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ABSTRACT

Necessary conditions are given for the problem of pole assignment by state
feedback in singular linear systems (descriptor systems) to have a solution which
is reqgular and non-defective. For a robust solution, such that the assigned
closed-loop poles are insensitive to perturbations in the system data, the same
conditions must hold. It can be shown that these conditions are also sufficient
for the existence of a feedback which assigns the maximum possible number of
finite poles with regularity. These results provide the basis of a procedure for
constructing closed-loop semi-state systems with given poles, guaranteed

regularity and maximum robustness.

Keywords: automatic control, generalized state-space, semi-state, singular
linear multi-variable systems, descriptor systems, pole assignment, state
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1. INTRODUCTION

In singular, or degenerate, time-invariant milti-input linear control
systems (desciptor systems), pole assignment by feedback requires not only that
the closed loop system have prescribed poles, but also that it is regular, and
that it is robust, in the sense that its assigned poles are as insensitive as
possible to perturbations in the system data. In this paper we give a detailed
derivaticn of results which we have previcusly reported (8] on ccnditions for the

pole assignment problem to have a reqular, non—defective, solution. These

results form the basis of numerical procedures for generating rotust feedback
systems with prescribed poles. The procedures are extensions of earlier
techniques which we have developed for robust pole assignment in non—degenerate
systems (6], [9].

We begin by examining open-loop singular systems in 82, and in %3 we apply
the results to closed-loop systems, in order to obtain necessary conditicns for
arbitrary pole assignment with regularity. These conditions are equivalent to
the "finite" and "infinite" pole controllability conditions derived in (11 [2]
(10] [14] [18], but the proof given here is very simple and does not recquire
transformation of the system into decomposed 'slow' and 'fast! subsystems. These
conditions are also sufficient for arbitrary pole assignability with guaranteed
regularity [3] [5].

in ¥4 we give conditions under which a specified non-defective set of

eigenvectors can be assigned to correspond with the recruired closed-loop poles,
and an explicit form for the feedback matrix is derived. These results
demonstrate that the "infinite" pole controllability condition can be used also
to guarantee regularity of the closed-lcop system pencil and an algoritlm based
on these results for generating the feedback is described. 1In [1] and [2]

algorithms are also suggested for the solution of the pole assignment problem.
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The method of [2] is, however, based cn the canonical decamposition of the
system, which should be avoided for reasons of numerical stability (see, for
example, [7]); and the method of [1] does not guarantee regularity of the
closed-loop system. The new algorithm presented here does not require any
transformations of the sytem, and it guarantees regularity of the closed-loop
pencil. Moreover, the feedback is obtained by selecting independent eigenvectors
corresponding to the assigned poles, and since it is known {12] [15] that the
sensitivities of the closed-loop poles depend on the conditioning of the
eigenvectors, the extra degrees of freedom in the feedback can be selected to

give a robust solution to the pole assigrinent problem,

Measures of robustness are defined in %5 and properties of the robust pole
assignment problem are discussed in 86. It is shown that optimizing robustness
also minimises bounds on the magnitude of the feedback matrix and on the
transient response of the closed-loop system. In 87 a detailed procedure is
described for selecting the eigenvectors to give a robust, regular solution to
the pole assignment problem for singular systems, based on techniques which we
have previously developed for ncn—degenerate systems [6] [9]. In §8 we present

some applications and numerical results, and in %9 concluding remarks are given.



2. OPEN-LOOP_REGULARITY

We first consider systems described by the dynamic equations

EPx = Ax (2.1)
where E, A € R0 and rank [E] = q { n. Here 2 denotes the differential operator
d/dt for continuous systems, or the delay operator for discrete systems. We are
specifically interested in the singular, or degenerate, case where ¢ < n. The
behavior of system (2.1) is governed by the poles, or generalised eigenvalues, of
the matrix pencil A - AE, denoted by [A,E]. Solutions to the equations (2.1)
which satisfy given initial conditions are unique provided the pencil [A,E] is
reqular, that is

det[A - AE] # 0 , (2.2)
(regarded as a polynomial in A). Tt is-weli—known {15] that a regular pencil has
at most q finite eigenvalues and that the number of finite eigenvalues is given
precisely by r = deg det [A - AE]. Furthermore, the pencil [E,A] then has

precisely n-r zero eigenvalues, as shown in the following Lemma [13].

Lemma 1 Assume [A,E] regular. Then [E,A] has precisely n-r zero eigenvalues,
where r = deg det [A - AE].
Proof: We let p(A) = det[A - AE] and p(A) = det [E - AA]. Then, since

det[A - AE] = det[-A[E - A 1A]] = (-A)"det[E - A~la],
we have p(A) = (—A)n é(A_l). Moreover, [E,A] has precisely n-r zero eigenvalues
if and only if p(A) = A" Tt(A) where t(0) # 0. Tt follows that p(r) = (-)%

t(A—l) and p(A) is of exact degree r. o
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The eigenvectors of the pencil [E,A] associated with the zero eigenvalues

must belong to the null space #{E} which has dimension n—q. Thus it follows from

Lemma 1 that the regular pencil [A,E] has q finite eigenvalues if and only if the

zero eigenvalues of [E,A] are non-defective. We have thus shown

Lemma 2 If the pencil [A,E] is regular, then it has d = rank {E] finite

eigenvalues if and only if
T

V'E=0 and VTA=zTE for any Eecn = v=0, (2.3)
or, equivalently,
Ev =0 and Av = Ez  for ‘any _z_ecn = v=0 (2.4)

We next show that condition (2.3) is necessary for regularity of the open

loop system. We write

T T
E = [Rp.0] [Sg.S,)" = ReSp (2.5)
where RE € Rnqu RE is of full rank, and the matrix [SE‘Soo] is orthogonal. Then
the columns of S“ and SE give orthonormal bases for #(E} and “R(ET}, respectively,

where #{:} denotes null space and %{-} denotes range. We use the following

Lemna.

