i.nAk then Iu = a:yk+ (:ck + 8x/2 * 8x/2)
- (V- V) in T, #
if u = y2 in Ak then Iu = 2(1;k t §y/2)y

- + 3 .
(uk Su)yk in T

kKt
2 2
Ssowhen u=x , XYy or y onAk,
alu _
[ oz ']A = ka + &x, Vy or 0 (1.5.4)

k
respectively; note that it takes the same value in both Tk+ and

Tk— . In fact it is a key property of the space S of piecewise
linears, as well as our motivation for considering the pairings
Ak , that

[ 29

Py ]A = constant over Ak (1.5.5)

for all ¢ € S. Azyway, when u = :x:z, Ty or yz, du/ox = 2xr, y oxr 0
respectively and 8o by (1.5.3) and (1.5.4) Fk(u) = 0. Hence Fk(u)
does indeed vanish for all quadratic u.

Therefore, if Dby "stress point" we mean, "a point on an
element edge where the component of gradient tangential to that
edge can Dbe sampled to high accuracy," then according to the

intuitive approach of section 1.3, the midpoints Mk are indeed

stress points. With this in mind, we construct below a result on
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continuous — and so for the functionals Fk defined above,

_”- g—'x(ru - u) = (meas Ak) Fk(u) = (0]

Now by (1.5.5), (1.5.2) and S.E.
[ 2], |

1], e | |12,

-1
€ ¢ |lu]] ch L]
3,4, |

1 'Ak

therefore by B.H.

I[:_z”""‘)"gi]llkl
2

<€ ch |u] |®| a (1.5.8)
3,Ak 1,Ak
Also, ¢ € s implies that
[ ]B - ;o k=1,...Kg

from this, (1.5.8) and Cauchy-Schwarz we have
- - _Q ] I
' [ (Iu u) , Q

< 2| [Go-w . 2], |
2

€ ch ||

1uls,q 1, °

(This intermediate result was also obtained - albeit with some
difficulty — by Oganesjan & Ruchovec, 1969, but without the
application to superconvergence.) Returning to (1.5.7), the y-
derivative term is bounded similarly; we can now apply the method
used to derive (1.4.6) and (1.4.7) to obtain

3,0
(Note again that Iu = Ru throughout Q when u is quadratic.)

n [ ):K“ [g;(r - R)u ]:k ]1/2 < ch? |ul, _ . (1.5.9)

Pinally, since Fk(u) vanishes for quadratic u, S.E., B.H. and

Cauchy-Schwarz imply

JERE-C RN S Y P Y
< ch? ju

2 ]1/2

3,0 - (1.5.10)

The superconvergence result (1.5.6) now follows from (1.5.9) and
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(1.5.10) as in the previous theorem. ¥

Although we have bounded derivatives only on internal element
edges parallel to the x—axis, we note that all edges can be
included in the average; in particular (1.5.9) does not depend on

the choice of sampling points.

1.6 NUMERICAL EVIDENCE

In the end, our interest lies not in unknown constants and
asymptotic convergence rates as h - 0 but in actual values of
gradient errors when the mesh is caomputationally realistic orxr
even rather coarse (e.g. less than a hundred nodes). We have
shown (Levine, 1982) that theoretically optimal or near—optimal
error bounds are difficult to obtain and tend to overestimate
superconvergence errors to a significant extent: by a factor of
h, for exaﬁple. So, no matter how many theorems we prove about
superconvergence algorithms, the final test is to try them out.

To construct our experimental estimates, we select a model
function u on a given region Q and set up a simple differential
equation (Poisson's) of which u is the solution. We then
approximate u by the Finite Element Method with various
discretigsation parameters h and examine the error with which Vu
igs estimated from Ru. To be gpecific, we usually obtain Ru - via
Poisson's equation - thus: Ru e SE and

(VRu , V¢ ), = (-bu, o ); (1.6.1)

for all ¢ € S

0 The Laplacian Au and the boundary values (Ru =

uE at nodes on 3Q) are obtained directly from the known function
*
u. The inner product (-, -)n denotes the use of the centroid rule

in each element to approximate the integral (-,-) q’ its effect,
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which is neither asymptotically nor numerically significant, will
be analysed in Chapter 4.

For example, let us compare our tangential derivative
superconvergence bound on triangles (1.5.6) with Z14mal's o(hz)
centroid result on quadrilaterals (1.4.4) and our O(h) centroid
sampling prediction on triangles. We denote these resulting
exrors (mean—square averaged over all possible sampling points)
and E respectively. Let us "define the

gt ' Eftbtn cent
unknown function" thus:

by E,

u = x (1 - z).y (1 —-y) (1 + 2+ 7y) (1.6.2)
on the unit square Q1 = (0.1)2. We partition Q into h—2 squares of
side h and thence into Zh-2 triahgles via diagonals of slope +1.
Taking successively h = 1/4, 1/6, 1/8, 1/10, we calculate Ru from

and E are

the equations (1.6.1); the errors E B Ebtttn cent

tgt

displayed in Table 1.6. (The calculations on bilinear elements
are taken from Lesaint & Z14mal, 1979.)

An adequate summary of these figures is given by the

asymptotic rates:
2

Egt = 1.4n" ,
2
Eptiin OESh
and E > 1.2h .
cent

(We have found that errors are often within 10% - and frequently
5% or better — of asymptotic rates for h € 1/8; in almost every
case this accuracy is sufficient for our purposes and we give
these rates only, avoiding columns of unprocessed figures.) So,
for this choice of u, 0 and method of partition, the oxder-of-h
predictions in Sections 1.4 and 1.5 are confirmed. We also have a
definite counter-example of the claim that Ecent = O(hz) and a

strong indication that the constants c in the statements of
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n Etgt Ebtttn Ecent Etgt Ebtttn Ecent

x 102 x 10% x 10% x h 2 x h ¢ xn !
i 8.08 5.5 28.5 1.29 0.87 1.14
é 3.76 2.5 19.3 1.35 0.90 1.16
% 2.15 1.4 14.6 1.37 0.90 1.16
‘i—o 1.38 0.91 11.7 1.38 0.91 1.17
Table 1.6

Computed errors of various methods for estimating the gradient,
with AdQiminishing parameter h. The "unknown” u is given by

(1.6.2).
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Theorems 1.4 and 1.5 are reasonably small (because E tgt and

E are much smaller than E even for +the coarsest
bilin cent

discretisation). Indeed, we can think of the above asymptotic

value of Et h_z (i.e. 1.4) as a rough yardstick against which to

gt
compare the results of other numerical experiments. Pinally, it

may be the case generally (but we would not regard the evidence

as strong) that Eb is naturally smaller than E

iiin tgt

1.7 OQVERVIEW

In summary: an unknown function satisfies Poisson's equation
on a rectangle. We partition this rectangle into uniform elements
in a prescribed manner and approximate the unknown via the Ritz
projection. We do not permit numerical quadrature. We sample
prescribed components of the approximation's gradient, at
prescribed locations. Finally, we take a somewhat unpleasant
global average of the error in these derivatives... This is the
picture of superconvergence presented so far. Looked at one way
it is a solution to the problem posed in Section 1.1l: for it is a
procedure “"for obtaining gradients to the same degree of accuracy
as the function values", Looked at another way, it is too
special, too rigid, to be of any direct practical worth. We
regard it therefore as the foundation stone of our work.

when we come to build upon this, one simple feature will be
seen to appear again and again in our constructions: if the
underlying unknown function (u) is quadratic, then key Ilocal
functionals vanish completely. Later, when we introduce various
perturbations to the result - such as curxvature of the mesh -

these key functionals will still occur in some (perturbed) form
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and still vanish when the underlying function is quadratic. The
general approach is as follows. Consider a functional which
vanishes, in the absencge of any perturbations, for all quadratic
u. We express this as the sum of a related fum;‘?-i.onal which is
guaranteed to vanish when u is quadratic ( perturbations ox no)
plus one oOr more perturbation functionals, which do not
necessarilly vanish for quadratic u but are of high order
anyway. It is the message of Chapter 4 that this approach works
for our puiposes: in that chapter we will prove our most general
result with full rigour.

Before this we answer the more practical questions. We need a
procedure for generating a triangulation conducive to
superconvergé,:ce on a general domain and for recovering, from the
Finite Element approximation on such a triangulation, a good
estimate to the unknown gradient at any point. These »algorithms”
will be the subjects of Chapters 2 and 3 respectively. At these
stages we will be concerned mainly with practical choices;
analysis will be kept to a minimum and in some places postponed.
We will rely heavily on a search for functionals which vanish -
in the absence of perturbations - when u is quadratic, knowing
that Chapter 4 will take care of the perturbed case. Also in
Chapter 4, we will examine the roles of numerical quadrature (in
a sense this is another perturbation) and the cumbersome
requirement for global averaging. In the final chapter (Chapter
5) we introduce a completely different approach to the
mathematice of superconvergence which bypasses the need to take
that average. The new analysis is neither simple nor complete; we
are left at the end with the choice between generality and full

rigour.

29



The work is arranged into two parte. The first, comprising
this and the next two chapters, is presented at what we hope is a
simpler level then the second. (The exceptions are the proof of
Theorem 2.4 and the whole of Sections 1.2 and 3.2: all of these
could be omitted on a first reading.)

We mention here the work of two research groups which are~
currently active in the same field as us: Lin Qun et al (1983)
and K¥i¥ek and Neittaanmiki (1984). The result of the former
parallels Section 5.1 of this work; however key properties of the
Green's function are quoted entirely without proof. The others’
result is Dbased directly on Oganesjan and Ruchovec (1969) and
concerns a full self-adjoint problem. It gives mean-square
superconvergence for a nodal recovery scheme (see Figure 3.3.8
below) but only in an interior subregion of {i. We remark on one
other particular constraint which we consider unrealistic: the
external Dboundary 90 must Dbe three times continuously
differentiable. Incidentally, both sets of authors confine their
study to fully uniform meshes (as in Chapter 1 here).

In summary: an unknown function satisfies any strongly
elliptic self-adjoint differential equation on any well-defined
region with the strong cone property. We partition this region,
carefully, with certain general properties in mind. We then
approximate the unknown by the Finite Element Method, using low—
order numerical quadratures. We follow simple rules to cons{uct
weighted averages of the approximate gradient wvector over small
patches of elements. This class of local averages can be used to
approximate the unknown's gradient (both components) at every
point in the domain. There is strong evidence that the presence

of a global average in the analysis can usually be ignored.
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2.1 SUPERCONVERGENT MESHES

In this chapter we will enlarge upon the first stage of the
scheme for obtaining superconvergent gradients, which was given
in Table 1.3: the construction of a Finite Element approximation
conducive to superconvergence. The most important aspect of such
a construction for us to cover — unless Q is the rectangle of
Section 1.5 - is the choice of triangulation algorithm. Indeed,
gsince superconvergence results are generally robust in the face
of variational misdemeanor and other perturbations, the other
aspects of generalising the model problem (1.3.1) are
comparatively simple and we can safely postpone them to Chapter
4, This chapter, then, is about the generation of triangulations
such that the gradients of the resulting Pinite Element
approximations and interpolants are "close". We assume for the
time being that (1.3.2), (1.3.5) and (1.4.3) hold.

Iet us start with a resum& of Section 1.5: superconvergence
when Q is a rectangle. The method given for triangulating Q is to
partition it into rectangles of dimension 8x x &y and thence
into triangles with hypotenuses of slope &y / 8x. We then take S
to be the space of continuous functions which are linear in each
element. We define the discretisation parameter h by (1.5.2) and
show that the Rz average error of the tangential derivatives at
stress points is O(hz). The proof (of Theorem 1.5) is summarised
in Table 2.1; it is important to note that properties of the
triangulation are involved only in the first three stages. So,
given (1.5.2) or an equ;valent condition, for any series of
triangulations (parametised by h) on any region Q, tangential

derivative superconvergence is equivalent to the bound
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(1) Use B.H. and the shape of Ak to bound

2 _ 29
I[az“" u).aa]Akl » 1€k<K, , ®eS5.

(2) Use ¢ € S (1) and the decomposition of Q into the A, and

o’ k

Bk to bound
8 _ 9% |
| [aac”"‘ w ]n )

axr
(3) Similarly, bound
a_ _ 9%
| (e - - 5la |
(4) From (2) and (3) bound

| € V(Tu=u) , v ) |

and hence

| (I — R)u '1,9'

Now use meas (Ak) > ch2 ;, 1 €k < KA (from (1.5.2)) to bound

w2 [ i ]2

(5) Bound

2]
| [am(lu u)]Mk | , 1 £k € KA‘

(By (1.5.5) this works independently of the shape of the A4 .)

kl
(6) Combine (4) and (5) to bound
K
a [a_ _ 2 J1/2
n [ L aa:(R" u)]Mk ]

Table 2.1

Superconvergence proof for the uniformly triangulated rectangle

Given (1.5.2), the positions and interconnections of nodes
directly affect only the first three stages, in which the

integral ( V(Iu - u) , V¢ )n is bounded.
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| (I-Rul, o < clulr®. (2.1.1)

Now in an application, it is unlikely that the resources will
be available to triangulate 1, solve the Pinite Element equations
(1.3.5) and extract results for a series of values of the
d:l‘;\:retisation parameter h. So ouxr aim is to generate a mesh for a
single value of h for which | (I - R) u |1’n is reasonably small.
But to define this quality - via (2.1.1) - we must hypothesise
the existence of a series of meshes, even if we do not actually
generate them. Therefore we define a mesh to be "superconvergent”
if it is a natural member of a series for which (2.1.1) holds.

For example, congider the gseries of triangulations on a unit
square shown in Figure 2.1.1. Taken without mesh (a), the series
is clearly such that (2.1.1) Tholds; therefore meshes
(b).(c),(a),... are superconvergent. Now mesh (a) is by
definition a formal member of the series, but it is not a natural
one. If it is taken as the starting point for any natural series
of refinements, (2.1.1) will not hold (9ee Section 2.4 below);
therefore mesh (a) is not superconvergent.

'We wish to generate superconvergent meshes on regions other
than rectangles. For example, let Q be a parallelogram and let us
triangulate it as in Figure 2.1.2. We claim that this mesh is
superconvergent. FPor it is still possible to decompose into
pairs Ak oi_f triangles whose common edge is parallel to the r-axis
(note that in this example there are no ’leftover triangles Bk)
and the first two stages of the superconvergence proof (Table
2.1) proceed as usual. We then decompose Q into triangle pairs
with common edge parallel to the y—axis for stage three (this
time there do exist leftover triangles on an); the rest of the

proof is exactly as before.
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() hsll2 () h=1/3

(c) h="/ (d) h=1/5

Series of triangulations of a unit square

All but the first mesh are superconvergent.
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dx

Figure 2.1.2

A superconvergent trianqulation for a parallelogram

A triangle pair for stage (2), and a leftover boundary triangle

for stage (3), of the proof summary in Table 2.1 are shaded.
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So if O is a parallelogram, we can triangulate it as in Figure
2.1.2 and the resulting mesh will be superconvergent. But this
scheme is not a good idea if |m| is very small, because &y will
also be very small and the number of nodes very large, without
any useful refinement taking place (h = &r remains constant). We
give below a more general triangulation scheme for the

parallelogram and show that it, too, leads to superconvergence.

2.2 DIRECTIONS AND DECOMPOSITIONS

Let Q be the parallelogram considered above, triangulated now
as in Figure 2.2.1. The difference is that the element edges now
have slopes m, m + 6y/6xr and w. So in general there are no
element edges parallel to the xr—axis and the decomposition of

( V(Iu —u) , V¢ )n
into x— and y-derivative terms no longer leads to
superconvergence (see stages (2) and (3) of Table 2.1 and the
discussion on (1.5.5)).
However this triangulation is superconvergent. To prove this

we group the elements into pairs A with common edge of slope m.

k
As before, there is a component of V¢ (¢ « So) which is constant

over each A_:

k
2 | o0
ax oy

So we replace (1.5.7) with

( V(Iu —u) , Vo )n

[ |
a 3 3
= —(Iu — u) , ['— + m—]tb
| o= or vl g (2.2.1)
) 3 _ 20 .
+ [-m—a:r + ay] (Iu u) , oy o
. P
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2
X

Piqure 2.2.1

A modified superconvergent trianqulation for the parallelogram

We no longer constrain 6y = méxr. A triangle pair (Ak) and an

unpaired triangle (Bk) on 30 are shaded.
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We write the first term as a sum of integrals over the A note

©’
that there are zero contributions from a number of unpaired
triangles Bk on the boundary segment of slope m (recall ¢ = O on
Q). We follow the derivation of (1.5.8); we need therefore to
show that

”A (u-w = o

k

for all quadratic u. For the second term of (2.2.1) we regroup
the elements into pairs with common edge parallel to the y-axis;
the derivative of ¢ ocinstant over each pair is now 9¢/9y. Again
we must show that when u is quadratic the integral over such a
pair of the appropriate component of Vu (namely 8/3y -— md/ax)
vanishes. Therefore the following result is more than sufficient
to prove that the triangulation of O is superconvergent.
Lemma 2.2 Let A be any parallelogram formed by two neighbouring
elements in the triangulation of some region , let u Dbe
quadratic on A and let Iu € S interpolate u there. Then

[[ ww-w =o. (2.2.2)

a

Proof For simplicity we let (¢,n) be an affine transformation
of (=z,y) such that the ¢-axis coincides with the edge common to
the two triangles and the nodes on this edge are at (0,0) and
(1,0). We denote by 'I‘t the triangle in *1>0 and by (et,n__t) the
remaining node in Tt. (See PFigure 2.2.2.) Because the
transformation is affine and Vu linear, (2.2.2) is equivalent to

F(u) = meas(T+)[ V(Iu — u) ]G

+
+ meas(T_)[ V(Iu - u) ]G

= 0, (2.2.3)
vhere G:: are the centroids ( (1 + E:t)/a ,' nt/s ) of Tt and by V
we now mean ( 9/9&(£ , 3/dn ).

Now,
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Fiqure 2.2.2

The local coordinate transformation

e S ea e ———

Note that A is a parallelogram and that in consequence its

diagonals bisect each other.



if u= ¢ in A then Iu £+ n(ei - et )/'nt in Tt;

if u = ¢n in A then Iu ‘net in Tt;

ifu=mn inAthenIu='rmtinTt.
So

1 1 [ (2+ 2 )/31ﬂ

ree?) = Ml - ¥
2 Ly -epm ) L 0 J]
[ . . 1
o 1 1 B (2+2£_)/3}
z |l 2 -eom 1 | 0 )

[ ((1 - 2¢)m, = (1~ 26)n_)/6
(&, - g, — (€= 1)€_)/2

[ O [ n/3
Fen) = T+ ] - ¥
z |l €, L (1 + £.)/3 |
Xy 0 ] B [ n_/3
z |le o1+ ¢)/3 }]
2 2
_ [ (—n, + n_)/6 ;
((2¢, — 1)n,_— (26_ - 1)n_)/6
e S
F(n’) = N4 ] |
2 LL n, 2n, /3 1]
3 o - 0 11
oy ] i
2 |ln_ L 2n_/3 |

[ 'a ]
= 2 2 .
(n, —m)/6 (2.2.4))
As in Sections 1.4 and 1.5, if F vanishes for these three choices
of u then (2.2.3) holds for all quadratic u. But A4 is a
parallelogram and so its diagonals bisect each other:

£++ ¢ =1 and n++n_=0. (2.2.5)
Therefore by (2.2.4) F = O when u € {£2,én,n°} and the lemma is
proved. HHHE

We have now shown that the triangulation of the parallelogram
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Q is indeed superconvergent, for any m. In particular, if

m = —1/vy3, &x = (v3/2)sy
then we have a superconvergent partition. into equilateral
triangles. If m = 0 then Q is a rectangle, triangulated exactly
as in Chapter 1:; the superconvergence proof is essentially
unchanged. On the other hand, if

m = —-6y/8x
we have a triangulation related - or identi®al’ under the
transformation y - -y — to that given in the! last séction but a
different proof of superconvergence based or"i a different
decompogition of ( V(Iu - u) , / Vo ) a and a ;iifferent pairing of
elemehts.

In fact for all values of m there exist precisely three
different ways of pairing elements, each corl::t-esponding to one of
the three directions of triangle edges and each leading to a
different proof of superconvergence. Por, writing s = &y/sx, we

have the three distinct decompositions

(V(Iu-uw) , Vo)

[ .
- a_ al a_ 9_].
= =™ W . ezt '"a—y]“’ .
(a)
- u 99
it [—m— + ](Iu u) , ay E
J & %
] 2 2, |
= ax(l'u u) , [a:z: + (m+ s)ay]ob 2
_ (b)
3 2¢
+ -(m + s)— + (Iu -u) ,
[ ] W ja

= [ [m+s]<;1c ;:y](zu—u) . [:—t'+mg—y]¢ ]n

(e)
+{ [—md_ | say](ru- u) , [g—+ (m+s)—]¢] .

