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Abstract

Let F be a vector valued function which is piecewise conforming on
a partition of a polygonal region Q2 into triangles, with a prescribed flux
across the boundary 8. Then minimisation of the I3 norm of the fluctua-
tion of F over the internal nodes of the partition is equivalent to minimi-
sation of the I3 norm of the differences in the fluctuations of F over all the
elements of the partition. In this sense /o minimisation is equivalent to an
Iy measure of equidistribution. The result is also true for the I3 norm of
the local average residuals, i.e. the fluctuations weighted by the reciprocal
areas of the elements.

The particular case F = Ua, where U is a piecewise linear function
prescribed on 8 and a is divergence-free, is considered in detail.

The result extends to the local average vorticity as well as to norms
combining both the residual and the vorticity, as for example in the case
of the Cauchy-Riemann equations.



1 Introduction

There are two main approaches to the problem of generating an irregular mesh
on which to approximately solve a differential equation. A popular criterion
has been that of equidistribution, in which the grid is determined by a monitor
function whose integral is the same in each interval [1],[2],[3]. Another approach
is to use direct minimisation of a suitable functional of the equation [3],[4],[5]
in which the grid participates in the minimisation. Each of these methods has
advantages and disadvantages but comparisons have been impeded by the absence
of any link between them. In this report we demonstrate that, provided that the
boundary values are fixed, direct minimisation of a discrete least squares error
over internal variations of the function and the nodes is equivalent to minimising
a corresponding measure of equidistribution.

2 Fluctuations and Residuals
Consider the first order conservation law
divf =0 (1)

in a polygonal region 2 and let f be approximated by a conforming approximation
F on a triangulation {T'} of Q. Then, following Roe [7], on each triangle T' we
may define the fluctuation

B == — /T divFdS. 2)
We may also define an local average residual on the triangle T’
= 1
= — [ divFd 3
where St is the area of the triangle, so that
- b
v=—— 4
Rp=-U @
If F =Ua where U is piecewise linear and a is divergence-free we have
divF = a. VU (5)
and the fluctuation is
¢r = 2V = ([od0). (VO)p = ~Sr @I (O

where @ is the centroid value of a. In that case we may define the average residual
to be

Br = @VU), = - 21 (7)
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in each triangle, using (6). If a is constant we may define the unique residual
Rr = (divF), = (a.VU) . (8)

These definitions also hold in higher dimensions with Sy replaced by the
volume of the appropriate simplex and {1} by the union of the simplexes.

3 A Zero Residual Property

In the case where a is constant it has been pointed out in [7] that if two of
the vertices of a triangle T lie on a characteristic, i.e. a line in the direction of
a on which U is constant, then the fuctuation ¢ (and therefore the residual
Ry) vanishes. This follows from (5) since any line joining two vertices of T' on
which U is constant is a level line of the locally linear function U and therefore
perpendicular to VU. Similarly, in higher dimensions, if any two vertices of a
simplex lie on a characteristic then the fluctuation ¢, and the residual Rr vanish
by the same argument.

We give an algebraic proof of this result in two dimensions which also serves to
introduce some notation. Let the vertices (X;,Y;) of the triangle T' be numbered
i = 1,2, 3 in an anticlockwise sense. Then in triangle T

VU = o (W= V), = XUz~ Us) (9)

where the sum is taken cyclically over the vertices of the triangle. In the same
notation the area St of the triangle is

Sr=3 Xi(Y2 - Y3) = - Y Yi(Xa — X3). (10)
It follows that
¢r = —Sra.VU = = (aY; — bX;)(Uz — Us) (11)
where a = (a, b) which, if U, = Us, reduces to
¢r = —(a¥y = bX5)(Us — U1) — (a¥s — bX5)(Ur — Un)

= (—a(Ys — Y3) + b(Xp — X3)) (Ua — U1). (12)

The right hand side vanishes when the vector (X, — X3, Y, —Y3) is in the direction
of a.

4 . Fluctuation Equidistribution

Consider now the identity
1 . 1
Gty =5 (01 +d)" +5 (61— ) (13)
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which may readily be generalised to

N1 (X 2 | NN 5
= : — . — @) . 14
>#=5 (1) 4Ly (h-e) (14)
Let ¢; be the fluctuation ¢ in triangle 7T; as defined in section 1 and let N be
the number of triangles in 2. The first term in brackets on the right hand side
of (14) may then be written

N N ) N
;:;(p,. =-3 /T divFdQ = -3 /aT.- F.ds (15)

=1 i=1

where 8T; is the boundary of T;. Since F is conforming (15) reduces to

- | Fd 16
o Fede (16)

over the boundary 8Q of Q. The quantity in (16) is fixed when the flux of F
across the outer boundary is preserved. In the original conservation law problem
only the contribution to (16) from the inflow is prescribed but the least squares
minimisation procedure described below also demands an outflow condition, in
which case (16) is fully prescribed.