Lemma 3 Condition (2.3) is equivalent to each of the following conditions:
(i) rank [E,AS ] = n; {2.6)

(11) rank (E +AS,S'] =n | (2.7)
Proof: The equivalence of (2.3) and ( 2.6) is demonstrated by contradiction. 1If

(2.6) does not hold, then there exists v # 0 such that XT[E,ASQ] = 0. Hence,

VTE = 0 and VTA = zTE, where either z = 0 or z satisfies zTRE = KTASE 2 0, and

condition (2.3) is violated. Conversely, if (2.3) does not hold, then there

exists v # 0 such that VTE = 0 and VTAS°° = zTES“ = 0, and hence (2.5) is not

satisfied.
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To show the second part, we observe that if (2.6) is violated, then there
exists z_# 0 such that X?E = 0 and \_/_TAS°° =0, and (2.7) is clearly not satisfied.
Finally, if (2.7) fails to hold, then there exists v # O with v'E = - v'as s T,
It follows that -v'AS_ = v'ES_ = O and (2.6) is violated. Conditions (2.3),

(2.6) and (2.7) are, therefore, all equivalent. a
From the equivalence property of Lemma 3 we can now easily prove

Lemma 4 If condition (2.3} holds, then the pencil [A,E] is regular.
Proof: Condition (2.3) implies (2.6), from which it follows that

rank [ESE,AS”] = n and, therefore, there exist unique matrices Z 22 satisfying

1!
ZI
[ES;.AS.] | | = As
N
2
We thus have
21 - AT o
[A - AEI[S,S,) = [ES_,AS_] :
Z I
2
and the pencil [A,E] is clearly regular (with g finite eigenvalues). a

From Lemmas 2 and 4 we have immediately

rem 1 The pencil [A,E] is regular and has q = rank[E] finite eigenvalues if

and only if condition (2.3) (or (2.6) or (2.7)) holds. o

Theorem 1 gives a necessary and sufficient conditiocn for the pencil [A,E] teo

be regular and have a full complement of finite eigenvalues (multiple or simple).

A necessary condition can also be given for the pencil to be non—defective, that




—6-
is, for [A,E] to have a full independent set of corresponding eigenvectors. We
have

Lemma 5 If the pencil [A,E] is regular and there exists K < £ yith
rank [Kq] = = rank [E] such that
AX =EX A , A =diag (A ,A.,...,A} (2.8)
q Tqq q g (A4, q
here A, € € V,, t ank ([X_,S_1) = n.
where A jo then r (f . o] )

Proof: Since the matrix [SE'Soo] is orthogonal we may write

T. ;
S, o]
E'q
[X,:S,] = [Sg.S,) = |
®q

and it follows that [Xq,Soo] is non-singular <==> ngq is non-singular <=>
stgxq = BX_ and X have full rank. The result then follows by contradiction.
If rank [Xq] = q and rank [E:xq] < q, there exists w » 0 such that v = Xq_vg. # 0 and

Ev = 0. 'I'henfor_z_=XAw we have

= qd &
Av = AX w = EX A w = Ez
and the condition of Lemma 2 is violated. a

This lemma implies that if the regular pencil [A,E] has q independent
eigenvectors corresponding to finite eigenvalues then these eigenvectors remain
independent under the application of E, or equivalently, no linear combination of
them lies in the null space of E. This lemma also gives, therefore, a necessary
condition for a regular pencil to have q = rank [E] pon—defective finite
eigenvalues.

In the next section we apply Theorem 1 to obtain conditions for the
existence of regular solutions to the problem of pole assignment in singular

systems. In %4 we examine eigenvector assignment by state feedback.



3. FOLE ASSIGNMENT IN SINGULAR SYSTEMS
We now consider singular control systems governed by the open loop equations
E@_ = 55 + 32 (3.1)
where E, A ¢ Rnxn' B e Rnxm, rank [E] = g < n and rank [B] = m. (Here 2 again
denotes either the continuous differential or the discrete delay operator). The
poles, or generalised eigenvalues of the pencil [A,E] govern the behavior of the
system and may be modified by state feedback. The pole assigmment problem is

specified as follows.

Eroblem 1 Given real matrices E, A, B where E, A ¢ Rnxn' B e Rnxm’

rank [E] = g < n, and rank [B] =m, and a set of q self-conjugate complex numbers

€= (Ahgrenidg), FInd F e R ™ such that
4 det (A + BF - AE] = 0 , YA e 2, (3.2)
and such that
det [A + BF - AE] # O VA Eee . (3.3)

The equation (3.2) implies Aj € £ is a generalised eigenvalue of the pencil
[M,E], where M = A + BF, and equation (3.3) guarantees that the pencil is
regular.

The following two conditions are easily shown to be necessary for the pole
assignment problem, Problem 1, to have a solution for any arbitrary

self-conjugate set ¢ of q eigenvalues.

Condition C1: If VTA = vaE and VTB = 0, then v = 0.

0
o
1<
o
"
o
I<
Ng
0
In
L
:
]
I<
N
o

Condition C2: If VTE
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If Condition C1 does not hold then there exists a vector v such that
z?(A + BF) = yz?E for any choice of matrix F, and hence both (3.2) and (3.3)
cannot be satisfied unless ¢ € £ and the problem cannot be solved for arbitrary
£. Similarly, if C2 is not satisfied then there exists v # 0 and vector z such
that Z?E = 0 and z?(A + BF) = E?E for any choice of F, and, by Theorem 1, a
regular solution to the feedback problem cannot exist.

The Conditions Cl1 and C2 are thus necessary for the existence of a solution
to the pole assignment problem, Problem 1 (see also [1], [2], [5], [10], [14],
[16]1). As shown in (5], these two conditions are also sufficient for the
existence of a feedback which assigns preécisely q = rank [E] given finite

eigenvalues with regularity, and we have the following theorem,

Theorem 2 The pole assignment problem, Problem 1, has a solution for an
arbitrary self-conjugate set of poles L if and only if Conditions C1 and
C2 hold. a

We remark that conditions C1 and C2 have various equivalent formulations.
Condition C1 is clearly equivalent to

Condition C1': rank ([B,A - AE]) =n, va

M

c.

From Lemma 3 of §2 it can also be seen that condition C2 is equivalent to
Condition C3: If V'[E + AS_S'] = 0 and v'B = 0, then v = 0; |

and that C2 and C3 are both equivalent to the conditions

Conditi i rank [B,E,ASW] = n;
T

1 =n.
-]

Cendition C3!': rank[B,E + ASQ§
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Condition C1 (or C1') corresponds to the "finite pole controllability"
condition as given in (2] [16], and implies that all the finite modes of the open
loop system (3.1) are controllable. Condition C2 (or C3, C2' or C3') corresponds
to the "infinite pole controllability" condition of (11 [2] [10} [14] and
guarantees that poles at infinity can be shifted into arbitrary finite positions
and implies that impulses in the solutions may be eliminated. The formulation of
condition C2 given here does not, however, require the transformaticn of the
system into canonical form in order to obtain a decomposition into 'fast' and
'slow' subsystems. For computational purposes it is important to avoid such
transformations as they are, in general, unreliable numerically (see e.g. [(71).