L sdx

42 (2.2:6)]



Now, the components of V¢ constant across shared element edges
with slopes m and « are

[Z—m + mg—y]¢ and %‘5
respectively. Therefore with the first decomposition above (used
before in (2.2.1)) triangles in the first set of pairings need
common edges of slope m and those in the second need common edges
of slope w. We say that the "primary directions" of this
decomposgition are m and w. There is of course a thlrd direction
for element edges (given by the slope m + s). We Icall this the
"secondary direction" of the decomposition. The reason for making
this distinction is that, although all three directions can in
general be present as segments of the boundary aqQ, tﬁe leftover
triangles (Bk above) for which it is required that

= 0 on a0 (2.2.7)
only appear on segments given by the primary directions.

For example, 3ee Figure 2.2.,3, There, the triangulation is

0 D2 and D3. In (a), DI has been

based on the three directions D 1

chosen as a primary direction for the superconvergence proof and
the fourteen triangle pairings are shaded. There are four
leftover triangles with edges on 801. The segments of 3t on which
they lie are precisely those which have direction D ;3 the
boundary condition (2.2.7) must be taken up on these segments.
The other primary direction chosen for the proof is Dz‘ In (b)
the twelve resulting pairings are shaded; for this stage of i:he
superconvergence proof we require that ¢ = 0 on all the segments
of 90 with direction D2 . ,D3 is therefore the secondary direction
of the triangulation (as far as this proof of superconvergence is

concerned); ¢ = O is not necessary on the segments of 90 with

direction D 3 .
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Fiqure 2,2.3
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Direction, D
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Primary and secondary directions of a uniform trianqulation




Returning to (2.2.6), the primary directions for decomposition
(b) (used in Section 2.1 with m = -8) are m + s and o; therefore
condition (2.2.7) is not exploited on any boundary segments of
slope m (the secondary direction). Similarly for decomposition
(c): the secondary direction now has slope w. (See Pigure 2.2.4
for another example.)

We have now arrived at a more flexible approach to the
Superconvergence proof. We summarise it in Table 2.2 and move on

to its applications in the next section.

2.3 TRIANGULATION BANDS

Let a polygonal region Q be divided into subdomains by means
of a number of parallel lines of direction D. We call these
subdomains "bands"; they enable us to expand greatly the class of
regions Q for which there exist superconvergent triangulations.
(See Figure 2.3.1 for an example.)

Theorem 2.3 Suppose there exists a partition of a banded region
@ into triangles which meet only in entire common sides or
vertices such that
(i) each of the dividing lines between bands is made up of
triangle sides, of direction D
and (ii) the triangulation of each band, when viewed as a problem
domain in isolation from the rest of Q, is uniform and
superconvergent .
Then the triangulation of Q is superconvergent.
Proof By (i), D must be a direction of the triangulation in
each band; let it be secondary throughout. Then the condition ¢ =

0 is not required on any of the dividing lines which separate the
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Unpaired triangles on dn for the three choices of decomposition

The two shadings denote triangles unpaired after consideration of
each of the two primary directions. On any segments of 3 given

by the secondary direction, "¢ = 0" is not used.
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(1) Lemma 2.2.1.

(2) Use (1) and (if necessary) "¢ = Oon a3q" to bound the
contribution to ( V(Iu — u) , Vo )n (Db = so) associated with
the first primary direction.

(3) Repeat (2) for the second primary direction.

(4) Combine (2) and (3) via one of the decompositions (2.2.6).
Hence bound the point sampling difference of VIu and VRu.

(5) Bound the point sampling error in VIu.

(6) Combine (4) and (5) to bound the point samping error in VRu.

Table 2,2 ’

Superconvergence proof on a uniformly triangulated polygon

This is a step by step generalisation of Table 2.1.
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Fiqure 2.3.1

A deneral polydgon reduced to bands

Four of the bands are trapezia and three are triangles.
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bands (i.e. the band boundaries internal to ). So the
contribution to (¢ V(Iu - u) , Vo )n from any ban@d 8 would be
unchanged if B were a complete problem domain, isolated from the
rest of Q. By (ii) therefore, this contribution from g is bounded

by

2

ch | u | I o |

3,8 1,8°
it is irrelevant that ¢ may be non-zero on the parts of a8 with
direction D. (Here and henceforth we take h to be a typical
element edge length of the triangulation; we assume that the
maximum element diameter is bounded above by ch for some ¢ > O0).
To deduce that the triangulation is superconvergent, we simply
sum these contributions over all the bands. L 52

For example, consider the "chevron" mesh used to triangulate
the square in Figure 2.3.2. The five band boundaries are parallel
to the r—axis. If we take the secondary direction to have slope O
and the primary direction to have slopes %1 (in alternate bands )
and ®, then this triangulation is superconvergent by the above
theorem. The octagon in Figure 2.3.3 also has a superconvergent
triangulation. Again the secondary direction has slope O0; the
primary directions have slopes 1/2 and o in the central band, +1
and —1 in both of the others. (Note that, unlike the square, the
octagon cannot be triangulated without the use of some subtlety.
There is an alternative to a decomposition into bands: the
"block" triangulation of Figure 2.4.3 below. But we expect that
this will generate unacceptable errors in the centre of the
domain — see Section 2.4 for discussion.)

Now if we take a sufficient number of bands, we can reduce any
polygon to a series of trapezia and triangles (see Pigure 2.3.1).

To triangulate the triangular subdomains we can take the primary
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f nmuy direction,

Pigure 2.3.2

A chevron mesh on the unit square

(a) The t/%.angulation. One t_>a.nd, B, is shaded.

(b) & (c) The band is considered in isolation. The triangle
pairings are shaded; the unshaded triangles in (b) indicate that
we need to use "¢ = O" on 3B i 90 in order to prove

superconvergence.
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Figure 2.3.3

Superconvergent triangulation of a reqular octagon
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directions to be parallel to their external boundaries (i.e. the
edges on df1) and the resulting band triangulations are clearly
superconvergent. We can attempt to do the same for the trapezia:
the triangulation will again - if it exists - be superconvgrgent.
However, (see Figure 2.3.4) we cannot partition the general
trapezium into a uniform mesh (nor will it help to insert extra
band boundaries). Also, the triangulations of two neighbouring
bands may not be compatible unless the mesh is impractically
fine. Por if the triangulation of band g8 1 requires at least n 1
equal element edges on its boundary with band 132 and 132 requires
at least n2 edges there, then a triangulation compatible to both
bands requires at least L.c.m.(nl,nz) element edges on this
boundary. If there are several bands, even the coarsest posgsible
triangulation may have far too many nodes for practical
computation.

More general triangulation techniques are necessary for the
general polygon and, indeed, for regions whose boundaries include
curved segments; we will discuss these in Section 2.5. In the
next section we digress a little to examine +the topology of

superconvergent triangulations.

2,4 THE SIX ELEMENT PROPERTY

Our purpose in this chapter is to formulate generic
triangulations which_ can be applied to yield superconvergence on
a wide variety of problem domains. When we have found a
successful triangulation for a given region i, we move on to a
more “"general" domain and attempt to extend our methods. We feel

there is 1little wuge in remaining behind with the same O and
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FPigure 2.3.4

The general trapezium does not have a uniform triangqulation

The triangulation 1lines drawn parallel to AB have identical
spacing along AD and BC. Each of the four vertices must lie on
one such line. This is possible only if AD/BC is rational, which

is not the case here.
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searching for the whole class of superconvergent triangulations.
Also, we see even less use in a classification of non-
superconvergent triangulations.

There is however a general property of superconvergent
triangulations which we highlight because it can be particularly
helpful when distinguishing them from the rest. We recall that
for the triangulation of the rectangle given in Section 1.5, each
internal node is enclosed by exactly six elements. This property
is obviously retained for the triangulations which we have given
for parallelograms; therefore it applies to the interior of any
band in a superconvergent triangulation. Similarly, it is clear
that each boundary node of such a band is either placed at a
vertex of the boundary or enclosed by exactly three elements plus
the exterior of the band. So a node on a band boundary but
internal to Q is met by three elements on each side of the band
boundary, i.e. is enclosed by six elements altogether.

Therefore all the superconvergent meshes discussed so far have
the "six element property": precisely six elements meet at each
internal node. Now in the following sections we will introduce
mesh distortions and pseudo—vertices, neither of which affect
this property. We stress the following point: that

together with banded triangulations, these techniques
are powerful enough to triangulate any domain which
gatisfies the cone condition and whose boundary is a
finite union of smooth curves.
So we regard the six element property as a practical requirement
in the construction of superconvergent meshes. We will now
discuss the extent to which this property can be mathematically

identified with the superconvergence of gradient errors.
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Consider the "criss—cross” mesh shown in Figure 2.4.1.
Although this configuration was necessary for high order
derivative convergence in the mixed method of Fix et al (1981),
it doeals not lead to superconvergence in our sense. It is clearly
not amenable +to a superconvergence proof via a partition into
bandg: for a start there are four triangulation directions
everywhere. Moreover, while the global combination of bands,
choice of secondary direction, etc. are aspects only of the
construction of a proof, the local combination of elements and
cancellation of errors (and, to an extent, the six element
property whicn this triangulation lacks) are fundamental to the
superconvergence phenomenon. So indeed we do not expect this mesh
to be superconvergent.

A numerical test confirme this. We solve (1.6.1) on the unit
square 0 = (0,1)2 with u given by (1.6.2) and h = 1/4,...,1/12.
With the criss-cross mesh we cobtain the asymptotic error rates

| (I - R)u Il,ﬂ x 5.4 h

and Etgt = 3,1 h;
with the superconvergent uniform triangulation we have
| (I -Ru | =~ 1.2 h?
1,2 *
2
and Etgt x 1.4h .

Hence there exists a function u, satisfying (1.4.3), such that
(2.1.1) fails for the criss-cross mesh; this triangulation is not
superconvergent. From the viewpoint of regularity, this example
of the link between the six element property and superconvergence
is a particularly simple one and thus a strong argument for
treating the property as a practical necessity.

We must now admit that both this topological uniformity and

the geometric uniformity (congruence of triangles within a band)



Figure 2.4.1

A uniform crigs—cross mesh on the unit square

This triangulation is not superconvergent.
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can in fact be dropped, at a bounded number of nodes, and are
therefore not strict mathematical necessities. Superconvergence
is retained but, as we shall see, there are reasons for avoiding
such constructions.
Theorem 2.4 Suppose there exists a partition of a polygon Q
into triangles (which meet only in entire common sides or
vertices) via a finite number of triangular subdomains, each of
which is uniformly triangulated with the three directions giwven
by its sides. Then this triangulation is superconvergent.
Proof We refer to the triangular subdomains as "blocks” (see
Figure 2.4.2(a)). To prove superconvergence we consider
separately the contributions to

( V(Iu - u) , Vo )n
from the neighbourhood of each block vertex internal to . We
then add contributions from the neighbourhoods of members of a
number of sets of nodes, each set being associated with the
boundary between two blocks. It is convenient to assign sets to
the nodes at block vertices too; therefore let the sets v 1702V,
each contéin one of the n block vertices internal to Q. To
arrange the remaining nodes into sets we proceed thus (see Figure
2.4.2(b)). For each interblock boundary internal to i, let the
set of nodes on that boundary (excluding the block vertices in
v ,...,vn) be placed in one of the N — n sets v

1 rH‘I’...'vN‘
that the number of blocks is finite and so N is bounded as h -

(Note

0.) Let each remaining node of the triangulation then be placed

in one of v according to which interblock boundary is

n+1” "' UN’
closest; any consistgnt proceedure can be adopted in the case of
nodes equidistant from two (or three) boundaries.

All the vertices in the triangulation are now distributed
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(¢) (d)

Figure 2.4.2

A block trianqulated square

(a) One of the four blocks is shaded.

(b) The divisions indicate the five sets v (one Dblock vertex

k
internal to Q, plus four interblock boundaries).

(c) The support Vk of one of the ¢ (k > 1), Nodes internal to

(x)

vk are marked.

(4a) Vk behaves as a banded domain.
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between N sets: one set for each internal block vertex (with one
member — that vertex) and one for each interblock boundary (with
O(h_z) members)., Por k = 1,...,N, let Vk be the union of supports

of the basis functions in so which are centred on the nodes in

vk. Given any ¢ € SO, let ¢(1)"°°’¢(N) satisfy
supp ¢ VvV , k=1,...,N
" (%) k }(2.4.1)
and =1 ¢(k) = ¢.
(See Pigure 2.4.2(c).)
et ¢ € So. By (2.4.1)
(V(Iu - w) , V8 ), = D, (V(Tu-u), V6, by,

we bound each of these terms separately. First, let 1 € k € n
(i.e. there is only one node internal to Vk) and let us make the
mild additional assumption (recall (1.4.3))

u & Hi(@) 0 W, o(q), (2.4.2)
where one of & and ¢ is positive and the other non—negative.
There is absolutely no guarantee that any superconvergence
properties will hold in Vk and go the best we can do is (by S.E.,

B.H. and meas (V,) < ch?)

( V(Iu - u) , V¢(k) )V.k
€ | (Iu - u) | { ¢ |
I,Vk (k) I,Vk
< ¢ch | u '2,v / ¢(k) '1,v
2 k k
< ch lu '2,m,vk I ®ex) '1,vk
2
€ c¢ch | u 1‘:.‘_‘_‘5,‘.,_1_'.:_'n | ¢(k) |1,7k° (2.4.3)
Now let n+ 1 € k € N, Since the support Vk of ¢(k) lies within

two neighbouring uniformly triangulated blocks, we can regard Vk
as a pair of bands (see Figure 2.4.2(d)) and by Theorem 2.3
( V(Iu - u) , V¢

(chz { u |

x v,

| & | . (2.4.4)
3,7, (k) 1,7,

Hence by (2.4.3) and (2.4.4)
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( V(Iu — u) , Vo )n

2
€ ch LUl . 28,0 EZ=1

'€ cNh { u |

| ¢ |

(k) "1,V

k
3+€,246,0 I & '1,n‘

But N is finite; therefore the triangulation is indeed
superconvergent (for functions u satisfying (2.4.2)). #i##

We do not greatly recommend the use of block triangulations.
For although they may simplify a programmer's task somewhat
(compare Figures 2.4.3 and 2.3.3), asymptotic accuracy will be
lost in the vicinities of internal block vertices. There the
contribution to ( V(Iu —u) , Vb )n from a small (i.e. diameter
O(h)) patch of elements ¥, (k < n) is O(h”) instead of the usual

O(hs). (See (1.5.8); on global averaging, | u |

= O(h).) Now
3,Ak

this additional error does not change the order of the average
gradient difference | (I — R)u '1,0 but it may still produce a
significant numerical increase. In particular, the spreading
effect of the Galerkin equations is sufficiently weak that the
increased (non superconvergent) contribution to the error will be
concentrated around the vertex. (This may however be acceptable
if the gradient is not going to be sampled near the vertex - see
Chapter 5.)

FPor example, consider the unit square Q = (0,1)2, triangulated
as in Pigure 2.4.4. (This is related to the meshes in Figures
2.4.2 and 2.4.3.) In a numerical test, we solve (1.6.1) with
(1.6.2) as usual, taking h = 1/4,...,1/12. As predicted above,
| (I - R)u |1'n is larger than it is on the uniform triangulation
(by over 50%) and the pointwise difference | (I — R)u Il,m,n'
an order of magnitude larger. With the block triangulation we
obtain

2
| (I R)u Il,ﬂ = 1.9h
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Figure 2.4.3
A _Dblock trianqulation (without the six element property) on the
octagon

Accuracy will be lost near the centre.
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Pigure 2.4.4

A block triangulation on the unit square

We expect that | V(I - R)u | will be higher on average and much
higher pointwise than it would be if the triangulation were

uniform throughout Q.
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and | (I -~ R)u '1,w,ﬂ = 0.7 h

whereas with the uniform triangulation

2
| (I-Rul o = 1.2h

2
and | (I R)u '1,0,0 = 3 h.

2.5 GILOBAL DISTORTIONS

We turn now to a triangulation technique which can be used to
generate superconvergent meshes on regions with curved or general
polygonal boundaries - a smooth distortion of the positions of
the nodes. The mathematical effect of such a transfeormation is to
add a number of perturbation terms to the superconvergence error
bound. A simple example indicates that moderate distortions are
not numerically significant, but the asymptotic analysgis is a
little tricky and we postpone it to Chapter 4.

Suppose we are given a triangulation with the sgix element
property on some domain Q. We define a "path" across Q to be a
union of triangle sides with the property that, at each internal
node along its route, exactly three elements meet on each side of
the path. (See Figure 2.5.1.) We partition the set of all paths
across Q into three families such that, if two different paths
meet at any node of @, then they belong to different families.
Also, we divide the boundary of the triangulation into (a minimum
number of) segments such that each one can be included naturally
in one of the families of paths. Now, if the mesh were unifomm,
each family would consist of straight lines in one of the
triangulation directions. So for the general mesh, it is natural
to define these three “"directions" by associating them with the

three families of paths. Further, for each direction there is a
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Fiqure 2.5.1
A path through a mesh with the six element property

Nodes along the path are circled.
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(unigue) partition of Q into tria;ngle pairs (Ak) with - as usual
- a number of left—over triangles (Bk) on an. If, again, the
triangulation were uniform, each Ak would be .a parallelogram;
we recall that this leads us to Lemma 2.2 - the heart of
superconvergence on uniform meshes.

Let us consider now a mesh with the six element property. Let
it be smoothly distorted from uniformity (see, for example,
Figure 2.5.2) in such a way that for two (primary) directions,

the Ak are "almost" parallelograms. By this we mean the

following:
the midpoints of the diagonals of the
2 (2.5.1)
quadrilateral Ak have separation O(h ),
k=1,.. .,KA. Equivalently, under the local transformation (z,y)
- (¢,n) of Lemma 2.2,
| €, +&_-11 = o(n)
' (2.5.2)
and |n++'n_| = O(h).
(See (2.2.5) and Figure 2.5.3.) In Chapter 4 we will define this
property exactly and prove, via a modification of Lemma 2.2, that
such a triangulation is indeed superconvergent and that the
boundary condition
¢ =0 for ¢ e so
is not necessary on the boundary segments which follow the
secondary direction. If, ther;fore, a mesh congists of a number of
bands such that the secondary direction and mesh spacing in that
direction are consistent across each band boundary, then this
triangulation too is superconvergent. Similarly, though we still
do not recammend this application, the above constructions can

be combined with the block triangulations of Section 2.4 above.

We are now in a position to return to the problem of






X

FPigure 2.5.3
"Almost" a parallelogram

The two points M are the midpoints of the d&iagonals of A;
diam (A) = O(h). We require MM = O(hz) as h - 0, i.e. the shape

of A tends to that of a parallelogram.
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triangulating a general polygon. We abandon.ed this in Section
2.3 because of the problems raised by the general trapezium.
However with distorted meshes this becomes a simple region to
triangulate. (Recall Figure 2.3.4.) In Figure 2.5.4, mesh (a) is
a distortion of a uniform mesh on a rectangle and mesh (b) is a
distortion of a uniformly triangulated trapezium. The main
advantage of (a) is its simplicity: in particular the nodes are
equispaced along each of the four boundary segments. Meshes such
as (b) can be used to effect a change across a band in the number
of nodes on the interband boundary.

when we move on to less simple regions and require a division
into bands, we no longer have the constraint, that the band
boundaries must be parallel. (They must, however, lie in the same
mesh direction: AB and CD could be band boundaries in mesh (a) of
Pigure 2.5.4 Dbut not in mesh (b).) So, for example, the band
boundaries for the polygon shown in Figure 2.3.1 above could be
as given by Figure 2.5.5. Finally, Jjust as paths internal to
bands need not be straight lines, +the boundaries of bands can
also be curved (whether or not they are internal to 0Q).

We conclude this section with a numerical example: we solve
(1.6.1) with u given by (1.6.2), where Q@ is the triangulation for
a truncated sector shown in Figure 2.5.2. (Incidentally, this is
the first example we have met with non-homogeneous boundary
conditions.) We write nh for the union of elements (# Q) and h
for the mesh spacing along the x—axis. We obtain

| (I - Ru | = 0.98 h%;

1.2,

we recall that

| (I -Ru | =~ 1.2 h?

I.Qh

when O is the undistorted square. The change in u due to the
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Pigqure 2.5.5

An__ irreqular polygon reduced to bands for a distorted

trianqulation

It may well be possible to construct a triangulation which is
uniform across some of these band boundaries, thus reducing stiil
further the number of bands. This is however not a simple task;

it may not be worthwhile.
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change of O dominates the variation in the error; this has
swamped any increase caused by the failure of any element pairs

to (quite) form parallelograms.