It then follows from (14) that, if (16) is fixed, then under variations of the
internal values of F and the internal grid points, the I norm of ¢y, is least when
the final term in (14) vanishes. If the ¢, are equal for all ¢ then the minimum is
achieved and equidistribution is equivalent to least squares minimisation. If this
condition is unattainable the result is restricted to the observation that the two

norms
N N N 5
Z¢i and Z E (¢i - ¢j) (17)
i=1 i=1 j=1
are minimised simultaneously. The second of these is a measure of the equidis-
tribution of ¢ over the triangles.
The result generalises to any number of dimensions.
When F =Ua with U piecewise linear and a divergence-free ¢ is given by

¢r = —Sta.VU (18)
(cf. (11)) which in two dimensions has the form
¢p = — > _(aY1 — bX1)(Uy — Us). (19)

In that case minimisation of the norm

ﬁ: ¢ = g: (Sra.vU)* = i (Z(am —bX, ) (Uy — Ug))2 (20)

=1

is equivalent to minimisation of the {; norm of the differences between the ¢r's
of (19) provided that the boundary quantity in (16) is held constant.
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5 Residual Equidistribution
From (7) we have

¢r = —SrRr (21)
so that the norms in (17) become
N N N 5
(SrBr), and 33" ((SrRr);— (SrRr) ) - (22)
=1 i=1 j=1

Another useful norm, used in [7], is the {; norm of the residual Ry weighted by
the triangle area, i.e.

N o w2
> SRy, (23)
i=1
(cf. (22)). In that case we may consider a generalisation of the identity (14), in
the form

A2 A . A
%) E(;@) +§;§S‘S"{%_§;} (24)

where S; = Sr, or, equivalently,
N N __ N LA = =g

=1 =1 i=1

(see (4)). Clearly

gsi - /T Qg = Q (26)
is a constant equal to the total area of the domain while
N N '
;d;i = — ?::1 - divFdQ = — - F.ds, (27)

independent of the internal values of F and the internal grid locations as before.
We may thus write (25) as

N — 1 2 1 - — \2
S SR =< (/m F.ds) +55 2388 (R~ Ry) (28)
i=1 :

from which it follows that, provided (27) is held constant, the weighted Iy norm
(23), when minimised over internal values of U and the internal grid points, is
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least when the average residual Ry, is equidistributed. If this property is not
attainable we still have the result that the two norms

N, N N .
S SR, and Y3 8:S: (R~ ;) (29)
i=1

i=1 j=1

are minimised simultaneously.
Once again the result hold in higher dimensions.

When F =Ua where U is piecewise linear and a is divergence-free Ry is given
by
Ry =avVU (30)

(cf. (11)) which in two dimensions takes the form

5 _ > (@Y: — bX1)(Uz — Ua).

1
Ry 3 (31)
In that case minimisation of the norm
- 2
N, N N (¥(aYs - BX1)(U; — Ua)),
SR =Y 8 (avU): = i 32
2 2 S5@Y =) T m - ©2)

is equivalent to minimisation of the norm of the difference in the residuals
NN
SY(R-F), (33)
=1 j=1

again provided that (16) is held constant.

6 An Example of Residual Minimisation

An example in two dimensions, quoted in [7], for which Ry, and —RTj are equal
to a high degree of approximation, is as follows. Let () be the rectangular box
|z| <1,y > 1 and let a = (—y, z) so that diva = 0. Then from (6) and (7)

br = —Sp(=Y Uy + XU,)r (34)

and

Ry = —(-YU, + XU,)r (35)

where T,y are the centroid values of z,y. Let the inflow conditions be prescribed
as zero except at two points on the boundary where U takes the value 1 (see
figure 1) and suppose that outflow conditions are also prescribed as zero except
at the two 'mirror’ points on the boundary where U is also taken to be 1.
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The weighted I3 norm of the residual is now minimised over both nodal U
values and nodal locations, giving the variational equations

N 1

DL §I_ﬁ (—V(Ys ~Y2) + X(Xa — X2)) =0, (36)

i=1

; (—"R(Us —Usp) + (Y3 )) =0 (37)
and =

; (%E(Ua —U2) — E_Rf (X3 — Xz)) =0 (38)

where node i is also node 1 of the cyclic trio of nodes 1, 2,3 and Ry is given by

The resulting grid is shown in figure 1. The nodes move into positions for
which the residuals are small and, in accordance with the discussion in section 4,
the sides of the triangles attempt to line up with the characteristics. Moreover,
by the result in section 5, the I, norm of the differences in the residuals is also
minimised, leading to approximate equidistribution.