We remark, further, that condition C2 guarantees both reqularity of the
closed loop system and complete controllability of the open loop 'infinite!'
ﬁoles. Fletecher [3] points out that when G2 does not hold, then it is still
possible to assign fewer than q = rank [E] eigenvalues with regularity.
Condition C1 simply guarantees controllability of the open loop 'finite!
eigenvalues and is not needed to ensure regularity. Indeed, if C2 holds and all
the uncontrollable modes which violate Cl are included in the set £, with their
appropriate multiplicities, then a reqular solution to the pole assignment
problem (Problem 1) can still be found. Moreover, although the uncontrollable
open~loop poles may not be re-assigned, their corresponding eigenvectors can be.
This is significant because the sensitivities of the poles to perturbations in
the system data are dependent on the conditioning of the corresponding
eigenvectors [12] [13] [15]. 1In practice, therefore, we are interested in
constructing a feedback which assigns both eigenvalues and eigenvectors such as
to ensure robustness of the closed-loop matrix pencil. In the next section we

examine conditions for complete eigenstructure assignment.
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4, ETGENSTRUCTURE ASSIGNMENT IN SINGULAR SYSTEMS

In non-singular systems, pole assignment by state feedback can be achieved
by assigning the eigenvectors associated with the assigned eigenvalues of the
closed loop system. The selected eigenvectors then uniquely determine the
required feedback matrix [9], [11]. In singular systems generalized
eigenvalue-eigenvector assignment alone is not sufficient to determine the
feedback. Furthermore to obtain regularity of the closed loop pencil, certain
restrictions on the eigenstructure must be satisfied. In this section we derive
conditions for determining a feedback such that the closed loop system has a
specified non-defective eigenstructure and is regular.

We first give a necessary condition for non-defective eigenstructure
assignment with regularity. From Lemma 5 of 32, we have immediately
Lemma 6 If there exists F ¢ Rmxn" such that the pencil [A + BF,E] is regular,
and Xq € cnxq' such that rank[Xq] = q and

(A + BF)Xq = EXqu, Aq = diag{hl,Az,...,Aq} ' (4.1)
where /\J. €C, VJ. , then the matrix [Xq,soc] {equivalently, Exq] is of
full rank. o
The next theorem provides necessary and sufficient conditions under which a

given set of non—defective eigenvalues and corresponding eigenvectors can be

assigned.

Theorem 3 Given Aq = diag(,\l,Az, . "\q}’ Aj € L, and matrix Xq such that

[Xq,Soo] is non-singular, then there exists F satisfying (4.1) and such that the

pencil (A + BF, E) is regular if and oply if

T .
U,(AX -ERA)=0 , 1.2
1A%~ HRyly) (4.2)
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and
UT(E + AS_ST) bas full rank (4.3)
where
A
B = [Ub'Ull [ } ; (4.4)
0]
with U = [UO,UI] orthogonal and Z non-singular. Then F is given explicitly by
F = z'lfug(squq - A ), W] [xq,sw]'1 (4.5)
where W is any matrix such that
rank [E + AS,S) + ULl =n . (4.6)

Eroof: The assumption that B is of full rank implies the existence of
decomposition (4.4). From (4.1) F must satisfy

BFXK =EX A4 -AX , (4.7)

. q 99 q
and pre-multiplication by UL gives
T
ZFX = U_(EX A - AX 4.8
q = Yol {'q q) (4.8)

T
0=U,(EXA4_ - AX 4.9)
1Bl = B%y) (
from which (4.2) follows.
From Theorem 1, the pencil [A + BF,E] is regular, under the given

cenditions, if and only if the matrix E + (A + BF)Smﬁz has full rank, or

equivalently E + As“§E + UOWSE has full rank, where
ZFS_ =W . (4.10)

This condition holds if and only if W can be chosen such that the matrix

UL(E + AS ST + WsY)
0 =) -]

=]
. (4.11)
T T

UI(E + AS_S)
has full rank. Clearly condition (4.3) is necessary and sufficient for this to
be possible. The expression (4.5) for the feedback matrix F then follows
directly from (4.8) and (4.10), and if W is chosen to satisfy (4.6), the pencil

[A + BF,E] has the given finite eigenvalues and is regular. o
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The significance of this theorem for the construction of a feedback which

achieves pole assignment with regularity is considerable. Condition (4.3) of the

theorem holds if and only if Condition C3', or equivalently C2, C2' or C3, holds.

(This follows since we have C3' if and only if the matrix

T T

. . A UG(E + AS_S_)
U'[B, E+AS S]] =

T T

o U,(E + AS S )

has full rank, which holds if and only if (4.3) holds.) Condition (4.3) can be
tested independently of any choice of F, and if it is not satisfied then a
feedback assigning g finite eigenvalues gnd giving a regular closed loop pencil
cannot be found. Conversely if a set of q independent eigenvectors correspcnding
to the required closed-loop poles can be selected such that [Xé,sw] is
non-singular, then condition (4.3) guarantees that a feedback F can be found such
that the pencil {A + BF,E] is reqular. Previously it has been recognised that
this candition is necess;;y for 'infinite pole shifting' [1] [2] [10] [14], but
its importance in guaranteeing regularity has not, hitherto, been appreciated or
exploited.

From condition (4.2) of Theorem 3 the eigenvectors corresponding to a
distinct closed-loop eigenvalue Aj must belong to the space

75 = N{Uf(A -AE) (4.12)

(This, together with the requirement that a closed-loop finite pole must be
nen-defective, implies a minor restriction on the multiplicity of Aj). A
feedback matrix F which solves the pole assignment problem, Problem 1, can,

therefore, be constructed as follows:
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Given set £ = (Aj, j=1,2,...,q}, select q independent vectors fj € fj,
j =1,2,...,q, such that [X +S_1 is non-singular, where X = [x iXareo,X 1, and
J q (XSl gu 4 =[x X
select W such that (4.6) holds. Then matrix F given by (4.5) is the required

solution.