2,6 PSEUDO - VERTICES

In the 1last section we saw that the mesh in each band of a
superconvergent triangulation can be a smooth distortion of some
uniform mesh. In particular the boundary of each band is a smooth
distortion of a polygon (consisting of segments in the three
triangulation directions). Now, let Q be a simply—connected
region whose boundary 40 has no vertices: a0 e« CI . If we
partition it into bands, there will be at least two which have
only two vertices (see Figure 2.6.1). So we have the problem of
finding a smooth transformation from a region with less than
three vertices onto a polygon (i.e. a region with no less than
three). In effect we need to introduce the topological behaviour
of at least one additional vertex to the triangulation. We call
it a "pseudo-vertex" - the meeting point of two paths which
follow different mesh directions but together form a smooth
segment of the boundary. (See Figure 2.6.2.)

As an example, let us introduce to the neighbourhood of a
straight boundary segment a suitable distortion of the mesh near
the vertex shown in Figure 2.6.3(a): a corner of a uniform square
triangulation. Using the axes marked we define a transformation
for the nodes from mesh (a) to mesh (b). (We then complete the
triangulation of mesh (b) with straight 1lines topologically
corresponding to the links in mesh (a).) We require the mapping

to take the vertex and the mesh boundary in its neighbourhood to

71



-—

(a)

Fiqure 2.6.1

Triangulating a reqion with no vertices

(a) Even after a partition into bands, we still have to
triangulate regions * with less than three vertices.

(b) This problem does not, however, apply to doubly connected

domains.
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Fiqure 2.6.2

A band with a pseudo—vertex

The boundary of this band consists of three paths, even though it

only has two true vertices.
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Pigure 2.6.3

Transformation of a square mesh to create a pseudo-vertex

The vertex in (a) is mapped to the pseudo—-vertex in (b); the X-
and Y- axes go to the positive and negative directions of the a—

axis.
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the pseudo-vertex and the mesh boundary in its neighbourhood.
For instance, let us consider the relations

z = (2 -Y)0l + )2
and v = axv/f + )2,
In polar coordinates ((R,8) for the (X,Y)-plane, (r,6) for the
(x,y)-plane) these are

r=R and © = 26;
they correspond therefore to leaving distance from the origin
unchanged but doubling the angle subtended at the X-axis. They
lead to the mesh shown in Figure 2.6.4 which has the correct
topological behaviour but is not superconvergent: for triangle
pairs near the pseudo—vertex do not approximate parallélograms in
the sense of (2.5.1). (Consider, say, the pair shaded in Figures
2.6.3(a) and 2.6.4. The latter quadrilateral has vertices (0.,0),
(h,0), (3n/v5,4h/v5), (O,h); the midpoints of its diagonals are
at (3n/2v5,2nh/v5) and (h/2,h/2) and thus have separation o(h).)

To cbtain a superconvergent mesh while retaining the property

©-60=20, wecanm@p R -r = sz

x = (2 -Y) and y = 2xv. (2.6.1)
The mesh resulting from this transformation is shown in Figure
2.6.5; the midpoints of the diagonals of the shaded quadrilateral
are now at (3n2/2,2n%) ana (n?/2,n%/2). Even though the shape of
the triangle pair is very far from that of a parallelogram, it is
"cloge" in the sense of (2.5.1): the separation of the midpoints
of its diagonals is O(hz). Indeed the transformation shrinks the
diameters of all the elements near the pseudo—vertex to O(hz).
However it does retain the non-degeneracy property that

every triangle Tk contains a circle of

}(2.6.2)
diameter c.diam(Tk) (for some fixed ¢ > 0).
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Fiqure 2.6.4

A non—superconvergent mesh in the vicinity of a pseudo-vertex

The shaded triangle pair is the "image" of the shaded pair in

Figure 2.6.3(a).
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Fiqure 2.6.5

A superconvergent trianqulation near a pseudo-vertex

The shaded triangle pair is again the "image" of the shaded pair

in Pigure 2.6.3(a).
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It also retaing the six element property and sufficient
regularity away from the pseudo-vertex for the mesh to Dbe
superconvergent. We note that (2.6.1) can be regarded as a member
of the family of conformal transformations (in which Z =X + {Y -
x+ 1ty = z):

z = 2; (2.6.3)
in Chapter 4 we will prove that (2.6.3) leads to a
superconvergent mesh for all y » 2.

We look now at an application of pseudo—-vertices: the
triangulation of a circle. In this example we use four pseudo-
vertices; we show their locations and the triangulation
directions in their wvicinities in Figure 2.6.6. The
transformation used to create each pseudo-vertex is given locally
by (2.6.1); the mesh is therefore a smooth transformation of a
uniformly triangulated polygon with four right—angled vertices:
(w.l.0.g) a square. Clearly we need to alter (2.6.1) to take
account of the curvature of 80 near each pseudo—-vertex; we must
also link the triangulations between pseudo-vertices to obtain a
mesh which is globally smooth. We perform these modificrations in
an ad hoc manner and check our mesh generating algorithm by
visual observations of refinements of the mesh beyond the
computational range in which we are interested (i.e. we take very
small values of h). Our criterion is that the over-refined meshes
should not have any noticeably sharp distortions. In Figure 2.6.7
we display a mesh thus generated for the first quadrant of the
circle; the triangulation is designed to be compatible with the
scheme of Figure 2.6.6. (For the other quadrants, we rotate node

pogitions about the centre.)

As a numerical test, we solve (1.6.1), (1.6.2) on the quadrant
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Figure 2.6.6

Triangulating the circle

The three mesh directions are indicated in the vicinity of each

of the four pseudo—vertices.
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Fiqure 2.6.7

A _superconvergent mesh on a quadrant

This mesh would be suitable for use in the triangulation of the

circle (Figure 2.6.6).
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with axes placed as shown in the figure. Writing h for the node
separation along the axes, we obtain

| (I -R)u | « 1.3 %

1,nh
2
and Etgt ~ 1.4h .
For comparison, we repeat the calculation on the mesh shown in
Figure 2.6.8 and obtain
| (I — R)u | x 1.5 h2-
1,nh !

again Etgt > 1.4 h2.

The latter triangulation falls into the class of meshes which are
"not-recommended" - the 8ix element property and (2.6.2) both
fail — but the averaged errors are similar to those of the former
mesh and the ease of generating it may be considered to be
adequate compensation. _We note however that the simpler mesh is
not superconvergent in the neighbourhood of the origin.

The choice of triangulations for the circle is not limited to
the +two possibilities given by Figures 2.6.7 and 2.6.8. At the
cost of greater complexity in cht;o\sing mesh points, though
probably with a gain in accuracy due to the greater contraction,
we can instead map acute angles onto the boundary of the circle.
Further, it may turn out that the topology of the square is less
suited to this transformation than, say, those of the octagon -
recall FPigure 2.3.3 — or hexagon. (For cbtuse—angled regions such
as these, we retain y > 2 in (2.6.3) by applying first a suitable
sheqring transformation in the vicinity of each vertex - see
Figure 2.6.9.) In fact we can start from any convex polygon,
using a different value of y in (2.6.3) for the transformation in
the neighbourhood of each vertex (although there seems to be
little to be gained from such a process).

‘Now in a genuine application we would not be able to conduct a
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(2:6-3)

Pigure 2.6.9
Combined transformation from cbtuse angle to pseudo-vertex
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series of experiments to compare the options for triangulation;
neither the true solution u nor the resources for such
experimentation would be available. We feel therefore that the
ideas introduced in this chapter deserve a more detailed
investigation. A balance must be sought: between the time of a
programmey and that of a computer: the complexity of generating a

mesh versus ite efficency.
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3.1 SAMPLING ONE COMPONENT

Suppose we are given a superconvergent triangulation of some
domain Q and a Pinite Element approximation Ru to u on that mesh.
How do we use Ru to obtain approximations to Vu? This is the
question to which we now turn. We assume that the first stage of
the scheme of Table 1.3 has been successful and concentrate upon
the second: a generalisation of the "location of the
interpolant's stress points". For, once we have found an accurate
method for estimating Vu from Iu, we can complete the
approximation process by applying precisely the same method to
Ru. (As in the earlier derivation of (1.4.7) and (1.4.4) from
(1.4.6) and (1.4.8), it is a simple matter to confirm the
validity of the third step. See also Section 4.2.) |

So the main subjects of this chapter are the methods and
theory of gradient approximation from interpolants in the space S
of piece—wise linears. Our starting point is the characterisation
of stress points in Section 1.5: they are

locations at which there exists a component

of V(Iu - u) which vanishes when u is (3.1.1)

quadratic in a suitable neighbourhood.
In this section we will examine the possibilities of sites and
sampling directions other than those already found (i.e.
tangential derivatives at element edge midpoints). The following
result concerns the set of points which satisfy the description
(3.1.1) given above.
Iemma 3.1 In every non—-degenerate triangle there are precisely
three points at which (3.1.1) holds and precisely one sampling

direction at each point: these are the midpoints of the edges and



the tangential derivatives there.

Proof We prove this by chosing an arbitrary point and
requiring it to satisfy (3.1.1). As in Lemma 2.2, we simplify our
working with an affine transformation (a,y) - (¢,n) which maps
any element T onto the triangle T+ with vertices (¢,n) € {(0,0),
(1,0), (€+,n+)}. (Clearly, for each T there are - including
reflections — six such transformations; the choice is arbitrary.
Note however that for any such choice and with any definition of
"non—-degenerate triangles", we have n+ # 0.) As before, we have
the following correspondance between u and Iu on T+ when u is
quadratic:

if u = ez then Iu

£+ el - eo/m, s

én then Iu

if u n€+ 3

(3.1.2)

if u nz then Iu nn+ H

if u is linear then Iu = u .
Iet (¢,m) be a stress point for the derivative in the

direction which subtends angle © from the ¢—axis (see Figure

3.1.1):
a Iu - (/] for all ti e (3.1.3
[ o (Iu u)](e'n) or quadratic u, (3.1.3)
where
- -2 -
ae = cos © ot + sin e on °

Equivalently, by (3.1.2),

2 —1
2 £ cos © = cos © + (£+ - £+) n+ sin © ,
necos ® + g aolne = E+ sin © (3.1.4)
and 2nsitne = n+ sin 6 .

Now, by the third of these identities,
either 2 n = n+ or stn e = O. (3.1.5)
Clearly, this is very limiting. With the first option, writing

C = cot 6,

a7



. (3,/},%/2)
6= N+ §+
T

/
AN
(3.9)

(}4 ) '1+)

((1+3,)/2,,/2)
tan 0 = ’l+/(£—|)

(172, 00 (1,9
tan0:=0

Figure 3.1.1

Stress Points

\/
A~

They are located at the midpoints of each edge and are applicable

only for tangential derivative sampling,

whose tangents are given here.
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the first two of the identities (3.1.4) become

2n(-1c = €-¢
(3.1.6)
and nec + ¢ = £+ 5
Eliminating C from (3.1.6),
= 22 _ .
2 (6, —€)(28-1) = £ ~&
this rearranges to
(6, —26) (¢, -26+1) = 0. (3.1.7)

Now by (3.1.5) and (3.1.6),

either 2n=mn_, tan o = cl=ny (¢, - €) and (3.1.7) holds

or sine = 0.
Hence either (taking the first option in (3.1.7))

(€n) = (€/2,n/2) }
and tan 6 = 'n+/£+

or (the second option)

(¢€,n) ( (€+ + 1)/2 , n+/2 ) ]
and tan 6 = ‘n+/(£+—1)

or (using (3.1.4) and the second option in (3.1.5))

tan © = 0
and (£,m) (1/2 ,0) . ]
So the three stress points found in Chapter 1 are the only points
in the triangle T satisfying (3.1.3) for any © (see FPigure
3.1.1); in particular there are no points (£,n) in any triangle
of any shape at which (3.1.3) holds for all ©, i.e. for the full
gradient. HH

Now, there are two reasons why this lemma is not
mathematically equivalent to the statement that there are no
points at which VRu estimates Vu to O(h%). There might exist new
triangulation configurations in which VRu is close to some member

~

I of S with sampling properties different from those of the



interpolant and there does exist a modification to our results
(see Section 3.4) in which it is sufficient merely that

(8, (Tu - = om?) (3.1.8)

u)](e.n)
for all quadratic u. We regard these possibilities as
inadequacies in the description (3.1.1) and will return to this
matter later (especially in Section 3.2).

We examine now a strong, though somewhat informal, alternative
justification for the "tangential derivative at midpoints”
sampling policy. Hitherto we have considered the success of the
sampling scheme only in terms which are open to direct
measurement: the optimal sampling location is specified (albeit
with the approximation properties of quadratics — i.e. Lemma 3.1.
- in mind) and the error there bounded or measured
experimentally. An altogether different approach is to specify an
»jdeal" error (zerol!) and then locate experimentally the sampling
points which yield this error.

To be specific, for each element edge we locate the "zero
point” - that point where the tangential component of V(Ru — u)
is gZero.. We note that there may well exist edges which do not
contain a zero point for the triangulation and unknown u under
congideration; in the table that follows we classify such points
under the heading "out of range”. (Incidentally, by Rolle's
Theorem, every edge does contain a =zero point for the
interpolant. ) on the other hand the function u, vhose
approximation we consider in the following examples, does not
have any inflections and so there can be no more than one zero
point on each edge.

Iet us denote the ratio of a zero point's distance from the

midpoint to the half-length of the edge by 4 (see Figure 3.1.2).
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Fi 3.1.2

A Zero Point

v is a vertex of the edge, M is the midpoint and Z is the zero

point. The ratio 4 is given by:

MZ
d-MV.
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We divide the range 0 € 4 < 1 into (twenty) smaller subintervals
and tabulate against d the number N of zero points found in each
interval, searching through the set of element edgesa. (We exclude
edges which link two boundary nodes.) We expect the distribution
N/d to be clustered around d=0 (zero points should tend to the
h:idpoints as h - 0) with a weaker grouping for non—
superconvergent meshes.

We define u by (1.6.2) and approximate it by (1.6.1) as usual,
taking (a) h = 1/6 and (b) h = 1/8 on the following regions:

(1) Q is the unit square; uniform triangulation as in
Figure 1.5.1. (Superconvergent.)

(2) Q is the unit square; criss—cross triangulation as in
Figure 2.4.1. (Nowhere superconvergent. )

(3) € is the "truncated" unit square, triangulated as in
Figure 3.1.3. (Superconvergence improves towards the
origin. Globally (I - Rul, o= or?’2) - the
derivation of this bound is closely related to Theorem
2.4. See also K¥i¥ek & Neittaanmiki (1984).)

our results are displayed in Table 3.1 and the above
predictions on the distribution of 4 readily confirmed. (Foxr
further examples see Levine, 1982.) We note that the distribution
is reasonably well clustered about the midpoints in case (1) and
in case (3) where the dominant error contributions come from a
small subregion of Q. Indeed, even in the total absence of
superconvergence - case (2) - the zero points show a marked
groupir_lg about the stress points: for the coarser mesh, 2zero
points of over half the element edges are within a distance of
less than 10% of the edge length from the midpoint. We note also

that for all three cases the grouping becomes tighter when the



>‘.(\/

Fiqure 3.1.3

The truncated square
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h = 1/6

! Ao

[ 1] (9] at 3 []

| ' | 1
(%) as cd te Out of
renge

N .

1/8

| b o O

a0 ol at a3 el as 'Y ar ae Out of
renge

e L

Table 3.1

Pistribution of zero points

Mesh (1) —~ see Figure 1.5.1.
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N
h = 1/6
“l
. | l ‘ ‘ ‘ ’ [0 o
) a1 atr %] e s . ar . ) te  Qut of
renge

N h

1/8

a [ ] [ %) a3 .4 [ 3] ad [ 34 (Y] a Lo Out Of

C renge

Table 3.1 (continued)

Mesh (2) — see Figure 2.4.1.
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1/6

renge

» s l }
e a %] e as as e % e . \m Out of

N.— h = 1/8

) a X 'Y} o as e ar ae 'Y e QOut of
range

Table 3.1 (continued)

Mesh (3) — see Figure 3.1.3.
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mesh is refined.

These . examples therefore lend strong weight to a policy of
se]:cting edge midpoints as stress sampling points, even when the
mesh is not superconvergent. FPor, on average and irrespective of
the value of |(I —R)ull"2 , the interpolant error is minimised by
such a procedure. What our examples demonstrate is that this

minimigation is gignificant.

3.2 SAMPLING BOTH COMPONENTS

As noted above, sgtress pointa for the full gradient do not
exist. Lemma 3.1, although not a formal proof, should be seen as
sufficient indication of this. However, against the once popular
cause of centroid stress points, it is worth taking the argument
further. The following "inability to approximate"” theorem links
gome ideas from the last section with remarks in Section 1.5 on
centroid results and the continuity of the approximation space S.
It is Dbased on the more general characterisation (3.1.8) for
stress points.

We start by introducing the notion of a "reasonable
triangulation"” with mesh parameter h. This is a member of a
series of mesh refinements such that the non—-degeneracy property
(2.6.2) holds, h is the longest element edge and the following
"limiting patch” property holds for all but at most o(h_2 ) of the
internal nodes. As h - 0 the number J of elements (TJ r J =
1,...,J) in the patch surrounding each node tends to some limit
(particular to that node) and the positions ((x

gJrEg
1,...,J) of the J nodes which define the patch can be expressed

), J =

as functions of h (see Figure 3.2.1).
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Fiqure 3.2.1

Notation for a patch of elements

If the patch has the limiting property then (x

.vJ) are functions

J
ofh, J=1,...,J and J is fixed for sufficiently small h. Note

that the path of nodes (zl,yl) - (zé,yz) ~eee™ (xd,yJ) - (:I,yl)

encloses the origin, once, moving strictly anti-clockwise.
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We expect all computer—generated meshes to be reasonable;
certainly all the triangulations of Chapter 2 - superconvergent
or otherwise - satisfy this property.

Let us consider the patch surrounding an internal node with the
limiting patch property. W.l.o0.g. we take the coordinates of that
node to be the (x,y)-origin, for all h. We then label the
surrounding nodes and elements as in Figure 3.2.1. Note that J
must be finite and that the average of J over the whole
triangulation tends to 6 (given by 2n/(the average internal angle
in the triangulation)). We note further that, as a particular
congequence of (2.6.2) and the bound on J, for every element T P

in a patch with the limiting property,

) > ch2 for some fixed ¢ > O,

meas (T N

J
where h _ is the maximum edge length in the patch.

The result that follows is asymptotic in nature; on coarse
meshes we resort to the numerical indications of Section 1.6.
Note also that the proof fills the gap in Lemma 3.1 due to the
weakness of (3.1.1), and that the methods used here could be
applied to prove a stronger version of that lemma in which stress
points would be characterised by (3.1.8).

Theoxrem 3.2 Let the set of elements in a reasonable

triangulation of Q be {Tk , k=1,...,K}. Let Gk be the centroid:
and hk be the greatest edge length of each Tk . Then there exists
a quadratic u on Q such that, for all members ¢ of the space S of
piecewise linears,

| - o o(nZ) (3.2.1)
for at least ch_2 elements, ¢ > O.

Proof We suppose the result to be false (and derive a

contradiction).



Then for all quadratic u, there exists ¢ = ¢(u) € S for which
|9 - eu)]g | = o(nZ) (3.2.2)
in all but at most o(h—z) elemeni:s. So given sufficiently small
h, there must exist (many times over) a pair of neighbouring
internal nodes, Dboth enclosed by a patch of elements with the
limiting property, such that (3.2.2) holds in every element in
the pair of patches when u e (x2,zy,y>}. Further, if we set
oAz + pzy + vi®) = a(a®) + po(au) + vey®)
for all A,u,v then (3.2.2) must hold in every element in the pair
of patches for all quadratic u.