7 Systems

A generalisation of the underlying identity (25) to systems has been given by Roe
[8]. If g; is & column vector and Q is a matrix of constant values we have the

identity
N
2.5
i=1

_ (i S‘.g‘.)tQ (g} SiQ.-> +

i=1

Sg'Qg,

= EMZ

58 (6-g) Qa-g) @9

Jj=1
With g; = R, the first sum in brackets on the right hand side is

i
-

i

N _ N ’ N
;Sfﬂi = g‘/!:l‘ d'L'UEdQ = ;/am _E.ds = 89E_ds, (40)

(independent of internal values of F or internal grid locations). Hence, from (39),
provided that (40) is held fixed the minimum of the weighted least squares norm
of the residuals

N
S SEQR, (41)
i=1

is achieved when the weighted norm of the residual differences

szs,s (B:-R) Q& -E) (42)

1=1 7=



is also minimised. The result is true in any number of dimensions.

Although the problem of solving E; = R; is overdetermined in general the
result shows, in the case of a vector residual for a conservative system, that there
is a close connection between equidistribution and minimisation of the weighted
least squares norm of the average residual in the sense that a weighted least
squares norm of the average residual differences is minimised.

8 Vorticity
The self-cancelling property of (15) applies also to

/ Fxds= /m curlFdS) (43)
so that defining
1
B=g / curlFdS) (44)

as the average local vorticity in triangle T;, we have, using (39) with g = & and
Q@ = I that

N N 9
338 m - (9

Now

N N N
;s.g,. - ;/ﬂ curlFdQ = ;/ Fxds =/mF><ds (46)

which is independent of internal values of F and internal grid points. Hence if
(46) is held fixed we have from (45) that the weighted {; norm of @ is minimised
when the weighted I3 norm of the differences in @ is also minimised.

Combining (45) with (28) we have

N N,
> 8 (Z Si (Ri + |Q1|2)>
=1 t=1

. (/m F.ds)2 +7’/mdes

+ iy:i SiS; ((Rz - Rj)2 + 7@ — Qj|2) (47)

i=1j=1

2

for any constant . Then if the boundary values of F and its grid are held fixed

it follows that the norms .

S8 (B + i@l (48)

1=1



and

S5 s (F-T) 4

i=1j=1

w; — lez) (49)

are minimised simultaneously. Hence (48) is least when both the average residuals
and vorticities are equidistributed.
If curlF = 0 and there exists a potential function 1 such that divF = V¥

d — 1 1 N
;g = — 2 = — —
R=g /ﬂv YdQ S o 3% (50)

in two dimensions. Of course if divF is also zero then v is harmonic.
9 Cauchy-Riemann Equations

An application of the result of the previous section is to the Cauchy-Riemann
equations

divF =0, curlF =0 (51)
in two dimensions, i.e.
ou v dv Bu
%4-55:0, %—55—0. (52)
Defining
— 1 ou Ov
_ 1 ov Ou
== S; /T.- (3:1: 8y> dil,

approximate solutions may be obtained by minimising the least squares norm
A —2
> (R +?) (54)
i=1 >

over internal values of u,v and z,y. By the result in (48),(49) the norm

N N s \
S Y58 (B ) + @ -9)°) (55)
i=1j=1

is also minimised, indicating approximate equidistribution of both R; and w;.

In [7] Roe also considers the system

ou Ov v Bu
J— 2 [— _— = —_—— — = )
(=M +5.=0, 5 0 (56)



where M2 > 1 corresponds to a hyperbolic system and M? < 1 to an elliptic
system (see also [9]). The norm minimised is

N

i
[

S: (i +|M? -1

@) (57)

correponding to (47) with v = |M? — 1|. Minimisation of (57) over internal
parameters thus implies minimisation of

N N _ —\2
3388, ((R,-—Rj) +|M2—1|(w.-—w,-)2), (58)

=1 j—1
which indicates the extent to which R; and @; are approximately equidistributed.
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