By this algorithm, reqularity of the closed-loop pencil is guaranteed. We
note that no restriction on the controllability of the open—-loop finite
eigenvalues (condition Cl) is made. Provided any uncontrollable modes are
included in ¢ (with correct maltiplicity) the algorithm can be applied, (although
the existence of a non-defective solution cannot, of course, be ensured).

The degrees of freedom in the choice of F correspond to the degrees of
freedom associated with the selection of the eigenvectors {Ed} and the matrix W.
Since the robustness of the closed loop system depends on the selected
eigenvectors, we may select the set {EJ} such as to optimize robustness. In the

next sections we describe a measure of robustness and give an explicit algorithm

for selecting the set {55} and the matrix W such as to obtain a robust feedback
solution to the pole assignment problem.

We remark that Theorem 3 gives conditions for assigning a maximum number of
finite poles, q = rank [E], with regularity. In the case where fewer finite

poles can be assigned with regularity, similar results hold {see [5]).
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5. MEASURES OF ROBUSTNESS FOR SINGULAR SYSTEMS

The matrix pencil [M,E] of a closed loop system, where M = A + BF, is
defined to be robust if its eigenvalues, or poles, are as insensitive to
perturbations in M and E as possible. Both 'finite' and 'infinite' poles must be
considered, and, in order to avoid special distinctions, we define a generalized
pole, or eigenvalue, of the pencil to be a pair (A,8) € € x R where the pole
takes the finite 'value' A/6 for & # 0, and becomes infinite for & = 0. We
denote the right and left eigenvectors associated with the eigenvalue (A,8) by X,
y; that is, X, Y satisfy

8Mx = AEX sy™M = AYE . (5.1)

If the pencil [M,E] is non—defective, that is, it has a full set of n

linearly independent eigenvectors, then it can be shown [12] that the sensitivity

of a simple eigenvalue (A,5) to perturbations in the components of M and E

depends upon the condition number

c(r,8) = nyt, "5”2/(|A|2 + 62)1/2 . (5.2)
where H~H2 denotes the Lz—vector norm, and the eigenvectors X, Yy are normalized
such that

yEx =5 , Yk =4 (5.3)

More precisely, if a perturbation O(e¢) is made in the coefficients of M or E,
then the corresponding first order perturbation in (A,8) is of order ec(A,8).
Here the distance between (A,s8) and the perturbed eigenvalue (:,;) is measured by

[(4,8) = (4,8)] = [A6 - A8|/((|a]2 + &2)(|n|2 + 52))1/2,
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If [M,E] is defective, then the corresponding perturbation in some eigenvalue is
at least an order of magnitude worse in ¢, and, therefore, system matrices which
are defective are necessarily less robust than those which are non-defective.
In the case of a multiple eigenvalue, if [M,E] is non—defective, then the
sensitivity, or conditien number, of the distinct eigenvalue (A,8), of
multiplicity p, depends on certain canonical angles associated with its right and

left invariant subspaces, denoted X and ¥, If X

P _ P
()_{_i}1 and ¥ = {Xill are bases
for ¥ and ¥ such that
T _ T =
YEX= GIP . YMX = AIP . (5.4)
then, from [12], first order perturbatioris in (A,8) due to O(e) perturbations in
the pencil are of order epc(A,8) where

- 2 2,1/2
c(A,8) = m?x (”Xi"z u§iu2/(p[ + 6%) } . | (5.5)

It is easily seen that in the case (A,8) is simple (p = 1), then (5.5) is
equivalent to (5.2).

We remark that c(A,8), as defined in (5.5), is not invariant under changes
of bases for X and ¥. To define c(A,6) uniquely we require X and Y to be such

that X = X" and ¥* = rziyT

= rz Y", where r diag{v } with Ty = uXe n2 i Z = dlag(o }
with a; >1,i=1,2,...,p, and X Y are the bases for X and Y which satisfy
“*'r“ “*T
X E EX = 6°T, XMMX={A[I, Yy=1, (5.6)
and
YEX = 67 VMR = AT . (5.7)

Then from (5.5) the condition number is given uniquely as

c(h,8) = max (1.07%/(1a)% + 82)1/2) | (5.8)
1
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where, by definition, ai = cos Gi, i=1,2,...,p, are the cosines of the

canonical angles between the subspaces % and EX if 5 # O, or between % and MX if

6 = 0. Furthermore, since [A| WEx i, = &Mk Il and v, = augx,u'l (8 # 0), or
—i 2 -i 2 i —-1i 2

_ -1 _ . _ o1
1= |A| "M’_{i"z (8 = 0), with X, =X "e

X, /Ux, I, it follows that
-1’ -1 2

&
c(A,5) = max {sec 0,/p,} > max {(p 1) , (5.9)
3 i'"i i i
where
_ 2 2 .1/2
py = ( MEX.nZ + Mgz )

Equality holds in (5.9) if and only if the subspaces X and ¥ are biorthogonal
with respect to E(5 # 0) or M(8 = 0). As indicated in [(12], the quantity Py
measures how nearly the vector X4 is an épproximate null vector of both E and M,
and hence how close the pencil is to being irregular. The condition number (5.8)
of a generalized eigenvalue (A,8) is thus inversely proportional to the cosine of
the smallest canonical angle between its E - (or M=) invariant subspaces and to a
measure of the distance of the pencil from irregularity.

We can also derive a relation between the Frobenius norm of certain bases
for the invariant subspaces and th;e condition numbers as defined by (5.5). If
X = ‘54)5 and Y = (Xi)f are any bases for X and ¥ satisfying (5.4) and such that
lli{.jll =1, then

IIYTII;/(lAlz + 62) = 2 IIXJ.IIZ xlgjllz/([,\[z + 62)

J
It follows that

c(r,8) ¢ n¥Tug/(1a12 + 62)1/2 ¢ P12y 6, (5.10)
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and HYIHF gives a measure of the sensitivity of the eigenvalue equivalent
mathematically to its condition number. If in addition we assume that X gives an

orthonormal basis for X, then we can show that

T2/ (a2 + 82) = 2 sec’e /p2 . (5.11)
F 4 3773
J
Since X, Y satisfy (5.4) we may write
*® * * *
REE = 6%0r%, XMk = 2 [T
where U is unitary and I is diagonal. Then from (5.6) it follcws that we can

express X in the form X = xur'lz, where Z is also a unitary matrix. Furthermore,

v, = e, = uer'lzsiu2 = Ml‘_IZeiuz. From (5.4) and (5.7) we then have that
! ) ,

v o= UT-IZZ_IYI, and, therefore,

T2 ur'lzz'lué = 2 wr-izzle 42

F =j 2
- j - -
= Ec-.z wrlze 12 = Ea-.'z 12
J -J 2 J J
J .
The result (5.11) follows immediately from the definitions of oi, Ty and we

conclude that MYTH; is precisely equal to a weighted sum of the inverse squares

of the cosines of the canonical angles between the invariant subspaces associated
with {A.6). Furthermore, MYTMF satisfies (5.10) where, in this case, c(A,6) is
uniquely defined by (5.8).