Let us concentrate on one of the patches. We use the notation
of PFigure 3.2.1, (w.l.0.g.) rotating the axes so that the node
central to the second patch is on the x-axis (e.g. see Figure
3.2.3(b) below). We set

u = :.cz on 1.
Then by hypothesis there exists ¢ = ¢(u) € S such that
[V6l, = [Vulg + O(nY

J J
in each of the J elements of the patch. So

= 2 T 2
[V¢]TJ = (3(.1-1 +:cJ+1) »,0) + O(hJ) . (3.2.3)
J=1,...,J. (The notations "I+ and & are equivalent, for all

Je)
Now ¢ is continuous and piece-wise linear; if we impose the

continuity at the origin we can write

[¢]TJ = G+BJI+YJU ’
J=1,...,J. Then by (3.2.3)
- 2 2
BJ = 3(.'1:J+:1:J+1) + O(hd)
o 2
and YJ = O(hd).
So
[¢] = a + g(:z: + )z + O(h3)
TJ 3"y J+1 J ’
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Jj=1,...,J. Bence by continuity of ¢ at the nodes (:nd,yj)
3. _ 3
(:z:J+:z:J+1)mJ + O(hJ) = (:rJ_1+a:J)a:J + o(hd—l) 7
J=1,...,J. Therefore (we recall that h = nmd (hj))
_ 3
:cJ(a:JH —:nJ_I) = O(h*) ¥ (3.2.4)

J=1,...,J.
We use (3.2.4) to set up some contradictions. We start by

making a hypothesis: that for some ¢ > 0 and all j = 1,...,J,
|x

J

(In other words, there is no nearly vertical edge connected to

| > ech, . (3.2.5)

the origin.) Then (3.2.4) implies that

3 2
|md+1 - xj—.!' - O(h*)/|x\1| . O(h*) ’ (3.2.6)
J=1,...,J. Now either :cla:z > 0 oxr x1x2 < 0 (recall (3.2.5)). In
the first case, (3.2.5) and (3.2.6) imply that ""'1""""'.1 are all
of the same sign; in the second case wi,...,a:J must be of

alternating signs and J therefore even. Hence the ordered path of
nodes (:rl,yl) - (:cz,yz) ~.ea= (.'z:J,yJ) - (zi,yl) crosses the y—
axis either not at all or more than twice (in fact: J times,
where J 2 4). Both these deducfions lead to a geometric
contradiction with the notion of a patch of elements (see Figure
3.2.2); we deduce that hypothesis (3.2.5) is false.

We have shown that at least one of the nocies is distance o(h *)
from the y—axis; w.l.0.g let this be the first in our numbering:

T = o(h*).

1

Now, the measure of element T 1 is given by

2 meas (T1) = :nlyz - m2y1 :
as already noted, this quantity is greater than o(h2). But
2
a:lyz = o(h,) and y1 = O0(h,).
Therefore

|.1:2| > o(h,).
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(x" Ly‘k) y/\

(b) (xl y,)
(x3,Y,) —’M
N\
~A 2
(13 )yg)

Possibilities under the assumption that (3.2.5) holds

(a) a:l and x, have the same sign. Then by (3.2.6) all a:J have

the same sign and the elements T, fail to enclose the origin.

]
(b) x, and z, have different signs. By (3.2.6) all x, and =

1 J J+2
have the same sign; therefore in particular J is even. It must be
greater than 2. So as in the diagram, the path between nodes
crosses the y—axis at least four times. The obvious requirement

(recall Figure 3.2.1) that this path should enclose the origin

"once, moving strictly anti—clockwise™ is not met.
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Hence, using (3.2.4) , |x

2, .
5 — &, =omy), i.e.

33 = o(h,).

Continuing with a simple induction process,

|z

J

and .1."1 = o(n,) for all odd J .

So in particular J must be even. Further (see Figure 3.2.3(a)) if

| > o(h.) for all even J ]

J > 4 we arrive at another geometric contradiction. Therefore

J = 4
= 2 3.2.7
31' :a - o(h*) ( 3 . )
2
and |a:2|, |x4| > o(h,) .

Now, we recall that there exists a second patch of elements,
with the limiting property, partly overlapping the first patch

{T

1,...,7‘4} and cent-red about a node on the x-axis. W.l.o.g.we

can take this node to be (.-rz,yz). Purther (3.2.2) holds at every
centroid in this patch. Therefore by the above argument, the
second patch also consists of four elements. (See Figure
3.2.3(b): the four nodes which define the boundary of the patch
are at (0,0), (x,,,), (=,V,) and (z,,y;).) Again using our
earlier reasoning, two of the four nodes which define the patch
have x-coordinates which differ from a:z by o(h *). But these two
coordinates must be xr Z and .1:3 and so (3.2.7) is contradicted:

1
|a:1 - a:zl = o(h,) and yet |a:1 - a.-2| > o(h,).
Thus we are forced to the conclusion that our central
supposition is false; the theorem is proved. i
Let us now interpret the statement of the theorem: for any
(reasonable) triangulation and any method of approximation
(whatsoever) by members of S, a very large number of centroids

fail to be full derivative stress points for the estimation of

even the simplest of gradients. We note that the centroid of a
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(a-) (2, %)

x&
NM
<
N
KWV

(x5 ,ys)

I

(b)

Piqure 3.2.3

Poggibilities, given that (3.2.5) does not hold

(a) J > 6. The presence of a third node close to the y—axis,

followed by another away from the axis, contradicts the “once,
moving strictly anti-clockwise™ requirement of Pigure 3.2.1.

(b) J = 4. By consideration of a second patch of elements,
namely that centred about (:cz,yz), we reach a contradiction of

(3.2.7).
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triangle cannot be associated with any naturally preferred
single direction (unlike points on element edges - for example
these can be naturally associated with either the normal or the
tangent). So centroids are not stress points for single stress
components either. While we are on the subject of natural choice,
if a full derivative stress point exists anywhere else in a
triangle (i.e. not at the centroid) then there must exist at
least three such points. But because approximating gradients are
constant in the triangle, these points must lie within a distance
o(hz) of each other just to satisfy the generalised requirement
(3.1.8). If their locations are to be naturally chosen this then
means that all three points lie within a distance O(hz) of +the
centroid. So, almost exactly as in the theorem, none of the
points is a full derivative stress point after all. We
conclude instead that there is no such thing as a full derivative
stress point. Yet a method for obtaining both components of Vu
(at special points or, ideally, anywhere) is clearly desir-able.
We need a stronger "post-processor" than point sampling; such a
technique is commonly called “"recovery". We will start in Section
3.3 with recovery methods which apply to uniform (banded)
triangulations.

We note finally that Theorem 3.2 is of greater generality than
the outline of superconvergence presented in Table 1.3: it is
independent of the role of the intexpolant and hence of the
notion of superconvergent triangulations. It may well be possible
that with different modes of samooth triangulation - globally
curved <criss-cross meshes for example - there still exist
functions Ty ¢ S which satisfy

2

(I — R)ull'n € ch |u|3’n
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and whose properties can thus be substituted for those of the
interpolant in the construction of sampling/recovery schemes. But
we do not expect to simplify our task with such a procedure; in
particular we have proved that no choice of triangulation and ;
will allow us +to sample, to superconvergent accuracy, both

components of the gradient at a single point.

3.3 RECOVERY OF BOTH COMPONENTS

We have seen that no method of approximation by members of the
space S - and in particular no Pinite Element projection or
interpolant into S, on any mesh — is suitable for superconvergent
sampling of the full gradient. However theré exists a very
straightforward method for "recovering" from VIu a
superconvergent estimate of Vu at each stress point (in the
interior of a band): we simply average VIu between the two
neighbouring elements. We say that this is a "local" recovery
scheme - it is the (bounded) weighted average of the values of
VIu in a bounded number of neighbouring elements. From this we
will construct later other local schemes for recovery at any
point in any superconvergent triangulation.

Now, as in in derivations of (1.4.8) and (1.5.10), a
sufficient condition for a local scheme to recover Vu from VIu to
superconvergent accuracy is that there should be no error when u
is quadratic. Also, as noted in Section 3.1, any local scheme
which recovers to superconvergent accuracy from VIu will have the
same effect on VRu. So, given a superconvergent triangulation,
sufficient conditions for a scheme to lead to superconvergence

are gimply that it is local (this will cbviously apply to all the
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schemes in +this and the next section) and that it recovers
exactly the gradients of all quadratics from the gradients of
their interpolants.

Iet A Dbe a band in a superconvergent triangulation of some
region . Let us denote by Ak , k=1,.. "KA the element pairs
associated with one of the three mesh directions of B. (We only
consider uniformly triangulated bands in this section; therefore
the Ak are parallelograms.) As in Section 1.5, we call the
internal stress point and two constituent triangles of each pair
Mk and Tk s We write ak for the local recovery operator at Mk
introduced abowve:

a6 = ([, +I[V], )2, o¢es. (3.3.1)
k+ k-
Pinally, for fixed k < KA , we denote by the subscripts Tk and

"Nik the components of any gradient tangential and normal to the

edge on which the stress point Mk lies (example: a'I‘;ku)‘

Now, let wus recall (1.5.5): if ¢ € S then the tangential

component VT.RQ of V¢ is a constant throughout A So this

k.
component of a recovered gradient is identical to the sampled

derivative and

Iu = [V, ,ul, (3.3.2)

k
for all quadratics u on Ak. (Note that, unlike the result (3.3.3)

a'I‘; k

below for the normal component, (3.3.2) is independent of the
shape of the quadrilateral Ak.) Therefore the following lemma is
gufficient to prove superconvergence of the £full recovered
gradient, i.e. that

. [511::1 |akR" - [vuluklz ]1/2 N °"2""3,n
Lemma 3.3 Let u be quadratic on Ak for some k < KA. Then

aN;kIu = [VN,-ku]Mk .

Proof We reintroduce the transformation (x,y) - (£,n) of Lemma

(3.3.3)
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2.2; we denote the recovery error by the functional

aIu] + aIu] ]_ Qg]
an Tk+ an Tk— anl(1/2,0)

Then (compare with (2.2.4))

F(u) = é[

Fe?) = (&2 - g/, + (&2 - ey
F(en) = (¢, +&_—-1)/2
F(n®) = (n, +n)/2.

But A is a parallelogram; the result now follows directly from
(2.2.5). HHF

For an indication of the numerical performance of the recovery
scheme, we sgolve (1.6.1) with (1.6.2) on the wusual uniformly
triangulated unit square Q = (0,1)2; we denote by Emtd the
difference between the recovered and true (full) gradients, root-—

mean—square averaged over all stress points internal to Q. We

obtain
2
Em'l.d = 3,.0h .
Since
E x 1.4 h2 (3.3.4)
tgt

the (averaged) normal component of the error is given by

2 2
Emm = (3.0 1.4°) h

2 » 2.71%. (3.3.5)

So the recovery process (3.3.1) for the normal component can
regult in a noticeably greater error than sampling for the
tangential component; we will discuss later an approach by which
we may be able to avoid this significant loss of accuracy.

We turn now to recovery schemes for stress points which are
not internal to their band (see also Section 3.5). We describe
the schemes diagramatically: for an example see the
representation of (3.3.1) in Pigure 3.3.1.

The scheme shown in Figure 3.3.2(a) is suitable for a recovery

point on 4Q; we can prove this by a simple extension of Lemma
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Figure 3.3.1

Graphical representation of the recovery scheme (3.3.1)

The weights in each element and the "recovery point” ( the
location at which the true gradient is estimated by the recovered

gradient, to superconvergent accuracy) are indicated.
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Figure 3.3.2
Recovery point on_afi
(a) A scheme which uses values of VRu in three elements.

(b) The scheme is decompogsed into recoveries at two other

streass points and reassembled by linear extrapolation.
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3.3. Less formally, we regard the scheme as the combination of
recoveries at two other stress points, using the O(hz) accurate
linear interpolation
Vw(z + 62) = 2Vw(z) — Vw(z - 6z) .

(See Figure 3.3.2(b); note that the above interpolation scheme is
exact when » is quadratic.) By an identical argument, the scheme
in Pigure 3.3.3(a) also leads to superconvergence. Indeed any
linear combination of the two schemes (such that the sum of
weights is equal to one) will do this — see Figure 3.3.3(b) for
an example.

on an internal band boundary, we can use any of the above
aschemes for o0, taking values of VRu from either side of the
boundary. Alternatively we can combine schemes across the
boundary, as in Figure 3.3.4, We can, however, find simpler
schemes than this! For, so long as the sum of weights is equal to
one, recovery is exact for all linear u (both components). We
then require that (3.3.3) holds for all quadratic u; this gives
us three additional conditions on the set of weights (i.e. a
total of four). So no more than four elements are strictly
necessary in the construction of a local recovery scheme for the
normal component of the gradient.

Iet us take as an example the band boundaries of the octagon
triangulated in Figure 2.3.3., We work in the wusual (&,n)
coordinate system and select the four elements shown in Figure
3.3.5(a), with weights wl,....u4 as marked. ‘Then the values in
each triangle of dIu/én (=§Nlu) for u e {ez,en,nzj are as shown

in FPigure 3.3.5(b) and the conditions on the weights are thus
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Fiqure 3.3.3

Alternatives for recovery on aQ

(a) The other three—element scheme (c.f. Figure 3.3.2(a)).
(b) A natural - though not necessarily useful - combination of

the two: this is a five—element scheme.
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Fiqure 3.3.4

A cumbersome ten—element scheme for use on a band boundary

Note that (3.3.1) cannot be used at this recovery point:

not (close to) a parallelogram.
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(o,1) (1,1)

(0)—1/2) “)"’/Z)
1 ! 3
1237
? 9P -t L L
1292972
X< >3
0;0; -
O;l;-L

Pigure 3.3.5

Recovery for the band boundaries of Fiqure 2.3.3

(a) Weights in four elements. Note that — for the purposes

of as~ymptotic accuracy - the choice of elements is arbitrary.

2.

(b) vValues in each element of an

1e?) ; %;r(en) ; %;r(nz) .
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m1+m2+m3+u4=1 5
(w, - w )/2 = 0 ,
1 2 +(3.3.6)
(wl + w, + 2m4)/2 = 1/2
and (30.\1 + mz - m3 - w4)/2 = 0 ;
therefore
w1 = "'2 = 1/6 ]
and m3 = w, = 1/3

Note that, as with the other schemes proposed so far, this one
preserves the property (3.3.2):

a,Iu = [%'é (1/2,0) FOF all quadratic u.
We could however employ a different acheme (e.g. direct sampling)
for the tangential derivative: indeed it is conceivable that with
some recovery schemes we might have to.

Any of the sachemes in Pigures 3.3.2 — 3.3.4 (or any local
scheme satisfying (3.3.2) and (3.3.3)) can be used equally well
for recovery points internal to a band. We are thus always faced
with a wide choice when constructing a recovery algorithm.

We consider next recovery at points other than stress points.
‘our first remark is that for the recovery of any component of the
gradient at any point, we can construct a system of equations
similar to (3.3.6) linking the appropriate weights in four
elements (and occasionally less). In particular, for both
camponents at the centroid of an element clear of any band
boundaries, the scheme shown in Figure 3.3.6(a) leads to
superconvergence., As in Pigure 3.3.2(b), we can examine the
centroid scheme informally as a linear interpolation of the full
gradient between the three stress points for that element (see
Figure (3.3.6(Db)):

_ 1.3 2
[Vulg = 3 Epy (W], + O(M%) .

J
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(b) %%
(176
) :

Figure 3.3.6

Scheme for recovery of the full gradient at the centroid

(a) Weights in the four elements.

(b) The scheme is decomposed into recoveries at three stress

points and reassembled by interpolation (i.e. averaging).
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Note that this attitude leads us to the scheme given in FPigure
3.3.7 for recovery at the centroid of an element on 90 (or a band
boundary).

The numerical behaviour of the centroid scheme is
satisfactory. Let us denote by Erec the root-mean—-square averaged
error in the full recovered gradient at centroids of elements.
(We exclude from this average those elements which have an edge
tangential to an). Solving, as usual, (1.6.1) with u given by

(1.6.2), we obtain

E x 3,0 h2 F
rec
we recall
2
Emta x 3,.0h

and the centroid sampling result from Chapter 1:
Ecen + = 1.2h.

Interpolation between stress points in each element gives us a
piece—wise 1linear function which, though discontinuous between
elements, estimates the true gradient to O(hz ) everywhere. To
obtain a continuous approximation we devise a nodal recovery
scheme (see Pigure 3.3.8) and interpolate in the interior of each
element. (The nodal scheme must be modified when the recovery
point is on 30 and there are several ways of doing this, two of
which are illustrated in Figure 3.3.9.)

We end this section with the remark that interpolation between
recovery points is essentially an intuitive attitude. It is
however always a simple matter to prove that a scheme thus
constructed does lead to superconvergence: we merely verify that

dIu - Vu

vanishes at all required points for all quadratic u.
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I

Pigure 3.3.7
Recovery at the centroid of a boundary element

This scheme is derived from Pigures 3.3.6 and 3.3.2.
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DO =y

Figure 3.3.8

Recovery of the full gradient at the nodes of the triangulation

This natural six-point scheme for a node internal to a band can
be used to generate a continuous, superconvergent piece-wise
linear approximation to Vu. (It has also been suggested by K¥iZek

and Neittaanmiki (1984).)
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Fiqure 3.3.9

Recovery at boundary nodes

These two examples of schemes for nodes on dR (or a band
boundary) are intuitive combinations by linear interpolation of
previous schemes; as already noted they can be checked formally
by adapting Lemma 3.3. A numerical example of the use of (b) is

given in Section 3.5.
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3.4 RECOVERY ON DISTORTED MESHES

In the 1last section we discussed recovery schemes for
triangulationz which are banded but otherwise uniform. We
consider here the effect of mesh distortions on the recovery
process, starting with recovery at stress points internal to a
band. As before, our concern is with the normal component of
gradient; the tangential component can always be sampled, to
superconvergent accuracy, irrespective of the mesh geometry
(recall (3.3.2) and the discussion on Table 2.1).

Let Ak be a pair of neighbouring triangles Tk n internal to a

band and let Mk. be the midpoint of the shared element edge. We

seek a recovery operator for estimation of the normal

aN,' k

derivative [VN; ku ] Mk .

(i.e. the normal derivative in the two constituent

We show first that no weighted average of

{v

N’_kIu]

Tkt

triangles Tkt) can match exactly the gradients of quadratics

(recall (3.3.3)) unless A, is a parallelogram — i.e. the mesh is

k
locally undistorted.
A8 in previous sections we will simplify the discussion by

dropping the X subgcripts and adopting the transformation (=,y)

- (¢,n) of Lemma 2.2, Let the weights in '1‘:t be w, . Then for
(3.3.3) to hold we require (recall (2.2.4))

m+ + 0w = 1 (u linear),

w (2 - e)m, + w(E-t)m = 0  (u=¢D),

w e o+t owg o= 1/2 (u = &n)
and w.n, + wn_ = 0 (u = 'nz).

The last two equations imply that
&n. - €&€n # 0

and w, = I J/2(&En_ - &)
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substitution into the first two yields

n(26_ - 1) = n_ (2, - 1)

2 2 ; 2 2
and n ((2&_ - )" - 1) = n_((2¢, - 1) - 1)
respectively, whence

n, = n_

So, since :tnt > 0,

+¢ = 1

n + e

++n_=o and 3

(this is (2.2.5)) and A is indeed a parallelogram.

Now, as noted in the last section, if we are prepared to
combine values of aN;kIu from a sufficient number of elements
(four) then a set of weights can be found such that (3.3.3) is
gatisfied. Whether such a procedure is worthwhile is an open
question, for (3.3.3) is not in fact necessary to
superconvergence. We will now prove that the acheme (3.3.1), in

which [Vu]M is recovered from [VIu]T with weights

k kt
w+ = w = 1/2,

estimates the gradients of quadratics — and hence of any u « H3 -
to full superconvergent accuracy (recall (3.1.8)).
Theorem 3.4 Let Ak be a pair of neighbouring elements Tk:t in
the triangulation of a band 8, such that

diam (Ak) = hk
and mﬁ (hk) € ch
for some ¢ > 0. Suppose that (2.5.1) and (2.6.2) are satisfied.
Iet u e H3 (Ak), let Iu € S interpolate u there and let @ 1k be

the standard recovery operator for the normal component at Mk

(the midpoint of the edge common to 'I‘k t):
aN;kd: = ( [VN;ktb].,. + [vN;k¢]T a2 , $ & S.
k+ k—
Then
a. . (Iu) - [V. .ul < ch?h ! |lul (3.4.1)
Nk Nsk Mk k 3,Ak ¢ *T
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Proof For convenience we drop the "% subscript, the exception
being hk which we must distinguish from h. As Dbefore, we can
simplify our working with a transformation to a different
coordinate system. This time we choose an (affine) mapping (x,y)
- (&) = ( Ek.nk) wh:i.chl does not rescale any lengths. The
vertices common +to the two elements 'I‘t are mapped to (0,0) and

(£1,0), the others to (¢ ) € 1‘*; see Figure 3.4.1., Note that

AL

IEII, |€:|:| and |'n't| are all bounded above by chk; by (2.6.2)

vmeas('rt) and hence l'ntl are bounded below by ch, (¢ > 0)., We

k
express (2.5.1) in the following form:

lg, + € - ¢, < xh
M 1 ](3.4.2-)
and |n+ +n | <€ kh
where
kK < ch. " (3.4.3)

(The k notation and perhaps bizzare form (3.4.2) are used for
compatibilty with the more formal treatment of mesh distortions

in Chapter 4.) The recovery error which we wish to bound is giwven

by
_ Af [alu aLu _ [ou
Fuw) = 2[ an ]7‘ * on ]7‘_] [an](£1/2.0) ’
Now,
if u = £2 in A then Iu = £, + n(£> - in T,;
if u = ¢ in en Iu = & + n(é, — £,€6,)/n, in T;
ifu=£‘ninAthenIu=nEtinTt;
i _ .2 . = S
ifu=mn inA then Iu=mm, inT, . (3.4.4)
So
2. 2 _ 2 _ :
F(£7) = (€, - €.6)/2n, + (& - €€/
F(en) = (6, + &_ - €)/2
2
F(n') = (n_+mn))/2.

(Compare this with Lemma 3.3; there 51 = 1.) Now (3.4.2) implies

immediately that
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Fiqure 3.4.1

The coordinate transformation for Lemma 3.4

The coordinate system (¢,n) is a rotation and translation of

(x,y). The recovery point M is at (51/2,0).
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|F(en)| < ckh  and  |F(n°)| < cxh .
FPurther, on rearranging,
IF(E2)1 = (e, + € - €0, - €)/2m,
+ (n+ + 'n+)€_(£_ = £1)/2'n+71_ $
by (3.4.2) and the upper and lower bounds on the {'s and n's
\F(e%)| < oxn
too.

These bounds lead straight to (3.4.1) for quadratic u, but not
for general u e H'. To obtain the full result we apply the
lemmas S.E. and B.H. of Section 1.2; this must be done with some
care. (Recall that the functional F does not vanish for all
quadratic u.)

We use a projection method. Let I be the projection onto the

apan of {52,;7,112} defined on W-(A) by

fwo= 2meas(A)[ &ff _+2"‘” . 2” —

A a¢ a an’
(3.4.5)
We write
F(u) = F(llu) + F(u — Nu)
and bound the two terms separately. First,
\F(mu)| < m[ e |[] ou
a ag?
+ 1rcemi || fu
a atan
2
+ e[ = ]
< c(meas(A))".cxn.(meas(A))"z_ Ui, a
< ckhh ® |u| . (3.4.6)

k 2,A

Now when u is linear, both F(u) and Ilu vanish; when u belongs to
the span of {€2,¥7,n2}, u is equal to Mu. So for all quadratic u,

F(u — Mu) = 0. Further by S.E. and (3.4.6), we have
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|F(u = Mw)| <€ |F(w)| + |F(Iu)|

-2 -1
< chk ||u||3’A + ckhh

. lul

2,A

2 3 .. —4
< cf h *+ Khh )hk llulls,A .

We can now apply B.H. (Note that since h, < diam(l) = ¢, we can

k
drop the ni factor inside the brackets!)

\F(u - Tu)| < o ni + Kh )n;l lul

3,A
Hence by (3.4.6) and (3.4.3)
2 -1
IF(u)f <€ ¢c( hk + kh )hk ||u||3'A (3.4.7)
2. -1
€ ch x ||u||3'll
as desired, for any u € H3 (3). #i

We remarked before that any scheme which recovers exactly from
VIu leads to superconvergence for VRu. With more generality: any
scheme which satisfies (3.4.1) above hasg this property. (See also
Section 4.2.) We note also that O(hz) convergence is not apparent
in (3.4.1) until - as on previous occasions (e.g. Theorem 1.5) —
we average over all recovery points in .

We have shown that smooth mesh distortions can be ignored when
schemes are constructed for recovery at stress points in the
interior of a band - we regard this as one of our more
significant findings. By a similar (though slightly lengthier)
argument the same applies to stress points on band boundaries or
o0 and hence to any recovery points in any region 2 with a
superconvergent triangulation.

We conclude our treatment of local recovery with a simple
numerical example. We recall the distortion of the unit square,
illustrated in Figure 2.5.2. Denoting as usual the averaged
errors in the solution of (1.6.1),(1.6.2) by Et

gt Tmia ™ Fre

for midpoint (tangential) sampling, midpoint (full) recovery and

C

centroid recovery, we obtain
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E = 1.2 h2,

tgt
2
Eﬁtd > 3.2 h
2
and E = 3,.0h .
rec

(Hexre h is the mesh spacing on the xr-axis.) For comparison,

recall that on the undistorted square,

2

E e = 14N,

2

E g > 3.0

2

and E = 3.0 h".
rec

So, as in Section 2.5, the numerical effect of a realistic mesh

distortion is seen to be negligible.

3.5 GALERKIN RECOVERY

We conclude this chapter with a brief introduction to a
different, non-local approach to recovery:; it was originally
proposed by Wheeler (1973) for use with the heat equation and
boundary fluxes. We recall (1.3.2): it is a special case of
Green's Theorem

( Vu , Vo ) = (f, v )n + <u , vo> , (3.5.1)

Q v an

where «<-,-> is the inner product in Lz(an) and uv is the

an
outward normal derivative on the Dirichlet boundary a2. Note that
(3.5.1) holds for any v  H'(R) and is not restricted to H,. By
analogy, let us define an approximation y € S to uv thus:

( VRu , Vo )n = (f., )n oy b (3.5.2)
for all ¢ € S. (Note that we have only defined — and are only
interested in — valueg of y on 9Q.)

According to Douglas, Dupont and Wheeler (1974), [y]an is a

superconvergent approximation to uV, provided that the elements

are undistorted rectangles and their approximation is of a higher
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order than 1linear. (Their proof cannot be applied to bilinear
elements.) We give below an analysis, for a superconvergent mesh
of triangular elements, which avoids Dboth restrictions. (A
similar result holds for bilinears.) Following that we give an
example of the application of (3.5.2.). Incidentally, our result
derives superconvergence for the product
<Y, ¢z > an/h

(defined below and obtained by (3.5.7)), as opposed to the
computationally less accessible quantity (y] aq’

We must quote here a pointwise version of (2.1.1):

V(I -Ru Iy oo < cl[u]az , (3.5.3)
where

H = ma.:z:k‘K (dtam (Tk))
and

Cl[u] = ¢ ”u”3+e,m,n

for some ¢ > 0 and fixed € > 0. We will discuss this Dbound in
Chapter S.

Iet I be a pair of adjacent element edges on 90. If the node Z
internal to T is on a band boundary then superconvergence of ¥
fails there; the best we can do is to absorb the non-
superconvergent error into a superconvergent average along af (in
the manner of Theorem 2.4) or resort to the recovery techniques
of Section 3.3. If on the other hand this node is a vertex of 3Q
then uV is given <there anyway (by the Dirichlet boundary
conditions on u). So we can assume here that neither of these
circumstances apply.

We define tbz € S to have the values 1 at Z and zero at all
other nodes (see Figure 3.5.1) and set L_ ¢z = h (€H). Finally,

we assume that the elements in supp d’z satisfy the non-degeneracy
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Piqure 3.5.1
The support of the boundary basis function Qz
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condition (2.6.2); this implies that H € ch and so

P . (3.5.4)

Iemma 3.5 Under the above definitions,
|l <y, o> /m ~ [wl, | < cCI[u]HZ X (3.5.5)

Proof By (3.5.1) and (3.5.2),

I<y_uv'¢z>I‘|

= | (VW Ru-w , ¥, ) |
€ | (VWI-Ru, v, )_ |
R (3.5.6)
L (V(Tu =), W, )0 | .
Now by the H8lder inequality, (3.5.3) and (3.5.4),
| ( V(I -Ru, %, ) |

| &l

< 1 I=-Rul, oa z'1,1,0

< cCI[u]HZh ;
Also, by (3.5.4) and S.E.,
| (VeI - w) , Vo, ) |

< ch | (Iu — u) |
1,m, supp ¢z

< e vl o, supp ¢,

But this product vanishes if the mesh is uniform and u quadratic

on supp ¢z. (This is easily verified, in the manner of Lemma 2.2,

etc.) Therefore by B.H.

I ( V(Iu —u) , Vo, ). |

3
< ch u
l |3.m.suPP "z

< oc,[u)En ;
in the event of a smooth local distortion we apply the techniques
of Theorem 3.4 and obtain the same result. So, substituting back

into (3.5.6),

l‘y-uvr¢z>r

Finally by S.E. and B.H.,

| < cCI[u]th i
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l<uV—[uV]Z'¢Z>rl

2
D NPT L
< cC I[u]HZ h
and so
| <y =(ul, , &,> I/n < cCI[u]HZ
as required. i

We have shown that the Galerkin recovery method does indeed
yield a superconvergent approximation to uv; however we do not
recommend its use. Our main criticism is its inflexibility: it is
only suitable for estimation of a single stress component (in the
noxrmal direction) at a node on a smooth boundary segment. It
fails altogether at band boundaries and cannot be adapted to
them. Also it is less simple to program than the schemes of
Section 3.3. On the other hand we have not yet given any reason
to suspect that it is generally less accurate than the more
direct methods.

We turn once more to a numerical tesf, solving (1.6.1),
(1.6.2) on the usual uniformly triangulated unit square Q =
[0,1]2. Por each node Z on the boundary segment &x = 0, we
estimate [uv] by

( (VRu , V&, )0 — (. ¢;)q)/n (3.5.7)
(xecall (3.5.5) and (3.5.2)). We denote the mean-square error in
this approximation — over all the nodes on xr = 0 excepting those

at the corners (0,0) and (0,1) — by Ega For comparison we use

1
the four-element boundary node recovery scheme of Pigure
3.3.9(b), which in effect reduces on this triangulation to a
three—point linear combination of values of Ru (see Figure
3.5.2); we denote the mean—square exror associated with this

method by E 16*
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We obtain the following rates of convergence:

E x 2.4 h2
gal
2
and E o x 0.,9h ;

this experiment therefore serves to confirm that there is no

strong reason to favour the use of Galerkin recovery methods.
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Fiqure 3.5.2

Direct recovery of u at a boundary node

on this wundistorted mesh, the scheme of Figure 3.3.9(b)

approximates the component of [Vu] z directed along QZ. It reduces
to the following estimate:
( 3[(Ru), — 4[Rul, + [Ru]y )/2h

where h is the distance PQ (=ZpP).
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4.1 THE TRIANGULATION

In Chapter 2 we introduced, "a mesh with the six element
property which is smoothly distorted from uniformity.” Our first
goal in this chapter is a formal definition of that mesh and the
derivation of its essential properties.

Let the problem domain Q be a bounded open region with the
strong cone property and let the problem and the unknown u be
defined in terms of rectangular Cartesian coordinates (x,y) on Q.
Let the discretisation parameter h, as before, be a Ilength
typical of the required nodal separation.

We partition Q into "bands": open regions with the strong cone
property which do not intersect; their boundaries may depend -
smoothly - on the value of h but their number may not. We will
triangulate each band separately, subject to the requirements
below.

Let B be one of the bands. Let (X,Y) = (X5:¥,) be a  second
coordinate system on g and its neighbourhood, such that (see
Figure 4.1.1 for an example)

the (X,Y)—-slope of every segment of the 1
boundary 98 is 1 if the segment is internal
to 0 and either 0, 1 or o for segments on
l(4.1.1)
the external boundary 9%; the X— and Y-

coordinates of each vertex are integer

multiples of h.
We form a grid on the closure ﬁc of B by placing nodes at all
the points
c

(keh,k,h) € g°,

where kx and kA are integers. We triangulate the region in the

Y
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Pigure 4.1.1

(X,Y)-representation of a band

The horizontal and vertical boundary segments must lie on an

external boundary (i.e. on 2Q); other segments may but need not.
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(X,Y)-plane by means of horizontals, verticals and diagonals of
slope +1 between the grid points and then in the (x,y)-plane with
straight lines between these points, topologically corresponding
to the (X,Y)-links. (See Figure 4.1.2.) When we refer to
valements” we will usually mean the (non—curved) triangles in the
(x,y)-plane. (As in Chapter 2, members of the approximation space
S are piecewise linear with respect to the (x,y)— coordinates and
elements. They can be piecewise linear in the (X,Y)-plane only if
the triangulation is 1locally uniform.) We call the union of
elements in this band Bh and the union over all bands nh
Although th and 98 do not in general coincide the former is a
good approximation to the latter in the sense that all the nodes
on aﬁh also lie on 38. (This follows immediately from (4.1.1).)
Now, regarding the rectangular coordinates (x,y) as functions
of (X,Y) and if necessary of h, we require
@ e [, )? (4.1.2)
(for some € > 0, for all h) and
ivei? + jwi? < ¢ la(z, )/, )] (4.1.3)
throughout pB. Given the three above conditions on the "mesh
functions"” (X,Y) and (4.1.4) below (a compatibility condition
between the bands), the approximation space S is well defined and
all +the properties of the triangulation that we will require can
be derived.
The final condition on the triangulation is that
the 1locations of nodes are consistent
}(4.1.4)
across each interband boundary.
FPor an alternative, more formal approach, we use a single pair

(X,Y) of mesh functions over the entire triangulation of Q.

Viewing (x,y) as functions of (X,Y) (and of h) we then locate
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Pigure 4.1.2
The global transformation (X,Y) - (x,y)
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band boundaries as lines of discontinuity in the derivatives of x
and y. We require (4.1.1), (4.1.2) and (4.1.3) to hold for each
band as before and (=,y) to be continuous throughout; (4.1.4) is
now a consequence of that continuity. When reading this chapter,
either approach to bands may be adopted; the statements and
proofs of superconvergence apply equally well to both.

We obtain smoothness properties for the mesh from (4.1.2). Let
the triangulation of a band consist of elements Tk s k=1,...,K

with diameters h Then for all k

k.
’dtam ('rk) = h € ¢ |(.-:,y)|1’,rk < eCh, (4.1.5)
where
€q = Il(m,v)ll2’2+é'n o .
(Note that norms of coordinate functions such as =, y and - as

above — the vector field (x,y) are with respect to (X,Y) and over

the (X,Y)-regions which transform to the elements T, . All other

k
noms are with respect to the Cartesian coordinates (x,y) and
over regions described in the (x,y)-plane.)

To prove (4.1.5), we consider a single element 'I‘k . Let Nk.o =
(xk ’ Yk)ande1=(xk+h . Yk)be'the nodes with the same Y-
coordinate (see Figure 4.1.3); let Nkz be the third node (either
( xk . Yk-h ) oxr ( Xk+h R Yk+h )). The x—coordinate difference

between Nko and N, is

k1
by the lemmas S.E. and B.H. this is bounded by
c |x .
I lI'Tk

The y—-coordinate difference is bounded similarly and so the

distance Dbetween N and Nk

X0 is bounded thus (using (4.1.2) and

1
S.E.):
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Fiqure 4.1.3

Labelling an element

Intlu.sexampleNsz.sat(xk+h,Yk+h).
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I NNy | € € I(:t.y)li’.rk

€ cC v meas

) (T 1))

(X,Y 1,0,T

k

< cv 2 1=,

€ cCﬂh .
The other sides of Tk are bounded identically, whence (4.1.5).
There usually exists another triangle T, , with the nodes Nko

and Nk 1 in common with Tk ;3 we refer to the union of '1‘k and Tk'

as Ak (see Pigure 4.1.4). If such a Tk’ does not exist then Nko

and Nk 1 must lie on 30 (to be precise: on a segment of 9Q with
(X,Y)-slope 0) and we denote 'I‘k by Bk (see Figure 4.1.5). This
grouping of the elements has already been introduced (in Section
1.5); its role was discussed in detail in Chapter 2. As before,
we can group the elements in two other ways. In one the triangles
in each pair share two nodes with the same X-coordinate; any
unpaired triangles will lie on segments of anh with (X,Y)—-slope o
(i.e. X-contours). In the other grouping the shared nodes in each
pair have the value of Y-X in common; | alternatively the shared
edges have slope 1. Any unpaired elements which lie on segments
of th with this slope are not necessaril-y on anh; we therefore
take the slope 1 to be the secondary direction of the
triangulation and will make no use of the third way of grouping
the triangles.

We can now turn to another consequence of (4.1.2), which links
the triangulation conditions to the superconvergence results that
follow: the "almost parallelograms™ property (2.5.1). Let k <€ KA
be fixed. (KA is the number of triangle pairs Ak in B.) Adopting
from Theorem 3.4 the transformation (x,y) — (£(£.,n) (see Figure

4.1.4), we obtain the mathematical form of (2.5.1):
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X:Xb. X=Xh+h
y: yk+ A,

W\

Pigure 4.1.4

The transformation of an element pair

The two triangles share nodes with a common Y-coordinate. In the
(€.n) system the midpoints M of the diagonals of the
quadrilaterals are at

( €,/2 .0 ) and ( (£, + €)/2 , (n_+ n_J)/2 ) ;

their separation is O(hz).
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Figure 4.1.5
A boundary triangle

a0 is locally a contour of Y.
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lg, + ¢ —€,1 € kh
i . }(4.1.6)
and |n+ +ntl < kh
where, for some ¢ > O,
kK (=K) = ¢ I(x,v)lz'a . (4.1.7)

k
(Recall (3.4.2) and (3.4.3).)

Proof We view ¢ as a function of (X,¥Y) and consider the
functional

E(Xk+h,Yk+h) + ,E(Xk,Yk-h) - E(Xk+h,Yk) . E(Xk,Yk) .
It wvanishes for linear ¢ and is thus bounded — via the lemmas
S.E. and B.H. of Section 1.2 and the linearity of (¢(,n) w.r.t.
(z,y) — by

ch "'2,Ak € ch ”""'"’”z,ak = kh .

(Note that this defines the constant ¢ in (4.1.7).)

Now the above functional is precisely equal to ¢ + +E - ¢ P

we have therefore obtained the first part of (4.1.6). The second
is derived identically. ¥
One further property that we require is non—-degeneracy of the

elements:

2
hk € C meas ('I‘k) 3 (4.1.8)

this is equivalent to (2.6.2). It is a consequence of (4.1.5) and

(4.1.3). For

2 2
hk £ ¢ l(:n.v)ll'.r
.4
= c J [ |V:|:|2 + IVylz] X ay
Tk
< ¢ [ la(xz,u)/a(X,Y)| X av

Tx

= cI dr ay
T

As already stated, mesh functions which satisfy (4.1.1) -
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(4.1.4) are a prerequisite for superconvergence. If it is not
possible to satisfy these conditions then the number of bands
must be increased, pseudo~vertices introduced or h decreased, as
appropriate. Alternatively (recall Theorem 2.4) superconvergence
can be allowed to fail in certain subregions of Q - see also
Section 5.3. Incidentally, there may be difficulties if any
curved segments of 90 are highly concave. We will see why this is
a problem in the next section; we note here that one way round it
is to refine the mesh further (if possible in the neighbourhood
of the boundary only).

We have shown that the triangulation is smooth and non-
degenerate. We can easily verify that it is reasonable; in
particular the six element property holds throughout. Our main
interest is of course to show that the mesh is superconvergent;
we will devote the remaining sections of the chapter to that.

We conclude this section with an example of a mesh—function
pair (X,Y): we demonstrate that the general pseudo—vertex
transformation (2.6.3) satisfies (4.1.2) and (4.1.3). The
transformation can be written thus:

xr = Rycosye and vy = Rystnye
where R2 =x2+Y2, tan ©® = Y/X and vy 3 2.}(4.1.9)
Expanding,

2 = 0+ Y cos (v tan lev/x))

on differentiating we obtain

%; = ¥y (2(2 + YZ)(Y/Z)_I [x cos (v tan—l Jl;
+ Y sin (v ta‘n—l Jl;) ] &
So
axr/aX = yRy-z ( Xcos Yo+ Y sin v ) ;
similarly
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éx/aY = yRyhz(Ycosye—xS'Lnye),
y/oxX = yRy_z ( X stn y© — Y cos yO )
y—2
and ay/3Y = ¥ R ( Ystnyo + X cos ¥© ) .
Hence
2 2 2 2y-2
ive12 = jwi? = jawseny)l = ¥ R

and (4.1.3) is verified.
Now, by further differentiation, the second derivatives of

(xz,y) are O(Ry_z). So

2+e€ y—2 ] 2+€
I(:r:.u)lz'2+e € c I [ R R dR

< c[R2y—2—26+ye]g'Lam(n)

€ ¢ ,
80 long as 2y - 2 — 2¢ + y¢ > 0. Therefore (x,y) will be in

[ w2+e(ph) ]2 provided either

2
y » 2 (4.1.10)
or
y > 1 and € < %52 :

So in fact (4.1.2) can hold for all y > 1. However, we shall see
in the next section that superconvergence breaks down in the
vicinity of the pseudo-vertex when y < 2; therefore we recommend
that ¥ should always satisfy (4.1.10). As already noted, this
does not limit us from transforming obtuse angles into pseudo-
vertices: the transformation (4.1.9) can be preceded by a shear.

(Recall Figure 2.6.9 — the restriction is on the radial scaling.)