We now consider measures of the robustness of the non-defective closed-lonp

pencil [M,E]. Without loss of generality we let the eigenvalues of [M,E],
denoted by (Aj,éj), be scaled and ordered such that 6j =1for j=1,2,...,q, and
Aj =1, sj =0 for j = qg+1,...,n. We also let X = (Ej}? , ¥ = (Xj}? denote the
modal matrices of right and left eigenvectors EJ' Xj corresponding to (Aj,sj),



-18-

where xj is normalised to unit length (lllel2 = 1) and X, Y satisfy

[T 0] A o ]
VER = | @ : vimg = | 9 , (5.12)
0 o] 0 I
n=q
with Aq = diag (Al,Az,...,Aq}. (We note that the eigenvectors corresponding to a

miltiple eigenvalue then form bases satisfying (5.4).)

We observe that we may write X = [X&,Sm] where the columns of X& satisfy
(4.1) and are the right eigenvectors of unit length corresponding to finite
eigenvalues (Aj,l), j=1,2,...,q, and the columns of S, form an orthonormal
basis for the null space ¥[E], as defined by (2.5), and are the right
eigenvectors of unit length corresponding to the n - q infinite eigenvalues

(1,0). Furthermore, from (5.12) it then follows that

T d T
_Y Exa = - YMS = . {5.183)
0 I
and, hence,
T _ -1
Y = [E&q, Ms_] ; (5.14)
As a global measure of the robustness we now take

1/2
v(w) = D ¥r g 2 a2 uyju2 (5.15)

j=1
where

= diag(d;) , 4,

1/2
j wj/(lAj] + 5 )

J
Wy if |(Aj,6j) - (Ak,sk)l = 0, and

and the weights wj > 0 satisfy wj

w? = 1. By the assumption "xj"2 = 1, we then have

N D

j=1
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n
2 S 2 2 2, ;2 2
v{w = . Ny i, lix.i A + 6 p 5.16
@7 = ) Wy g nZ /(A ] ) (5.16)
Jj=1
and, using the definition (5.5) for the condition number, we obtain
22 2 z 2 2
w.,c (A,,8 < vi{w £ w.p,c (Ar.,8 . 5.17
> 08 cvw? ¢ Py ay6) (5.17)
(A,8) (A,6)
where 2 denotes the sum over all distinct eigenvalues (Aj,aj) of
(A,8)

multiplicity pj. it follows that v(w)2 is precisely equal to a weighted sum of
the squares of the condition numbers c(Aj,sj) of the eigenvalues, where the
corresponding weights lie in the ranges [wj,wjp;/zj.

In the case where the right eigenvectors which correspond to multiple

eigenvalues form orthonormal bases for the invariant subspaces, the measure

becomes
n n
u(2)2 = jz; w?v?o}z / (]Ajlz + 5?) = jz; w?seczﬁj/pﬁ . (5.18)

and u(g)z is equal to the weighted sum of the inverse squares of the cosines of
all the canonical angles between the left and right E- (or M~) invariant
subspaces associated with the distinct eigenvalues. In this case v(g) satisfies
(5.17) with c(Aj,Gj) uniquely defined by (5.8).

We may also define as a measure of robustness

v, = max c(A,8) . (5.19)
(A,8)
Then from (5.12) we have
- 2
w? ¢ 2 wz.cz()\j,éj) cvw)? 2, (5.20)

(A,8)
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where @ = min {wj}, and the measure v(w) and v, are thus mathematically
3 -

equivalent. Furthermore, minimizing either of the measures U(‘:)__ )2 or ui minimizes
a bound on the weighted sum of the squares of the condition numbers of the pencil
[M,E], with corresponding weights wj, and either measure v(w) or v, gives an
overall measure of the sensitivity of the poles of the closed-loop pencil [M,E].

In the next section we examine properties of robust closed-loop singular

systems, and in §7 we describe procedures for constructing feedback matrices

which minimize the robustness measures.
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6. ROBUST POLE ASSTIGNMENT IN SINGULAR SYSTEMS

For the singular time invariant linear multivariable control system (3.1},
described by the matrix triple [E,A,B], the robust pole assignment problem is now
defined as follows.

Problem 2

Given real matrices E,A,B where E,A € Rnxn’ B € Rnxml rank [E] = q < n and
rank [B] = m, and a set ¢ = (,\J. €€, j=1,2,...,q) where Aj € £ <=> XJ. € g,

find a matrix F € ™ and a matrix X, e ™9 of full rank such that

(A + BE)X = ER 4., 4 =diag (A)) | (6.1)
rank (XS] =n | (6.2)
rank [E + (A + BF) S,8.] =n , (6.3)

and such that some robustness measure v of the sensitivity of the generalized

eigenproblem is optimized. a]

Here S is defined as in (2.5) to give an orthonormal basis for ¥{E}, and
condition (6.2) is equivalent to rank [Exq] = q. The condition (6.3) guarantees
that the pencil [A + BF, E] is regular. The measure v could be taken to be
either of the measures described in 85, but here we are mainly interested

in v(g).

We remark that for the pole assignment to be robust it is necessary not only
that the poles be insensitive to perturbations, but also that the rank conditions
(6.2) and (6.3) be insensitive - that is, we require the matrices [X&,Sw] and
[E + Mswsgl, where M = A + BF, to be far from singular. This is the case if the

condition numbers Kl' 32 respectively, of these matrices are small, where the
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condition number & of a matrix H is defined by «(H) = uHI gy for some norm .1
[15]. We show now that the measure v(g) of the conditioning of the poles is
directly related to K &y, defined with respect to the Frobenius and L2 norms
respectively and, hence, that the sensitivities of the rank requirements and the

poles are minimized similtanecusly.