4,2 THE SUPERCONVERGENCE RESULT

We are now in a position to state the problem, its
approximation and the mean-square superconvergence result in

their general forms. Let Q satisfy the usual conditions (Section
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4.1). We take u to be the (unknown) solution to the self-adjoint

Dirichlet problem:

Lu = f inaQ
(4.2.1)
and u = u on aq.
E

Herxe

Lu

a u du
= T axl%1 ez T %12 ay [ %21 am %22 ay] (4.2.2)

gatisfies the classical ellipticity condition (see inequality
(4.1.2) of Ciarlet, 1978) and a12 = a21. We note that we can add
the term
ao u Wwhere ao 0, ao € w;_e(n)

to L with only a straightforward supplementary analysis. Also,
the Dirichlet boundary data can be replaced on part or all of aq
by a Neumann condition in which the conormal u, ig given as a
linear function of u. Again, there is a straightforward
supplementary analysis (see Zl4mal, 1976). For simplicity we

assume that neither of these conditions occur here.

Let us associate with (4.2.2) a bilinear form on La’(n)]zg

a (w,v) II fu dv
[y N %11 ax ax
2w dv du dv
%42 [az ay ay ox (8.2.3)
3w dv
+ a,, 2y 2y ] dr dy .

Then (compare with (1.3.2)) the weak solution of (4.2. 1) is a
function u € Hé(n) satisfying
1
an( u,v) = (Ff.,v )n for all v eﬂo(n). (4.2.4)
In fact we require additional smoothness as follows:
u e HL(Q) 0 E (D) ;
further a,, e "§+e(“) (¢,j = 1,2) for some € > 0 }(4.2.5)

and F e Hz(n) .

(Note that Ff has one more derivative than is implicit in (4.2.1).
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This is necessary to ensure that the effects of numerical
quadrature do not swamp the superconvergence effect.)

The first stage in the approximation process is the
triangulation of O (Section 4.1). All piecewise linears -
including the Finite Element solution Ru which we reintroduce
below -~ are defined on ﬂh However nh is not necessarily
contained in QN and although Ru is computed using values of
functions on Q, it will simplify our analysis to extend the
domains of these functions to nh Since O has the strong cone
property we can apply Calderon's theorem (Calderon, 1961, Theorem
12; see also Babich, 1953) and extend u and a“ (1,3 = 1,2), in
the Sobolev sgpaces of (4.2.5), to Rz (as opposed to Q). The
restriction back to 0 of the extension operator yields the
identity and so without ambiguity we can use a single symbol for
both a function and its extension. By Calderon's Theorem, we have

HHull < ¢ lluily g

3,nh
193t 2,2¢e,0, j
(t,J = 1,2). We use these Calderon extensions to extend f, as

](4.2.6)

and | € ¢ |la

lI2,2+e,ﬂ
follows:

F o= Lu e Hl(nh)naz(n) , (4.2.7)
where L is the elliptic operator of (4.2.1). Then by Green's
Theoren,

a (uw,v) = (f,v)
W %
for all v e Homh ), where a_ (-,-) corresponds to the form

Qh

(4.2.3) with integration over ﬂh Note that the Finite Element

(2.2.8)

equations (4.2.12) below approximate the function u e« H;.'(nh )
defined by (4.2.8) and not the original unknown u € H;(n) defined
by (4.2.4). We are thus committing (with - as we shall see -

impunity) two of the variational crimes described by Strang and
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Pix (1973): interpolation of boundary arcs and interpolation of

the boundary data Up -

In practical computations, anh(-,-) and (-,-)ﬂh will be

evaluated by numerical quadrature (recall (1.6.1)). The centroid

rule is sufficient for our purposes; its use is denoted thus:

ar (-v:)e (1),
%" ’nrl

to any other rule, provided it integrates linear functions

. our results can easily be modified to apply

exactly in each element. However numerical evidence, presented in
the next section, indicates that the error introduced by the use
of the centroid rule is not numerically significant.

No quadrature rule will be practical if the functions, whose
integrals we wish to approximate, have to be evaluated with
explicit (non-trivial) recourse to the Calderon extensions
(4.2.6). We therefore require that the centroid of every element
be contained in Q (# nh). Now by (4.1.8), each element '1‘k
contains an open disk, T: say, such that

meas ('I‘k) € ¢ meas (T;:) (4.2.9)
for some ¢ independent of k. (See Figure 4.2.1 for the derivation
of (4.2.9).) We combine this bound with the above centroid
condition and make the following requirement (which is a 1little
stronger): for each element '1‘k there exists an open disk '1‘;
satisfying (4.2.9) such that

G, €T, T, na. (4.2.10)

k k
Given (4.2.9), this condition is trivial unless '1‘k 1ie§ on a
segment of 90 which has a strong concave curvature. (See Figure
4.2.2,) If a triangulation fails to satisfy (4.2.10) there are
two remedies: we refine the mesh (as noted previously) or use a

different quadrature scheme for the offending elements. Ideally,

such a scheme will integrate linear functions exactly; in each
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Pigure 4.2.1

(4.2.9) follows from (4,1.8)

Let the longest side of an element T, be the line NN shown here.
Then the third node must lie within the two arcs. But by (4.1.8)
this node must also be at least chk (¢ > 0) away from the base
line NN; therefore it lies in the shaded region. It is now seen
that T, is sufficiently undistorted for a disk T, eT, satisfying

k
(4.2.9) to exist.
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3
=

)

Fi 4.2.2

Condition on boundary elements
The centroid of each element is inside O and isolated from Q.

(7‘: is open.)
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element the quadrature points must lie in some open disk 'I‘;
(e Tk A 2) which satisfies (4.2.9).

Now if nh is sufficiently Small, the ellipticity of L is passed
onto its extension and so (Ciarlet, 1978, Theorem 4.1.2 - this
result remains valid on regions with curved boundaries) there
exists an o > 0 independent of h such that

2 < a (6,6) forallses. (4.2.11)

1.8, < ‘a,

This discrete coercivity condition implies the existence and

o |o]

uniqueness of the Finite Element approximation which we now
define. Let SE and so be the subsets of § defined in Section 1.3:
members of SE interpolate values of uE between boundary nodes and

members of so vanish there. (Note incidentally that SE is now a

subset of H;.‘.‘(ﬂh)') Then — recall (1.3.5) — we take Ru to be the

member of SE which solves

*

ﬂh

a - (Ru, ®) = (Ff, o) (8.2.12)

+

for all ¢ € so.

The following result holds equally well for any class of local
recovery schemes satisfying error bounds of the form (3.4.7); in
particular it applies to all schemes which are exact when used on
the interpolants of quadratics on undistorted meshes. For
ease of notation, we present our result in terms of the standard
recovery scheme (Figure 3.3.1) for the midpoints Mk of the shared
element edge internal to each triangle pair Ak‘ We denote the use
of this scheme by the operator Dk‘

Theorem 4.2 Let ||u||3 , |fl, and ||a||2 stand for ||ul|

2

3,ﬂh B
I:l‘lz'n and L‘.LJI Iawl |2,2+e,n respectively and let the norm |luj|_
be given by

h—1)2

2 —
el = ¢ (2 +

2
Hully,r -
where Cﬂ and Kk are as defined by (4.1.5) and (4.1.7) above. Then
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the following weighted mean—square superconvergence bound holds:
2 _ 2 11/2
[ By M IDkR“ [v"]Mk| ]
2 -1
< ¢ nhla [ (a + Llall)llull + E s, ] . (4.2.13)
Proof (Recall Theorem 1.5. See also the "first Strang Lemma™ -
Theorem 4.1.1 of Ciarlet, 1978 — and 21£ha1, 1978.)

We substitute v = ¢ = (I — R)u ¢ S_ into (4.2.8), (4.2.11) and

(0]
(4.2.12):
« | (I - R)ulf'nh
*
< a ( (I - Ru, (I -R)u)
nh
*
€ Ja, (Iu-u, (I —R)u)l
%,
*
+ Ja. (u, (I -R)u)—-—a_  (u, (I-Ru)l
L %,

*
g T

We show in the next two sections that the following bounds apply,

+ I(f, (I -Ru)

for any o € So H

®
la, ( Tu —u , ¢ )l

5, }(4.2.14)

2
< on” lfali, lull, le

|1'nh ’
*
la. (u, ¢ )-a (v, o)l
& 2.2 a, ](4.2.15)
< oo lally Nultg el o
®
22 aQ, 2, ](4.2.16)
€ ¢ nh (|f|2 + ||a||2 ||u||3) 1|

I,Qh :

Hence

« (I - R)u|?

I,Qh
< on? [ Hlati (il + GG Hiuily + ¢ 151, |

- (I - R)u]

1,0,
and so (note that |lull, < cc;2 T
(I = R)u|
pog ' h }(4.2.17)
< en’ [ ial, tunl + G2, |
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Now the recovery scheme is local. So by (4.1.8)

2

L h,

Dk(I - R)u
< e¢r ni | V(I - R)ul,, 12
"

< ecc | [v1-Ru), % meas (T,

2 k
1’nh . (4.2.18)

Further, by (3.4.7) and (4.1.5)

= ¢ |(I = R)ul

2 2
Lnl I D, Tu - [Vu]Mk |

2 2 2
< c}:[hk+|<kh] ”uHS,Ak

N

2 2 2
er [ nf 4 |? v,

c [h2 il ]2 . (4.2.19)
We now obtain the required result by adding (4.2.18) and
(4.2.19), substituting from (4.2.17) and taking the square-
root. ik
We conclude this section with brief examples of the relation

between (4.2.13) and practical triangulations. We consider first
a mesh which has no degeneracies:

hk > ch for some ¢ > 0 independent of k
and (z.,y) € [ Wi ]2 .
The second condition implies, via (4.1.7) that

Ke ch for all k
whence by (4.2.6)

Hull, < oc2 11ull < e iul, g

2.8,

The superconvergence result now reduces to a more familiar form

(recall (1.5.10)):

"[ Ly |DkR" - [v“]Mk|2

2 —1
< ot (a+ Nialipiiutly o + 151, |

]1/2

= om? . (4.2.20)
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If, on the other hand, the triangulation contains any pseudo-
vertices, we cannot simplify the left-hand side of (4.2.13). Let
us make the mild assumption, however, that u e W:(nh ). Then

a2 < efuscy] [ 1+ £epn ) ]

< c[u;Cn] [ 1+F Ki ]

< otwcy) [1+1@wii]
therefore the right-hand side of (4.2.13) remains O(h2) and mean—
square superconvergence is retained. But, as already noted, this
does not imply superconvergence right up to a pseudo-vertex. For
in the notation of (4.1.9),
R %)n

Kk=0(

om” 1)

in elements immediately neighbouring the psuodo-vertex. So in

that neighbourhood,

2 -1
|D, Tu [Vu]MkI < c[ h, tKnh ]hk Hull

(4.2.21)
3,Ak

= efu] [O(nz") + om”) ] ;

this will be 0o(h%) only if y > 2. (Recall the proof of Lemma 3.4:
the bound (4.2.21) is sharp when u is quadratic.) Now, we have
not proved that "y < 2" implies

DR = [Vl | on?) . (4.2.22)
However, we do believe that (4.2.22) is true under these
circumstances. Further, as discussed in other sections, it is
always possible to avoid triangulations for which y < 2; we
therefore recommend that this be done in practice.

As a final remark, we recall the scheme noted in Section 3.3
(derived from the nodal recoveries given in Figures 3.3.8 and
3.3.9) for recovering Vu at all points in nh: on any
triangulation the left-hand side of (4.2.13) now takes the

elegant, natural form || DRu — Vu ||

-

Lp(fp)
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4,3 NUMERICAL QUADRATURE

In this section we will demonstrate, both analytically and
numerically, that the effects of numerical quadrature by the
centroid rule are mnot significant to the superconvergence
phencmenon. They can in consequence be ignored in the
construction of triangulation and recovery schemes. We will see
that mesh geometry (i.e. Lemma 4.1) and topology play no part in
the following analysis. Therefore the effect on energy error, due
to use of the centroid rule, is second order even in the total
absence of superconvergence.

The numerical approximation to the integral

[ o a

. %,

I, [wlg_meas (T
where Gk is the centroid of element Tk (k=1,...,K). We define a
local error functional over each Tkz

Ek(u) = IJT wdarady - [m]c;k meas (Tk)

k
and bound it using the lemmas S.E. and B.H. of Section 1l.2.

Lemma 4.3 The following abstract estimates hold in every
element:

R 3
(i) IEk(u)l <€ chk vl for all w e HZ(Tk)

2,Tk

(i) 1B @) < chi [ 11, o + (ol 'rnn] for all w e
i "k
n‘('rk) a Q).
Proof Suppose w € Hz(Tk). Then by S.E.,

IEk(u)l < chkllvllz'.r .

k
But when w is linear on '1‘k the centroid rule is exact and so Ek
vanishes. Thus by B.H.,
IE, (w)] < ch> |ul
k k 2,'1‘k
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and (i) is proved.

Part (ii) will be applied later to elements which lie on the
boundary d0. It is less straightforward to establish and we
proceed with caution. We recall (4.2.9) and (4.2.10) and, as in
Lemma 3.4, introduce a projection operator. (For convenience we
will assume here that k is fixed; without ambiguity we can drop

the suffix "X from any symbol apart from hk.) Let the projection

be
meas (T*)—I Ij*udzdy inT*
I == [ T *
w in T\NT .
Then
E(Nw) = jj ud:ndy . Ms—a)*—jj*ud:cdu ;
T meas (T ) T

by (4.2.9) this is bounded by chk ||u||1 T But the functional
14

E(Nlw) vanishes whenever w is a constant over T; therefore by B.H.

|E()| < ch2 |

K . (4.3.1)

1,T

Now

E(uw - Iw) = mggg_LI%_ IJ ,uwdray - [w], meas (T).
meas (T ) T

This remainder is bounded in gm(r*) and hence by S.E. in w;+é(r*)

for any fiwed € > O:

IE(w - )| < on(ZH2E/(2re) 1y

*
k 1,2+, T

(Note that by (4.2.9) h_ < c diam (T ).) Again when w is a

k
*
constant over T this vanishes. So by B.H.

_ (4+3€)/(2+€) .
|E(w Iw) | < cl'lk |ul1’2+€',r .
We now apply S.E. again:
—-&/2+e
Holly, %y S ey Holl, o

2+¢€
. *
for all v e H (T ); substituting v = Vu we arrive at

2
|E(w — TIw) | < chk [ |U|1'T* + lmlz'T* ] ) (4.3.2)
To obtain (ii) we now add (4.3.1) to (4.3.2) and recall

(4.2.10). i
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I(f:‘b)nh-(f.d));hl
< zkIE[fmGk]l (4.3.4)
+ £ | B[ £o - 1014 )]| ;

To bound the first term for an element T wholly conta:.ned in Q

(for which f Hz(Tk)) we note first that by (4.1.8)
1

sup,rk Y] < cl*uk llctalll',rk for all ¢ € S. (4.3.5)
Then by Lemma 4.3(i) and (4.3.5),
| 5[ 73, ] |
< B ()] 1] |
k

2
< em IFl, o Hiell, .

2 k k
= c¢h, ‘flz,rknn |I¢II1'Tk . (4.3.6)

Alternatively if 'I‘k is a boundary element then (recall (4.2.7))

we can do no better than (Lemma 4.3(ii))

| = flolg. ] |
2
< on [ | £1 + |F ] 1EoFy
k I,Tk 2 Tknn
We cannot use (4.3.5) here without losing a power of hk . But
gince ¢ = 0 on 3N (recall Theorem 4.2) and V¢ is constant on Tk R
el .1 < ch [|IVel] < c o] . (4.3.7)
Gk k Lm(Tk) 1,Tk
So for all T ,
4
EA slolg ] |
« |
< ch | FI + | Fl ] lol| .
Ik I,Tk 2,Tknﬂ 1,Tk
To bound the other term in (4.3.4) we note that f(¢ - [tb]G )
k
vanishes at the centroid Gk and write
| =, [ 70 - to15) ] |
k
= | [ [#e-w)]]| (4.3.8)
T k
€ cen_ |IFfl e — [e], |1 .
k I,Tk Gk Lco(rk)
The ¢ term is bounded by ¢ I¢I1 r (as in (4.3.7)). Purther,
"k
since the integral (4.3.8) vanishes when f is a constant on T ’

k
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We turn next to the derivations of (4.2.15) and (4.2.16) and
start Dby bounding the error in the numerical quadrature of the

term

. u 2o
11 ox 9x

By the above lemma and the Liebnitz differentiation rule — recall

.

9¢/0x is constant in the triangle T Z -

K
ouge |
I Ek[ 41 azx ax

3 2u 29 |
< oM | %1 oz ax 2,T,
ol I P O
= ch a Sy
K 11 ox Z,Tk ox Tk
ou
€ c¢h a . — | [ ]|
kK 11 9x Z,Tk I,Tk
< chz [ la, .| | leu/ox| |
k| %1tz L (T,)
+ la, .| | du/ x|
11 I,Q,Tk I,Tk
+ lla,, 11 |au/az| ] 16!
, 11''L (1) 2,T, 1,T,
< ch [ lta, || Hul |
K 11 2,Tk 3,ﬂh
+ lla,, 0l il ] 1ol :
11 2,2+e,nh 3,Tk I,Tk

The total error over all the elements is bounded - by Cauchy-

Schwarz, (4.1.5) and (4.2.6) — thus:

ﬂﬁ&] |
L, I Ek[ 21 azx ax

49 2 2
< e [ L, M | lHagHg,r 1830
1/2
2 2
+ lla, 11 ul | ]] 10|
11 2,2+é,nh 3,7'k 1,ﬂh

2
. °szh ”"11”2,2+e,nh ”u“.?,ﬂh M"1,0”
< oc?n? Jall, llull, el
q 2 3 1.9,

in the notation of Theorem 4.2. The other terms in (4.2.15) are

(4.3.3)

bounded identically.
In effect we use another projection to abtain (4.2.16),

writing
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B.H. yields

| 5[ 70 - 1015 ) ] |

2
< Chk IfII'Tk |¢|1’Tk . (4.3.9)
We substitute (4.3.6) and (4.3.9) into (4.3.4):
w
ICF o ®) —CFod)n |
< o znhn‘ (1512 :hlflz ) ]1’2 el i
kK k I'Tk 2,Tknn Ipﬂh

by (4.1.5) and Priedrich's inequality (recall ¢ = 0 on anh), this

is bounded by

2
oCln (15110 2.0 1,0

Pinally, we can bound |f|1 by (4.2.7). Pox

+ |F| %1

- %o M lia, < o]
dxl 11 ox I,Qh 11 ax z,ﬂh !
etc. and so (this is almost identical to the derivation of

(4.3.3))

Flig = Ml g < llally Nl
We have now established (4.2.16).

We end this section with a simple numerical example. We
consider the standard uniform mesh on the unit square and note
that, solving (1.6.1) with (1.6.2),

E = 3.Oh2 .
rec

(This was given in Section 3.3. Erec is the average error for
recovery at centroids.) Alternatively we replace (1.6.1) with
(VRu , Vo ), = (-du, ), (4.3.10)
for all ¢ e S‘J (i.e. exact quadrature); we now obtain
Erec = 2.Bh2 .
This is only a very minor improvement. We assume therefore that
the cost of using high-order quadrature, involving many extra
function evaluations, will not in general be justified by its

effect on gradient errors.
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4.4 CURVATURE, COEFFICIENTS AND CANCELLATION

Theorem 4.4 Under the conditions of Section 4.2 (in particular,
ueHg(nh) andcbeso),

|a;h(1u—u,¢)|

2
< ch llall, [llull  Iol

1., ’

Proof We consider the contribution from a single band g:

(I
aB( u-u, ¢)

h
= L. [ VeT-a-V¢ ] meas (T.) , (4.4.1)
k Gk : k
where
e = JIu-1u
and a is the matrix (a)” = aw .

The first stage is to decompose V¢ (as in Section 2.2). We
note that the primary triangulation directions are given by
discretised X— and Y- parallels; because the mesh is curved the
decomposition will therefore vary from element to element.

For example, let us consider a triangle T+ with nodes given by
(X,Y) coordinates (xo,Yo), (xo+h,Yo) and (xo+h,Yo+h) for some
(XO,YO). Let these nodes be No = (:ro,yo), NI = (ml,yl) and N+ =
(a:+,y+) respectively in the (x,y)-plane (see Figure 4.4.l1); let ¢
(e so) take the values 4’0' 4>1 and ¢+ at the three nodes.