Assuming the conditions of 15, (specifically qugduz =1, j=1,2,...,q9),
then by definition
= T, = -1
v(w) = nq»Y "F = ngﬂ[Exq,Msw] ”F' , (6.4)

where Dm‘x"T may be regarded as a scaling of the left generalised eigenvectors of

the pencil [M,E]. We observe that

I 0
Y= [EX MS.] = [(E+MS STI[X,S ] s l (6.5)
=) = B s SIS | . 5
—Smnq Inqu

and, therefore, if v(w) takes a finite value for some choice of Xa and F, then

the rank conditions (6.2) and (6.3) are necessarily satisfied. Moreover, from

. X 1/2 T, 2 2
the choice of scaling we have H[qusw]"F =n'? and HSquHF 4 “Xq“F = q and,

by rearranging the equality (6.5), taking norms and applying the inequality

HGHKHF < MGIIzllHMFIIKII2 we find, that &y and K, both satisfy

1 1/2 1/2 T
K. ,K n2 n“"(n + q) v(w) NE + MS_S. !

i ¢ nD,

(6.6A)

2 2

Hence the condition numbers Ky, &, are bounded in terms of v(w) and the magnitude

of the matrix E + Msms:. Conversely, we can bound u(g) in terms of &y and Ko

Using (6.5) in (6.4) and taking norms, we obtain

v(w) < WD M, (n + q)l/zu[xq,s“]"luFu[E + MB“SZ]'lu2

1/2 T
uDzuz (1 + @/n) ™%k 4, /uE + MS_S 11, . (6.6B)

n

The ratio xz/HE + MS@§2N2 measures a balance between the magnitude of the norm of

the matrix and its distance from singularity and may be interpreted as a measure
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of the regularity of the pencil. This ratio and Kl H nl/zu[xq,s“]'luF together
give an upper bound on u(g) and, therefore, on a measure of the sensitivity of
the closed-loop poles. Conversely the sensitivity measure v(w) bounds the
product of these two measures. A robust solution to the pole placement problem

is thus achieved either by minimizing v(w) directly or by minimizing R.o K

2
separately, subject to N1E + Mswsznz. We now show that optimizing these
quantities leads to other desirable properties of the closed loop system.

First we derive bounds on the feedback matrix F. We have
Iheorem 4 The gain matrix F satisfies the inequality
-T . - ~s -1
nFn2 < (nAn2 + max{[Aj},l} ny ne H[Xq,o“] nF)/cmin{B} (6.7)
where omin{B} is the smallest singular value of B and Y_T = [E&q,MSw].
Proof: From the definition of Y we find
P 0
YMX 5] = |9
4 0 I
and, therefore, since M = A + BF,
A o]
BF = (Y T {q ][X,S]l-A). (6.8)
q o
0 I
We note that, from the singular value decomposition of B, MBFH2 2 cmin(B} nFu2

and that H-H2 < H-HF [15]; the result (6.7) then follows immediately by taking

norms in (6.8). a

Using now the expression (6.5) in the bound (6.7), we obtain

=11 = 172, gy 6.9
nFn2 < cmin(n} (nAn2 + max(|Aj],1}(n + q) nlnE + MS S 2). (6.9)
. T
An upper bound on the magnitude of F is thus minimized if &y and HE + MSwaH2 are
ca s X . ; ’ g T
minimized. However, to maintain regularity of the solution, the matrix E + MSWS‘,°

must remain non-singular, that is, K2/”E + M,Swszll2 must remain bounded. 1In

effect then, there is a trade-off between the conditioning v(w) of the poles that
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can be achieved, and the magnitude of the gains. In practice, to obtain a robust
solution to the pole assignment problem we select the matrix of eigenvectors X
to minimize the conditioning &y of the modal matrix [X&,Sw] and choose the
remaining degrees of freedom to minimize the ratio xz/nE + Ms&sznz, subject to he

condition IIE + MBxSTu ¢ ¢, where ¢ is some positive tolerance. Essentially then

© 2 =
we optimize the sensitivity of the poles and the regularity of the pencil,
subject to the magnitude of the gains being bounded.
Bounds on the transient response of the closed-loop system (3.1) can also be
derived in terms of the conditioning measures. We have

Theorem 5 The transient response x(t), 'or x(k), of the closed loop continuous,

or discrete, time system

Eox = (A + BF)x , (6.10)
x{(0) = X5 € 92{Xq} ‘ _ (6.11)
is bounded by
nx(tin, < max{[e*jtl) WX I_HYYEN x| (6.12)
= 2 = ] qF 1°F =02 ’
or

T
p WYIEIZ Nixil, (6.13)

k
Ix(k)},. ¢ max{|A . X _n
x(k)M,, ¢ j{lJU ’
T _ T
where Y1 = [Iq,O]Y .
Broof: By definition, the columns of Xﬁ form a normalized basis for the unique
maximal invariant subspace of the pencil [M,E], where M = A + BF, and by [4] the
equation (6.10) has a unique solution if and only if the initial state
X5 € %{Xé}. Then, also from [4], the solution takes the form
Aqt + kx+
| f(t) = X&e Aqfo , or E(k) = hqu q§O , (6.14)
where X; is such that x(t), or x(k) e n(X&}, vt, or k. Tt is easy to see that

the solutions (6.14) satisfy the system equation (6.10), and that with
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+ +
X, =X W €®(X}, the matrix X must be such that X X' X =X . Now f 5.13
=~ g% q q qdqq g TOoWirom (5.13)
it follows that YIED{q = Iq and, hence we may take X:I' = Y'fE. The inequalities
(6.12) and (6.13) then follow directly by taking norms in (6.14). ]

Using (5.12) we now have Y'fE[Xq,S“] = [Iq,O] ard, hence, we obtain from
(6.12)
ALt

. ' =
UX(€), < max (je J |) WR gl X /S, 1 itz
Mo 172 170

¢ max {|le ¥ |}q™“n Kottt , (6.15)

J

or, similarly, from (6.13)
Ix(k)I < max {[Ajfk) ql/zn-l/leulcon . (6.16)

- J

It follows that a bound on the transient responses of the closed-loop systenm,
denoted by the triple (E, A + BF, B] is minimized if the conditioning Ky of the
modal matrix of eigenvéctors, [Xq,Sw] is minimized.

We conclude that a robust solution to the pole assignment problem (Problem

2), is obtained by minimizing the conditioning measures

_ -1, _ 1/2 ,~1
Ky = u[Xq,Sm]uFu[xq,sw] llF = n "[Xq,Sm.J ”F (6.17)
and
T _ T,-1
x2/uE + lvls%smu2 = W[E + Ms“sw] ||2, (6.18)
subject to
T
IE + I‘/Isoosmll2 < ¢, c>0 . (6.19)
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Then the robustness measure U(S) of the sensitivities of the closed loop poles is
effectively minimized, and the regularity of the pencil is guaranteed within a
certain tolerance. Moreover, a bound on the magnitude of the gains is minimized,
subject to the regularity of the pencil being maintained, and a bound on the
transient responses of the closed loop system equation is also minimized.

We remark that in place of the measure (6.17) we could choocse to minimize

the norm of

I o 171
-1 . T, -1
[%_,5,] . = (555K, S0
X T

or even v(w) itself, in order to minimize the pole sensitivities more precisely.
In this case we minimize simultaneously an upper bound on (5.17), which measures
the sensitivity of the rank condition (6.2). The procedures for selecting the
‘matrix of eigenvectors Xé remain, in principle, the same.

We observe that the measure (6.18) and (6.19), which guarantee regularity,
are implicitly dependent upon the choice of F. This condition essentially fixes
the extra degrees of freedom in the solution after eigenvector assignment, and
can be treated explicitly using the results of Theorem 3. In the next section we
describe procedures for determining F and X& to solve the pole assignment problem

and optimize the robustness of the closed loop systenm.
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NUMERICAL ALGORITHMS

In essence, now, the objective of the robust pole placement problem is to
select a non-defective system of eigenvectors (each of unit length) to minimize
"[Xé'sw]-lnp + and to choocse the remaining degrees of freedom such that the
pencil is as 'regular' as possible. From Theorem 3, if an independent set of
eigenvectors, given by Xq = (fﬁ)? can be selected such that §j € ?j ,
J=1,2,...,q, {where ?j is defined by (4.12)), and rank [Xq,Sw] = n, then,
provided condition C2 (or equivalently (4.3)) holds, the closed loop pencil can
be made regular by an appropriate choice of a matrix W which satisfies (4.8); the
feedback F then is given by (4.5). By the definition of W we have

T _ T
E + MSwS°° = E + AS”S

T
+ U‘OWS°° .
and to optimize regularity, subject to the gains being bounded, we now select W
T T T

to maximize I[E + AS S + UOWSZ:]-III2 , subject to IE + As s + VIS, C.ur

C, > 0. We observe that the matrices W and X& can be chosen independently and
the conditioning measures (6.17) and (6.18) can be optimized in separate stages.
We now consider practical implementation of these results. The basic

numerical algorithm consists of four steps:

Step A: Compute the decompositions of matrices E and B, given by (2.5) and
(4.4), respectively, to find S”, L Ul and Z; construct orthonormal bases,

comprised by the columns of matrices S. and Sj for the space ?j = N{UE[A - AjE])

J
and its complement ?j for Aj «2, j=1,2,...,q.
Step W: Select matrix W to minimize W[E + Aswsi + Uowsz]-luz, subject to

NE + AS ST + U WSTH {c
o e 0O % 2 = “w
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Step_X: Select vectors xj = Sjvj € fj with ijH2 =1, j=1,2,...,49, to
s e . -1 - -1/2
minimize H[Xa,sw] "F = xln ;

Step F: Determine the matrix F by solving the equation

- T -
ZF(X1S,) = [Up(ER A, - BX ) W] .

Standard library software with reliable procedures for problems in numerical
linear algebra is used to accomplish these steps. We discuss first the initial
and final steps, Step A and Step F , and then describe techniques for the two key

steps Step W and Step X .

7.1 Step A

The required decompositions of B and E are found by either the QR
(Householder) or SVD (Singular Value) decomposition method. Construction of the
bases for Sj and éj is achieved similarly. With obvious modifications for the

descriptor systems, the details of the techniques and operation counts are given

in [9].

7.2 Step F
The feedback F is most efficiently and accurately found in two steps. First
H is determined by solving the equations
2z = [ug(aquq - BX_,W)]
In the case Z is obtained by the QR process, the coefficient matrix is upper
triangular and H is found by back-substitution. TIn the case Z is given by the

SVD method, H is found by straightforward matrix multiplication using Z-l.
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Then F is computed by solving the equations [X’q,Sw]TFT = HT using a direct L-U

decomposition (or Gaussian elimination) method. This process is numerically

stable for a well-conditioned matrix [Xq,S”] (that is, for 4, small). Operation

1

counts are equivalent to those given in [9] for non-singular systems.

7.3 Step W

The objective of this step is to select W to minimize llG_lll2 subject to

WG, ¢ ¢ , where G = E + AS ST + U WST
W "o 0

2 o

approximately. We observe that it is not necessary to determine W with great

In practice the result is achieved only

accuracy as we are primarily concerned to ensure simply that G is non-singular,

where IlGu2 is reasonably bounded. We may write IIGII2 < IIGOII2 + "W"2’ where
GO = E + AS“§Z and & = UOWST, and aim to select W such that #Wh ¢ 8 nG 1

o ALY where

£ >0and1+4gc /iGN, The minimm value of UGH,, attained with W = 0, is
given by "Go"2’ and this condition ensures that the choice of & gives only a
proportionate increase in the norm of G over its minimum.