We note that

2 meas (T+)
= x(v,-¥) t+ T V) + = (YY)
it can then be verified from the appropriate simultaneous

equations that

[¢]T = A + uxr +vy .,
+

where A, u and v are given by
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Figure 4.4.1

Labelling of nodes for Theorem 4.4

N, = (xd'yd) for each symbol J € (0,1,+,-}.
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2 meas ('I‘+) A
= bz, -y, 0 (=2, - FU,)

+ oo (Tu, — =V,
2 meas ('I‘+) B .
= (v, -V t e, (v, —vy) e (¥, -V

and 2 meas (T+) v

= o (z

0Ty ~F) F O (xp ) A+ b (F -2,

We choose to write

Vol = [“]

- v
in the following form:

[th]T = DXQ + Dycb » (4.4.2)

+
where
v, - V¥
e 1 + =
Dy = 2 meas (T,) [m+—m1] (oy = &)
4.4.3

AR i S PRPRNE b

Y = 2 meas (T,) Lz, - =, 1 +

This variable decomposition is essential to our result; as far as
we know it does not appear elsewhere in the 1literature. Note
that, for instance, Dxco is perpendicular to N1N+ (the element
edge given by the triangulation direction associated with X-
parallels); this vector will not in general be parallel to NON P
More crucially, however, the ¢—dependence of stb is precisely
that component of V¢ which is constant across NON 1 (the edge
associated with Y-parallels). We now recall (2.2.6) and the
subsequent discussion and see that the decompositions used in
Section 2.2 are all special cases of the above.

Theé situation is very similar in the triangle T_ with nodes

N

o’ N1 and N_ , where N_ = (x_,y_) is the image of (xo,Yo—h) and

¢ = ¢_ there. We use the decomposition (4.4.2) again:

[V¢]T = DXO + Dycp .
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This time however, insted of (4.4.3), we obtain

D = —i [ ~ Yo ] (
Y = 2 meas () L=z, %
(4.4.4)
and D = —_— [ y1 - yo ] -
Y* = 2 meas (T) z, - (&_ ¢O) )

Now, since all elements have one of the two forms T:' we can

write (4.4.1) in the form

*
— T L]
= ):k [ Ve -a ]Gk [ Dxtb + DY¢ ]Tk meas (Tk) 3
we interpret Dx and DY by (4.4.3) or (4.4.4) as appropriate to

each element Tk . We will examine in detail the "X-derivative”

term, rewriting it thus:

T
L. [ Ve -a ] [ D 1., meas (T,)
N TGk x* o1 K ](4.4.5)
= L [ Ve -a ]Gk 8, (B — ®,,2/2
By ¢ko we mean the value of ¢O in the element Tk , and so on;

from (4.4.3) and (4.4.4) we have

2 _ [ Vit ~ Vit
K+ Tper = Treq |
V.. — V., |

and 5, [ z" m"o
k0 ~ Tk- |

We set
5, = (5, %8, )/2
~ [ (Vig = Vg T Vp ™ Vo’ /2 ]
(Tpy = Ty ¥ Fpp T FyN/2

We then split the sum (4.4.5) thus:

| L ve -a e
1 k
2[re + 1sy 4 lsl]

[ D 1, meas(T)I

where (recall that Mk is the midpoint of the shared edge N ON 1)

s, = LI ve'-a ]Gk (8rs = B3) (D5 = Dpy) -+
T

s. = L [Ve] ([al. —[al, ) &6 _ (b .- )

2 Xk G, G, M’ %k k0 T P
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_ T
and 8, = Ek (Ve ]Gk [a]Mk Sk (®

The purpose behind our decomposition now Dbecomes clear. For

ko ~ P1’?

[a]Mk B sk and Mko - ¢k1 ) take identical values in the two

triangles Tk + and Tk— , for every k. We can therefore rearrange

33 thus:
s, = L ([Ve'l, +(ve'l, ) [al, & (6, —& ) ;
3 k Gy G, M, "k ko Tkt
this summation is now over the triangle pairs Ak = 'I‘k+ v T ~

see Figure 4.1.4. Note that contributions to s 3 from the elements

Bk , Wwhich cannot be paired off, wvanish. For — recall (4.].1)

and the discussion on Pigure 4.1.5 — Nko and Nk lie on a segment

1
of aph with (X,Y)—-slope (almost) =zero and hence on anh ;

therefore tbko = ¢k 1 = 0, Note also that the three sums s ¢ S

1 2

and s represent the effects of curvature of the mesh, local

3
variation of the coefficieénts a 14 and - at the core of
guperconvergence - cancellation of the dominant error term

between neighbouring elements. Incidentally, as with the bounds
of Section 4.3, the bound Sor s, that follows & not
dependent on the triangulation being superconvergent.

We consider in turn the factors which make up the three

summands. By (4.1.8),

| ®rp ~ Py |
< '"ko"m' | [W]T |
k o _1/2
< h. |¢|1,.,.k (meas (Tk))
€ c ""1,1‘ . (4.4.6)
Next
i = B
(Vpp ¥ Vp ~ Vpy ~ Vio?/2 ’
(a.'kl + ::ko - a:k+ - :r:k_)/z
by (4.1.6)
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| 8§ — &

5 we | S Kh/Z (4.4.7)

In addition,
| sk | < ¢ diam (Ak) = ch . (4.4.8)
Now by S.E.,

| falg, - (al, | < ¢ llall

* Kk Lo, Ty
therefore by B.HE. and S.E. again
| [al. - [a] | € ch, |al
‘Gk Mk k I,w,Tk
L 4 chk ||al|2 . (4.4.9)
Also, by S.E.,
| [a]GkI < cllall, 3 (4.4.10)
| [a]M | is bounded identically.

k ,
The Ve factors are less simple. To bound the "cancellation”

factor

F(u) = [VO]G+ + [Ve]G_
(once again, the X has been dropped from all symbols except hk)'
we move back to the (¢,n)—coordinate system of Lemma 3.4. The

centroids G:t have coordinates ( (£1 + et)/3 ’ nt/3 ). We note

that (3.4.4) still holds; for quadratic u we obtain

» 2(¢, - £, ~ £.)/3
F(¢) = 2 B
L (€] — &6 )/ + (& — £ &)/n_
=(n, + n_)/3
F(gn) =
L 2¢6, + €_ - £,)/3
( 0
and Fm?) = ]
L ('ﬂ+ +n_)/3

We now proceed exactly as in the earlier lemma. By means of the
projection (3.4.5) we obtain the general bound — c.f. (3.4.7) —

| Fy(u) |

-1

k HMullga -

< c(n? &4 k) h
k

k (4.4.11)

Finally, by S.E.,
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| Ive'l, | < o () g,

” 2,2-4-e,'1‘k

for any fixed € > 0. Since Ve vanishes in Tk when u is linear,

B.H. implies

T €/(2+e)
Ve < ch u H
I € ]le | |2'2+€’Tk
by S.E again we obtain
T
| [Ve ] | <€ c ||ull . (4.4.12)
Gk 3,'!‘k

We substitute (4.4.6),...,(4.4.12) into 31 B 32 and s3 H

|31I

< cLllully . - llall, - kh - lel .
k k
1/2
< enall, [£ & IluII3T J172 101, 4
h
2 -1.2 2 1/2
< o ail, [ oo HZvwn 1Y% e, L
k h
s, |
< eClluliy g - m llall, - ke - 16l o
2 k k
< oc?n? lall, ulls0 ;
EP , _
< oL (n:+xmng “"Ha,Ak' i1, = M 101,
2 1/2
< o lall, [ £+ epH? ||u||3A]
Y :
1.8,

We then substitute these bounds back into (4.4.5) and obtain
T
L, [ Ve -a ]G ( Do ].,. meas (T, )

< o nail, [):(c2+»<h )2 ||u||3A ]1/2

- 1) .
1,8,

We now bound the DY¢ term. This process is identical to the

above, except that the contributions to s 3 from unpaired

triangles Bk now vanish because Nko and Nk 1 are on a segment of

aﬁh with (X,Y)—-slope (almost) infinity.

To complete the superconvergence proof, we substitute the Dx

and DY estimates back into
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CHAPTER
FIVE

THE
POINTWISE
ERROR



*
and sum over the bands B which constitute Q. Note that, as
required, the condition "¢ = 0 on th" is only taken up on

segnents of anh and not on interband boundaries. H#
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5.1 INTRODUCTION

The superconvergence results given so far (in particular
Theorems 1.5 and 4,2) are all encumbered by the presence of a
mean-square average. It is due to the substitution ¢ = (I — R)u
into bounds on

| ¢ V(Iu - u) , Vo )n | (o e So):
this leads directly to a bound on ||V(I — R)ul| in Lz(n) (whence,
for example, the form of (1.5.9) et.seq.). However a different

choice of ¢ €« S — see (5.1.11) below — can avoid the Lz(n) norm

(o]
altogether. The subject of this chapter is the link between the
mean-square average and the superconvergence phenomenon; we start
with an interpretation of the norms of error bounds given so far.

We consider (4.2.20):

[ L, IDkRu - [Vu]Mk|2 ]1/2 = o) .

It implies that the number of recovery points Mk (out of the
total O(h_z) in nh) at which the convergence rate is no better
than O(hs) cannot be greater than O(hz(l_s)), for any fixed s. So
the number of recovery points at which second order convergence
(i.e. superconvergence) does not occur is o(h_z); the proportion
of such points out of the total is o(1). We therefore expect that
as h - 0 the subregions of O in which pointwise superconvergence
fails will decrease in total measure. Further, we expect that
there will be some natural connection between any absence of
pointwise superconvergence on one hand and local properties of
the problem and our approximation to it on the other.

Now the only natural locations for such a limited number of
recovery points are in a layer close to the boundary a0 (recall,

for example, (4.2.21)) or in narrow regions in the interior of 0O
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where the sasmoothness of the problem or mesh may be open to
question. If all such aspects are sufficiently regular in the
interior, we can assume that superconvergence will be pointwise
(away from 39Q). Further, if the boundary and conditions imposed
there are sufficently smooth and well represented then there is
no intuitive reason why superconvergence should not occur
"pointwise"”, i.e. individually at every recovery point.

We aim to give some meaning to such terms as "sufficiently
regular" and "narrow regions”. In this section we will give a
model pointwise result corresponding to Theorem 1.5; later we
will use this as a framework for discussing more general
problems. However in the later cases there are great technical
difficulties and we will not be able to Jjustify all our
hypotheses rigorously.

The technicalitieg which arise throughout are connected with a
derivative Green's function and its Finite Element approximation;
we will introduce these below. (Nitsche (1978) has discussed
other approaches to Lm error bounds; the principal alternative —
using carefully chosen weighted norms — is closely related to the
Green's function method and we do not expect it to yield results
which are either stronger or simpler.)

et Q@ Dbe a rectangle, partitioned as in Section 1.5 (and
satisfying (1.5.2)). We group the elements into pairs Ak with
common edges parallel to the r—axis and denote the midpoints of
these edges by Mk. In particular, we concentrate on a fixed
element pair AO and the corresponding midpoint MO = (a:o,yo). We
associate with them a distance p and a C’:(Ao) function 6§ = §&(p)

guch that
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2 2 2

p = €& +n , €& = -2, , N = V-V, -
° °  ls.1.1)
” §(p) dr day = 1 and 0 € &§ € ch
AO
(See Pigure 5.1.1.) Then by construction,
2l - (&0]
[aa.- o 2% ,5], , forallees  (5.1.2)

and for any Q € Ao {(in particular the point MO). Corresponding to
§, let us define
_ _ 1
g = g(=uiT,y,) = g(&m) € H, (%)
by

av

ox * 5 ]9 (5.1.3)

(Vg , W), = [
for all v ¢ H‘I)(n); g is a smoothed x—derivative Green's function
for the Laplacian on 1. (See (5.1.27) below.) The Finite Element
approximation Rg e SO to g is given by

- 29 ]

(vrg,ve), = [2,s] (5.1.4)
for all ¢ « SO.

The functions &, g and Rg were introduced in this form by
Rannacher and Scott (1982). They proved (for the less simplified
case of general triangulations on any convex polygonal region Q)
that

| Rg - g '1,1,0 € ¢ , (5.1.5)
whence incidentally their W:o estimate

lRu—ull < ch |uj

,®,0 . (5.1.6)

2,,0
Note that g and Rg both vanish on 8Q but that — as in previous
chapters - u need not. 1In the derivation of (5.1.10) below we
will require (I - R)u = O on 3Q; this is of course satisfied
without any special restrictions on u.

We remark that (5.1.5) appears to lack one order of h; this is
due to the singularity in g at MO (albeit smoothed). Another

consequence of the singularity is that

| g '1,1,n < c |tog hi| ; (5.1.7)
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%
Qqy
k~€\/

Pigure 5.1.1

Coordinate notation

Any point (=z,y) in Q can also be given in terms of the local
coordinates (¢,n) — or the local polars (p,©0) — as shown. (Note
that the ¢—axis — egivalently the radius © = 0 - indicates the

direction for differentiation of the error (Ru — u) in (5.1.14).)
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we shall derive this inequality in the lemma at the end of the

section. We take (5.1.5) and (5.1.7) together thus:

| Rg |1,1’n € c |tog h| . (5.1.8)
We use the Green's function to estimate the error in the a-
derivative of Ru at the stress point MO -~ without the need for
averaging. Let
v e Hqa) p W) (5.1.9)
(o] o
and Ru e So satisfy (1.3.2) and (1.3.5) respectively. By (5.1.2),
(5.1.4) and (1.5.1), for any Q € & _,

(o]
[:—z(I—R)u]Q
[:_a:(I_R)u’ s]n
= (WI-Ru, VRg),

= ( V(Iu — u) .\7Ra)n

= .[:—a:”"_u) ’g'fg]n

+ [:—y(lu—u),%g]n .

We congider the xr—derivative term. It can be expanded thus:

(5.1.10)

Ty Fie,rg(™

wvhere the sum is over the triangle pairs Ak' The functionals

F are defined
X,Rg by

- a_ _ 29 ]
Fr, o™ = [ ax(T¥ ~ "+ o a '
where ¢ can be any member of S. (Recall that Rg = 0 on dn; as

usual this implies the vanishing of contributions to the sum from

all unpaired triangles Bk') Now if u is quadratic on Ak then Fk, ®

vanishes by (1.5.4) and (1.5.5). But by S.E.

- = I
IFk,¢(u)| s i “u”3,w,Ak|| ax |z a)

for all u e W:(Ak). Hence by B.H. (compare with (1.5.8)),

2 L)
| F (u) I < ch |ul I | | I .
kK, 3,m,Ak ax L1 (Ak)
Subsgtituting
Y = Rg (5.1.11)
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into this bound and summing over k, we get

|[%5(I"'")'g£g]n
2

< ch  |ul

1=l
3,0,0 ax L, Q)
The y—derivative term in (5.1.10) is now bounded identically

and by (5.1.8),

| [ 2a(t = Ru ]Q l
<

2
ch luly o0 1Ry 1,0

2
< ch |(log h| |u|3,n’n (5.1.12)
But by S.E. and B.H. (recall that Mo is an x—-derivative stress-
point)
a_ r
| [ ag(T¥ — ) ]Mo I
< ch2 jul (5.1.13)

3,0,0 ;
adding (5.1.12) with @ =Moto (5.1.13) we arrive at the

pointwise superconvergence result

[, |

< chlrog hl |ul ) (5.1.14)

3,m,80
We remark that we can bound the y—component of V(I — R)u in
exactly the same way as the x—component. So in fact
2
I (I -R)u '1,m,n € ch|log h| ""3,«.,0
and (5.1.14) can be extended at once to cover any superconvergent
recovery schemes for the full gradient at any point in @ (recall
Section 3.3).
We note the |log h| term in (5.1.12) and (5.1.14). It implies
that there may exist a limited number of stress points M at which
2 _ 2—-¢€
I [ a:c(I R)u ]M I = O(h ) (0 < € ¢¢< 1) ,
i.e, superconvergence "just fails". We will discuss this
phenomenon in detail in the next section and explain why it does

not in general occur. Therefore in practice we simply ignore the

logarithm and say that the (recovered) gradient is indeed
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superconveﬁent in a pointwise sense.

Numerically, the maximum erroxr over all stress.(or recovery)
points tends to exceed the averaged error by an empirical factor
of between two and five. For example, we recall (from Section
1.6) that the averaged tangential derivative error at stress

points, when u satisfies (1.6.2) and is approximated by (1.6.1),

is
2
E tgt & 1.4h .
The corresponding maximum error (over all stress points in Q) is
found to be
2
E tgtl 1 5.6h .

(For other examples see Levine, 1982.)

We turn finally to the proof of (5.1.7), considering the
result in a slightly more general form which will be useful to us
in the next section. For simplicity of presentation we consider
only the Green's function corresponding to the x-derivative in
(5.1.3), (5.1.14), etc. (The result and proof are identical for
all other derivatives. )

Lemma 5.1 Let € 0 be a constant and let

_ _ 1 when € = 0
p = Be) = { o when € > O . (Bl 5})
Let g = g(E.n) € aé(n) be defined by (5.1.3) Then
< 8
Il p Vg ”Ll(ﬂ) € ¢ |log hi . (5.1.16)

In particular, if € = 0 then we have (5.1.7).
Proof 1Iet us define the function g6 = gs(z,'n) - recall (5.1.1)
and Figure 5.1.1 - by

9y = ‘; Ip 8(s) s as . (5.1.17)
[ (o]

wWe show first that g5 satisfies a bound identical to (5.1.16) and
then examine the connection between 9g and g.

We express g8 in the form
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fe)
6 P 0

(5.1.18)

where (p,0) are the polar coordinates corresponding to (¢,n)

(recall Figure 5.1.1),

identity

directly

Then, since

ZWJps(s)sds =
o

and 80 (5.1.19) reduces to

1
| Vg I ) 2mp2

Therefore the contribution to the integral

€
Il pva,_ |1
5 LI(n\Ao)

A

¢h "0
c

e—1
[ "
ch

M

€ ¢ [ pS (log p)a ]

< clLoghIB + ¢

<€ ¢ |log hlB .

Alternatively suppose that (x,y) €

c 211e
A AR

and substitute this into the differential

- (3 o)
9g ap 95 ae 95 .
ég
& = -MFS(s)sds + 6(p) cos © »
ap 52
| Vg, I < 1; jp 6(s) s ds + 6&(p) . (5.1.19)
o° Jo

Now, suppose that (x,y) ¢ Ao. Then &§(p) = 0 and

J.J- 5§ dr ay
Ao

= 1 (5.1.20)
(5.1.21)
&
Il p%vg, 11, £rom
1
(5.1.22)

we mmust now work

from (5.1.19) because we are too close to the

implies the following bound:

singularity at Mo (i.e. p = 0) to use (5.1.21). If € > 0, (5.1.1)



ch p
J I o€ ! s(s) s as dp

0 0
ch
1 J €—1
< = p dap
21 0
1 € |ch
* Zne [ P ]o
S che
< & 3 (5.1.23)

or if e = 0, we must resort to the asymptotic bound on & in

(5.1.1), to obtain

ch p -1
I I p 6(s) s ds dp
(o] (0]

ch
< ch? I Ip p ! s das ap
o "o

-2 ch
< ch I p dp
o

€ c . (5.1.24)
Hence by (5.1.19), and (5.1.23) or (5.1.24) as appropriate,
€
(-2 /- B B
5 Li(Ao)

ch 2w e
< J I [o] | Vgs | p 4de dp
o o

< 2n I:h IZ p€! §(s) s as ap + IJn o &(p)

< c .

adding this to (5.1.22), we therefore obtain

€
1 P%9gg 11}, (a)

< c |og nP (5.1.25)

as desired.
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In the remainder of this proof we will show that g6 and the
Green's function g are sufficiently similar for the property
(5.1.25) of g6 to carry over to g. We note that g8 is the
smoothed x—derivative of the (better known, undifferentiated)
free—space Green's function (21r)_1 log p; indeed if (x,y) & a,
then, by (5.1.20) and (5.1.1) the form (5.1.17) reduces to

g8 = 1;':2 = ;—1; g—m log p . (5.1.26)
In fact, for any p > O, g8 is a fundamental solution of the

differential equation corresponding to (5.1.3). For ( from

(5.1.18))
g P
19 & . cos © [l
pap[pap] = 316(s)sds + coseap
P (0]
and
2 P
‘13 8_2 9g = - __cosae J §(s) s ds .
p 9o [e) 0
So by the chain rule and (5.1.1),
8 _ a8 _ 38
Ags = cos © p Y = Py . (5.1.27)

We investigate the case p = 0 (i.e. (x,¥) = Mo) separately, by
expanding (5.1.18) for small p — recall § & & -

2
g, ~ coso [ 8(0) 2+ g—zm) i o(e’) ]

2
£ [ a8 L. 3 ]
~ §8(0) 2 + cos © ap(O) 3 + O(p ) :
Although |cos ©| is undefined at the origin, it is Dbounded;
furthermore since 8§ € ot , 08/8p vanigshes at the origin p = 0. So
IAgsl vanishes there as well:
28 _
I[Ags]p=o| ‘ I[ap p=0| SEREER

Now, let v e H(I)(n). Then by (5.1.27) and integration by parts

twice,

(VQSIVU)Q = _(Agslv)n

]
—
[ ]

-
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So g6 € 51 (2) satisfies the weak equation (5.1.3). However it is
not the same function as g because the latter vanishes on 90 (and
gs does not). Suppose now that a harmonic function gH € HI () is
chosen to satisfy

g6 + gH = 0 on aqa. (5.1.28)
Then, since ( VQH , VU )n = 0 for any v € Hé(n), the sum

(g5 +9g)
satisfies (5.1.3) too and by (5.1.28) is thus identical to the
origi-nal Green's function g.