A simple algorithm for constructing & uses the SVD decomposition

G =E+ASS =0z v
o 00~ o

z VT, where Z = diag (ci} is chosen such

G

where Z = diag{ci}. We then set W =

as to minimize

Nz + 57, o2 max ((o, + o7
2 i i i
subject to
uxu2 = méx {ci) < B mgx {ai}.
i i
Then, since WG Hl, = HZH _ and W = {ZH , it follows that
o2 2 2 2

HGl, < (1 + g) m?x (;i} = (1 + p)UG i, (7.1)
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-1 -
and G "2 = T + 2) 1H2 is minimized. A simple choice of Z is given by setting

aj = 8 max {oi} - cj, if this quantity is positive, or oj = 0 otherwise. Then
i

m?x (oi + oj}

max (1,4} max (),
1

m;n (ci + oi} B m?x (oi},

and it follows that

NGH, ¢ max {1, B} WG, , (7.2)
nG'1u2 < (B m?x {Si}}_l = p'lucon;1 ; (7.3)
and
gt if pg 1,
t, = nG'lnzuGuz <
B if g>1

We see that if 8 ¢ 1, then this choice of W does not increase the norm of G over

its minimum, whilst achieving an explicit bound on Koo

Finally, in order to construct the matrix W from &, we simply set
W=UWs, = Uz vs, .
We observe that for this choice of W, uubwszu < uzu2 and the constructed matrix
G=6_+ Uowsz satisfies the inequality (7.1). The inequality (7.3) for G * is,
however, only satisfied approximately. Denoting the residual matrix

4=z - PIZPZ, where Pl’ P2 are the projection matrices P, = U + UOUEU and
e I ot
P, = V'S SV, we find that

1

1 1 1

nG'lu2 < aB NG ", where « ¢ 1 - p-luGOu' Nl

2l

o}
and a is close to unity if uAu2 is sufficiently small. The condition number &,

remains bounded, in any case. The construction of W is thus accomplished hy one

SVD decomposition, followed by a simple projection. These operations are all

numerically stable,
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7.4 Step X

To accamplish this step we use one of the iterative metheds described in [9]
for selecting a set of vectors fj from given subspaces ?j such that the matrix
X= {fj) is well-conditioned. These procedures all apply up-date techniques to
modify the columns of X in turn, so as to minimize a specific measure of the
conditioning.

The most appropriate of the procedures here is Method 1 of [9]. An initial
set of independent vectors EJ € 9j, j=1,2,...,q, is chosen to form Xé = {fj}q'
and then a rank-one update is made to each column of X& in turn such as to

minimize the measure H[Xq,sw]_lu For multiple eigenvalues of multiplicity p,

F
an initial set of p orthonormal vectors for the corresponding invariant subspace
" is selected from ?j, and then rank-p up-dates are made, such that the basis
remains orthonormal, using the Modified Method 1 described in [(6]. The only
alteration to the process required for the descriptor case is that up—dates to
the columns of S, are not made, and the operation counts are correspondingly
reduced.

Methods 2/3 of [9] can also be used to d?termine Xé. This process is
generally more efficient than Method 1, but. in this case it does not minimize the
precise measure we require. With this method an initial set of fully orthonormal
vectors, comprising matrix [ﬁq,sw], is chosen and pairs of vectors are updated by
applying rotations such as to minimize the sum of the squares of the distances of
these vectors from the required subspaces ?j‘ In [9] it is shown that if this

measure can be made reascnably small then it provides a good upper bound on

n" 12 2k .S ]—IHF, where Xéej is the projection of Xéej into the

Kl q’ S

subspace fj.
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Over-all, we regard Method 1 as the more reliable of these methods, and as
only a few iterations are usually required to obtain good solutions, we generally

apply this method in practice.

7.5 I tatio

The four steps, Step A, Step W, Step X, and Step F of the algorithm have all
been implemented using a high level matrix manipulation system based on stable
numerical procedures from standard library software. A small executive package

has been developed and the algorithm has been applied to a number of examples.

In the next section results of a test case are given.



8. RESULTS

A1

To illustrate the form of the robust solutions determined oy the algorithm

described in 37 we now give results obtained for a test problem,

Test Example n=35 m=3, q-=3,

[ o] o] C 1.72 0] [ 0 1.1 0 o} 0 ]
0 0 o 0 0 0 0O 1.56 0O 0
E=10.82 0. o0 0 0 . A= 1,23 0 0 1.98 0
0 0 0 o 0 0 0 0
| O 0 0 0 1] | 0 0 1,01 O o |
0 1.55 o o 0
T

We assign the stable eigenvalue set 2 = {0.5, -1, -2}, We set the tolerance
A =0.2. Then the computed matrix G actually has conditions xz-l = 0.141. Using
method 2/3 to accomplish step X, we find the conditioning of the computed matrix

[X&,Sm], after two sweeps of the process, is x, = 4.1683. The computed feedback

il
matrix F has magnitude IIFH2 = 0.7327 and is given to five figures by
0.028710 0.0 (o} 0.35925 0.047441
F = |0.075580 0.0 0] =-0.24315 0.30806
0.075633 0.30991 0 0.52389 -0.0221967

To demonstrate the effects of perturbations, random errors of maximun order

tlo-a are introduced into the closed loop system matrix, and the eigenvalues of
the resulting matrix pencil are computed. For a robust feedback solution such

perturbations should only cause errors of the same order of magnitude in the
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poles of the closed loop system. For this test example the absolute errors in
the assigned eigenvalues due to these perturbations are

{0.4 0.4

10—4, 10—4, 0.210—3}. A maximum relative error of 0.01% is thus obtained

in the assigned poles, indicating that the solution is very robust.

With Method 1, the results are similar after two sweeps of the procedure.

The cendition of [Xé,s“] is now k; = 4.6711, and F has magnitude WEw, = 1.7806
and is given by
0.27000 0.0 0 0.79935 1.4705
F = [-0.18432 0.0 0 -0.71963 -0.13059
0.072572 0.30991 0 0.52885 -0.15686

The introduction of perturbations of order 0(10_3} (due to rounding matrix F to
three figures) causes perturbations {O.110_2,0.410_3,0.310_3} in the closed loop
poles, with a maximum relative error of 0.2%, and it is seen that this solution

is also highiy robust. Additional iterations could be expected to improve the
conditioning still further.
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5. CONCLUSIONS

Novel necessary conditions for the solution of the pole assignment problem
by state feedback in singular systems are given in this paper. These conditions
must be satisfied in order to assign the maximum possible number of finite poles
by feedback and also obtain a closed-loop system pencil which is reqular and
non—defective. It can be shown that these conditions are also sufficient for the
existence of a feedback which assigns q finite poles with regularity. The prime
significance of these results is that they provide conditions for the
construction of a feedback which assigns 'given poles with guaranteed reqularity,
and such that the closed-loop system is robust, in the sense that its poles are

insensitive to perturbations in the system data.
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