It only remains for us to bound || perH N If the

Ll(ﬂ)'
stress—sampling point MO (i.e. the singularity of gs) is bounded
away from 99 as h - O then the boundary values of gH are bounded,
in all noxrms, independently of h. Therefore since gH is harmonic

it is also bounded in all norms over O (by the maximum

principle) — independently of h — and by (5.1.25)

&€ '_ €
€
< He%e 1 )
+ e i vag Il

L ()
B 1
< c |log hi| + c

< ¢ |{log hlB .

Alternatively, suppose that Mo is not bounded away from a0 as

h -0 (i.e. d( Mo , 92 ) - 0) but that Mo is still bounded away

from all of the corners of Q. Let us now write gH in the
following form:

gH = gs + 9g . (5.1.29)

Here g; is an image function of the same general form as gs

(5.1.18); the singularity and direction of differentiation (i.e.

. *
the loci p° = 0 and © = 0 in Figure 5.1.2(a)) are chosen so that

9g + g; will vanish on the segment of 3da which Mo approaches as h
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(o) /.

77////////////76{]/7/////////HU oN

ez o

Fiqure §.1.2

Image functions for singularities close to aq

(a) The singularity p =0 (i.e. Mo) is close only to one
segment of 2n: gy is the function of the form (5.1.18) with polar
coordinates (p ,0 ) as marked.

(b) The singularity is close to a vertex — i.e. two segments -
of aN. Since O is a rectangle, g; can be given as the sum of

three ggtype functions g;”) (J = 1,2,3).
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- 0. Thus g; gatisfies a bound of the form (5.1.25) and
furth{more the image point p* = 0 is outside 0, 1i.e. g; is
harmonic in the interior of Q.

We see therefore that g; is another harmonic function with
values on a0 such that (5.1.28) still holds. But g; vanishes
identically on one segment of 9a (namely that approached by Mo)
and is bounded independently of h, in all norms, on the other
segments. (This is because both the limit point of Mo and its
image are bounded away from all these segments.) So, as before,

Il p°vg e (o
< 11 PV, I + 11 e, I
8 L 1 (1) & L 1 Q)
+ 1 Pag 11, o
1
< ¢ |log hlﬁ + c |log hl‘B + c
< ¢ |log h IB .

Pinally, suppose that the singularity MO approaches one of the
corners of 90 as h - 0. Again, we employ the decomposition
(5.1.29); this time however g; is the sum of three image
functions (see PFigure 5.1.2(b)) such that g8 + g; vanishes on
both the boundary segments neighbouring the vertex V. The
weighted norms of g; and g; are bounded exactly as above and we

arrive once again at (5.1.16). i

5.2 ILOGARITHM-FREE ESTIMATES

In this section we will discuss the pointwise bound

< ch2 | tog hIB | lul |

| (I = R)u I1 N (5.2.1)

»00,82 3+e,m,

where € » 0 and B is as given by (5.1.15) above. (For a parallel
discussion of the bound

2 B
R =wlly gy € o llog AT H1vllg g -

182



which has been a subject of widespread speculation for some time,
see Levine, 1984. See also Haverkamp, 1984, for an alternative
approach to the latter bound.) We have already established
(5.2.1) for the case € = 0 but we have not yet shown that the
|{log h| factor is necessary. We give here a numerical example of
O(h2|1,og h|) convergence; note that (as a particular consequence
of the existence of such an example), the bound on ||Vg| lLl(ﬂ)
yielded by Lemma 5.1 is sharp. We start however by considering
the case € > 0.

Theoxem 5.2 Let u € W:"'e(n) for some constant € > 0. Then for

the model problem discussed in Section 5.1,

2
| (I -Ru I, < on” lull

,®,0 . (5.2.2)

3+e,0,0
Proof As above, it is sufficient to consider just one component
of V(I — R)u evaluated at just one stress point Mo = ( 2,1 Vg )

in Q. We arrive again at (5.1.10) and re-<xamine the x—derivative

texrm

8 - 9Rg =
[ ax(I¥ ~ ¥+ 5 ]n = L P pg™ -
The result will follow at once if we can bound this sum by
2
ch “"”3+e,m,n ’
for the y-derxrivative term is treated identically.
We decompose the unknown u thus:
u(xz,y) = p(z,y) + r(zy) ., (5.2.3)
where p is the cubic defined by
x o
Dp(x,,u,) = Dul(x,,¥,) . x| € 3
(a is a multi-index). Now consider an « for which |x| = 3. Then
e e : w3+e
by the definitions of r, p and the norm in o ),
(¢
D r(zx, vy ) |

= I D%u(z,y)-pP(x.,u)) |

| 0% (u( =, ¥ ) - P2y, Uy ) |
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= 1% @z, y)-ul=z,, u,)) |

€

€ p llull (5.2.4)

3+e,m,0
for all (x,y) € Q.

Using this decomposition we will show that, because € > 0, all
the contributions to logarithmic behaviour either decay radially

away from M_  or cancel transversely. We start by examining

o
F (p):
k,Rg‘P , .
Fr,rg® = .”A w=-» [ ]Ak
K
= F () %]Ak

(say). Now the Fk(p) thus defined depends only on the restriction

to Ak of the function p. Also, in the model problem, all element

pairs Ak are congruent and aligned in the same direction. So,

since p is cubigc,

Ak (o] :

for all k; furthermore all quadratics are in the null-space of Fk

[r] = [p]A + quadratic ,

(Lemma 2.2). Therefore Fk(p) is independent of k and so (recall

Rg = 0 on 3Q)

_ 2Rg
Lo P rg® = FolP) Ex[ ~ ]Ak

- -2 9Rg
= Fyp) o [[
Q
-2
= Fyp) v ¢ Rgay
an
= o . (5.2.5)
(As an aside, we can easily extend (5.2.5) to the statement
(Vv (Ip-p) , ) = 0
for all cubic p and all ¢ < so whence, by (1.3.2) and (1.3.5)
with ¢ = (I — R)p,
| (I--R)DII,‘2 = 0 .
So on this mesh, the Finite Element approximation Rp is in fact

exact at all nodes for all cubic p — compare this with the notes
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to (1.4.6) and (1.5.9).)
We congider next the contribution from the remainder term r.

This (recall the bounding of the F

X, & in the last section) is

L Fx,rg ) I

< ch2 Ek Ir| (5.2.6)

| %= || :
3,m,A, ax L, (Ak)

Now by (5.2.4) each |r| is bounded by
. 3,m,Ak

. [
(pk) “"”3+e,m,n

where P is the maximum of the set of distances to points in Ak

from M_. Moreover,

0
e || @Rg
(o) H oz |IL1(Ak)
< (p° NWRAL
1"k
< ¢ |lp°vRal|
< ¢ [Ilp‘lefl(Ak) + 11p°V(Rg — @)1 ]
LI(Ak) Ll(Ak)

So, by (5.2.6), (5.1.5) and Lemma 5.1,

l Ly F,rg (r) |
< en? L, (Pk)e |'u”3+e,w,n || %frg HLI(Ak)
< on’ el e o0 Lk P || = ||L1(Ak)

2 €
< en? ullg aq [ 1P oL ()
+ 119(Rg - @)1
L, (@) )

< ch? ||ull : (5.2.7)

I+e,m,0
The result of the theorem now follows from (5.2.3), (5.2.5)
and (5.2.7). HH#
We have shown that the |log h| factor in (5.1.14) is mnot
necessary if the smoothness of u is increased to w:+€ for any € >
0. On the other hand, this factor does remain necessary when € =
0: we demonstrate this by means of a simple example.

Let 2 be the unit square ( -1/2 , 1/2 )2 and let

u = a:3 y2 / (:z:2 + y2) : (5.2.8)
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(We note that away from the origin u is cm; overall u is wi but
not Wi+e for any € > 0.) We partition @ into squares of side h
and thence into triangles with diagonals of slope +1; we take Ru
€ SE to be the Finite Element approximation to u via Poisson's
equation: Ru solves (1.6.1) with Au given analytically from
(5.2.8).

Since we are concerned with displaying the asymptotic
behaviour of the error for a computationally feasible range of h,

we examine the point values

e = e(uzh) [ g;(r - R)u ]Mo

(O,—h/Z) ’

(5.2.9)

where MO = Mo(h)
rather than the overall supremum of the full gradient. (Note that
if we take h ' tobe odd then M (h) will always be an -
derivative stress point.) In Table 5.2, values of |e]|, |e/h2| and
|e/h2Log h| are presented for h = 1/3, 1/5, ... , 1/15; in
addition we give relative differences between rows in the columns
marked A. The |log h| factor is very clear for h < 1/7.

We remark that this example was only constructed with some
difficulty, Dby an intuitive matching of the directions of vu and
Vg for functions u just in Wi. Most simple functions in wi\wi+e
do not display this |tog h| behaviour. Further, most wi functions
are also in wzfe; finally even when the |log h| term is present
it will in general not have a significant effect on the global
error for computationally interesting h. For these reasons we
conclude this section by repeating our earlier remark that in

practical work, the best thing to do with the logarithm is to

ignore it.
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1 | e | e _ () R )
3 n? n?1og h I l A[hz] I | A[hztoa h] |
x 10° x 10 x 10
3 17.70 1.593 1.450
26% 12%
5 8.301 2.076 1,290
16% 2.9%
7 4.976 2.438 1.253
11% 0.65%
9 3.370 2.730 1.242
8.4% 0.32%
11 2.245 2,970 1.238
6.6% 0.14%
13 1.877 3.172 1.2367
5.4% 0.06%
15 1.488  3.347 1.2359
Table 5.2

Example of o(h2 log h) convergence

u and e are given by (5.2.8) and (5.2.9).
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5.3 FURTHER RESULTS

In this final section we +take an informal 1look at two
directions in which the model nm result (5.1.14) can be extended:
pointwise superconvergence for the generalised problem and
»"local" superconvergence. We do not go into every detail, partly
because +this would be unilluminating and partly because crucial
theoretical results (properties of the Green's function) are not
available to us in sufficient generality..

We congider first - and in brief - a generalisation of
pointwise superconvergence to the full problem of Chapter 4
(general self-adjoint, curved mesh, etc.). (Except where noted
below, the extended result can be made "logarithm—free" without
real difficulty. However the details of this process are
especially long and we do not intend to air them here.) As in
.c:ha,pter 4, we let the superscript * denote the use of numerical
quadrature by the centroid rule. Then, in place of

(5.1.1),...,(5.1.4) we define the functions 6, g and Rg so that

[%f,]q = [%f_,,s]‘:h for all ¢ « S,
anh(g.v) = [-g;':,s]nh forallveH;
and a;h(Rg.t») = [%ﬁ,s]:‘h for all ¢ € S,.

Then (recall Theorem 4.2)

| [ - vl

ST 4

*
= la_ ( (I -R)u, Rg)l|
gt

les



< la (Iru-wu, Rg)l

T,

+ la. (u,Rg)—a_, (u, Rg)l

T Ty

+ I(f, Rg)

*

T T,

In order to bound these three terms, we must strengthen (4.2.5):

-(f,Rg )| .
u e Hg(m) 0 W (%) .
a, e WA) (1,0 = 1,2) (5.3.1)
and Foe Wam) .
Now, asg before, we would like to bound these functions in norms
defined on nh (which might not be a subset of Q). We encountex
here the difficulty that Calderon's extension theorem does not
apply to Loo norms. Although the theorem of Stein (1970 - page
181) is applicable, we must accept a restriction: that the domain
Q@ is convex. (Note also that if we require a logarithm—free
estimate then an extra e-tuple order of differentiability must be
added to each of the functions in (5.3.1), in the manner of
Section 5.2. Unfortunately the result stated by Stein applies
only to integer orders of differentiation ; we do not know
whether this last restriction — that € » 1 - is a necessary one.)
2additionally, we replace (4.1.2) by

@u <« [Wey |?
on each band.

The next step is similar to Sections 4.3 and 4.4, the
difference being that now — as in Section 5.1 — the bounds are in
terms of the supremum norms implicit in (5.3.1) and the Wi norm
on Rg (as opposed to mean—-square norms throughout). We then seek
to generalise (5.1.5) and (5.1.7) to the full problem. Rannacher

and Scott (1982) state that, in the absence of numerical

quadrature, the former bound does indeed carry over to the
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generalised problem. There is however a well-posedness condition
that the elliptic operator L (4.2.1) is a homeomorphism
L: W1 nwz - L forallpe (1, 2¢4x 1.
p(0) p p
(Hexre « can be any fixed, small but positive number; W; (0)
denotes the w; (%) generalisation of Hy(0).) In particular this
condition places a restriction on the vertices of Q: the greatest
internal angle must be less than
™ [ 1~ o ]

(8ee Grisvard, 1976). Since o is arbitrary, this is satisfied by
any convex Q (a condition already imposed, by Stein's extension
theorem).

as far as (5.1.7) is concerned, we recall that Lemma 5.1
depends on explicit knowledge of the form of the free—space
Green's function 98; (5.1.17) and in particular (5.1.26) apply
only to the case of the Lap]:éian operator L = —A. The approach of
KrasovekiY (1967) may be useful for more general operators;
however it is restricted to the generally inapplicable case of
regiong O without vertices. We note here that the image-function
treatment of gH for stess points close to 92 can be applied (in
the standard way) to curved segments of the boundary but not to
any vertices which are not right-angled.

We believe that the bound on |Rg| for the general problem

1,1,0
is fraught with difficulty - from numerical quadrature, the form
of L and the shape of . We do not know the extent to which the
pointwise superconvergence result is jeopardised. We suspect that
gituations in which the stress point MO is close to a general
(convex) vertex of 390 are those most likely to lead to 1loss of
accuracy. However, we have been completely unable to find any

evidence either to confirm or to refute this hypothesis.
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We move on now to "local" superconvergence. We assume that the
conditions we have placed on the mesh, the unknown u and so on

are only satisfied in a subdomain 1 of 1. In the compleément no

of Q 1 any or all of these conditions may fail. We claim that

superconvergence still takes place at stress points in Q 1’

provided they are not too close to the boundary with For

o.
simplicity we present the discussion in terms of the model
problem; any possible generalisation of it follows the outline

given above.

Let ( no ’ 91 } partition O and let no e

00 e 1, such that

a( ea\am , ey \eR ) > ¢ (»0) .

Let Q be any point in ni\noo (i.e. Dbounded away from ano — see

Figure 5.3.1). Let the smoothed xr—derivative Green's function
(for the Laplacian) associated with Q be g. Since g is harmonic

in no (the singularity being in O, = n\no), we have

1
0 = (Iu—u, -Ag)
%
( V(Iu —u) , Vg )g
(0]

ano ’

where <-,-> and the " subscript denote a boundary inner—product

- <lu-u,g, >

and the outward normal derivative. So (recall the derivation of

(5.1.10))

3
[ a:':(I - R)u ]Q
= ( V(Iu-u) , VRg )ﬂ

= (W(Iu-u), VRg ),
1

+ <Iu-—-u, g (5.3.2)

v >ano
+ (V(Iu-u) , V(Rg - 9) )g
0

We consider these three terms separately. The first is bounded
in the wusual way (Section 5.1) and, since the conditions of

superconvergence are met within O presents only one difficulty

1'
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3122 32»

o Yon,

Pigure 5.3.1

Partition of 0 for local superconvergence

The sample point Q is excluded from O and hence bounded away

oo

from the subdomain no of O in which the superconvergence

requirements break down.
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- the bounding of con‘l{ibutions from left-over elements on the
internal boundary aQ i\an (on which Rg does not vanish). We pass
over this here because it is qualitatively very similar to the
bounding ¢f the contribution from no (i.e. the remaining terms of
(5.3.2)).

The second term is bounded by

Iu-u
I Wy o) 19'4,1,0n,

2

< ch lul +

2,0,0 [ ‘gslz,z,ano

'93'1,1,390] :

The norm on gs is bounded by inspection of (5.1.26); furthermore
we recall that all norms on gH are bounded independently of h.
(If Q is close to 4 then we decompose gH according to (5.1.29):
g; is bounded as 9g and g; as gH above.) Finally the last term in

(5.3.2) is bounded thus (under a very mild condition on the

smoothness of u in no ):

( V(Iu - u) , V(Rg — g) )n

(o]
< Iu - u =
| 1,0, 'R0 =9y
< ch |uj IRg — gl .
2,n° 1,no
It remains then to bound |Rg - g|1 Q* Now, according to
r
(o]
Nitsche and Schatz (1974),
IRa - 91y,
< ¢ [ h gl + |iRg — gll_ ] . (5.3.3)
2/550 3:8h0

(Although they restrict this result to regions noo which do not
meet the main boundary 90, it is very easily shown that their
restriction can be dropped.) Here s is any positive integer; the

"negative” (or "dual") Sobolev norm is defined by

vl = sup bivaail
-8 w eHSnHI llulls
[o]

The first texrm in (5.3.3) is bounded in exactly the same way
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as the wi norm on g earlier; our problem lies with the 1local
negative norm on the error Rg — g. Our most promising approach is
to weaken it to a global negative norm (this was suggested by
Nitsche and Schatz) and then apply the duality method of Nitsche
(1968) (also of Aubin, 1967 and Oganesjan & Ruchovec, 1969).

We set s=2 and proceed thus:

IIRg = gl|_
2'“oo

< HRe-gll_yq

Hgg—g,wzl

e SU,
P Hwli,

w e ﬂz 031
0
(Here and below, integrals are implicitly over Q.) Let ¢ = Y(w) €
Hé(n) satisfy (weakly)
—AYy = w in Q.

Then by parts, (1.3.2) and (1.3.5), (5.1.6) and Lemma 5.1,

lIRg — gl|_
2'000

J = —ay )|
£ sup

w Hwll,
- eup M Y(Ra-g) . )

w Hwll,
- eup I V2. V(RY-w) )]

v Hwll,

-1
< sup lgly o IRV - o IRl o
-1
€ ch |log h| sup I\Illz'm'n ||U||2'n .
If — hypothetically - all +the corners of Q were strictly

acute (1) then by Theorem 5.1 of Grisvard (1976) we would have

vl < o llavll

,00,8 Lm(ﬂ)

Hence by S.E.

L2 € c {lwl (5.3.4)

2,0,0Q 2,0

and the above supremum would be bounded, whence by (5.3.2)
2 . _ 2

| [ a::(I R)u ]Q | < c(u)h™ (tog n| . (5.3.5)

In the (quite reasonable) case that Q has non-acute (convex)
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vertices - and in particular when Q is the model rectangle - the
regularity theorem cannot be applied: (5.3.4) fails and the final
supremum may well be unbounded. We do not know how this affects

|IRg - gl — let alone the norm over noo or the eventual

-2,0
egtimate (5.3.5). We suspect that this result remains valid for
all convex 2, Dbut are again unable to either prove or disprove
our claim.

Let us end on a lighter note: a simple numerical example of
local superconvergence. Let 2 be the truncated square, as shown
and triangulated in Pigure 3.1.3. Let u be the quadratic

- 1% + 2 .
(We choose this function to highlight asymptotic behaviour for
computationally reasonable values of h. It has been our
experience that when breakdown of superconvergence igs due to
effects from a subdomain of Q, in particular the neighbourhood of
a line, the error is somewhat smaller than expected and the
asymptotic rate may not be obtained for practical values of h.)
We take h = 1/4 , ... , 1/12; as usual we define Ru by (1.6.1).

Now, as predicted in Section 3.1, we obtain

Erec o 1.9h3/2 .
However when we restrict the average to elements in the subdomain

axa. = (o0, 1/2 )%

1 00

— this is bounded away from the region no where the mesh
conditions break down — we obtain
2

E =~ 1.9h .
rec
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CONCLUDING REMARKS

"The stresses are, by the basic assumption, constant within
the element. It is usual to assign these to the centroid of the
element, and in most of the examples in this chapter this
procedure is followed. An alternative consists of obtaining
stress values at the nodes by averaging the values in the
adjacent elements..." (Zienkiewicz & Cheung, 1967.)

My principal result is that there is nothing at all to be
gained by assigning stresses to element centroids. Although the
proposal to recover the gradient at a node by taking a six
element average (recall Figures 3.3.8 & 3.3.9) is a sound one,
the centroids play no part in its justification.

Admittedly the work is not complete: the practical questions
of “good" choices for triangulation and recovery algorithms
remain open and there are noticeable, if occasionally abstruse,
theoretical gaps in the Green's function work of Chapter 5. These
cracks, however, are non—structural in nature: I feel that the
essential features of superconvergence rest on a solid
foundation.

Nick Levine

Yule 1984/5
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