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1. INTRODUCTION

Increases in computer power, and considerable improvements in
numerical methodology have been significant features in the advance of
computational aerodynamics in recent years. In particular, these advances
have made possible more widespread simulation of complicated high speed
compressible flows. Further development of numerical methodology has been
stimulated by the desire for flexible and efficient algorithms, and this
has been reflected in the continuing research into methods which in some
way adapt to the flow field. The work of this report forms part of

[y

this research effort.

Finite difference methods are well advanced in‘the numerical modelling
of compressible flows but finite element methods, despite their flexibility
and capacity for reproducing important physical properties, have yet to
establish themselves as strong competitors in the field. Nevertheless
important work is being carried out by a number of workers1'2' , based on
Galerkin, Petrov-Galerkin and Characteristic Galerkin methods which may
change the balance.

One of the difficulties is the representation of shocks. In the standard
finite element approach the nodal values are not the approximate values of
the variable represented but rather the whole finite element approximation
has the character of a best fit to the solution. As a result shocks appear
with oscillations in the finite element approximation and the exact position
of the shock has to be recovered by a fitting process. Although this phenomenon

is also present to some extent in finite difference methods it is more loceal,
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and with the sophisticated techniques now available the effect is minimised
and acceptable.

An important result which deserves wider attention is that of Herbst4

who has shown that for linear finite element solutions of the Burgers equation

Up *uu = eu (1.1)

which possess a shock structure with a jump J and satisfy Neumann boundary
conditions, vx satisfies
JE!

el Vi . (1.2)

As € decreases the sum increases and, on any predetermined grid, v

must eventually oscillate to satisfy (1.2). Regarding hyperbolic equations as
limits of such parabolic equations as € > 0, the difficulties of representing
shocks on fixed grids by finite element methods become obvious.

Adaptive grid methods have recently gained attention as ways of
introducing extra flexibility into fixed grid methods. In finite differences
the work of Berger5 and FlahertyB and in finite elements that of Miller7’8
and Lohner9 are important contributions. The invention by Miller of the
Moving Finite Element (MFE) method which determines a finite element
approximation with moving nodes as a single system, has produced notable
tesults for parabolic problems but, owing to technical difficulties, has
not progressed as quickly as it might have done ,(but see Moser, Djomehri).

These technical difficulties have now largely been overcome by Wathen ! ,
and the resulting MFE method has proved to be very efficient and accurate for
the solution of simple scalar conservation laws in one space dimension. Initial
computations for hyperbolic problems in 2 space dimension (Wathen (1884)]) have also
shown how the method is able to sharply model moving shocks, for hyperbolic
problems. The clear need has been to develop experience and understanding of

the various ways in which the ideas inherent in the method can be extended for

application to systems of equations, particularly the system of gas dynamic

equations.



The work of this contract has been to describe and assess the
various approaches. As a starting point we have used the Euler equation in
1-dimension as a test-bed, and analysed the performance of two different
extensions of the MFE scalar algorithm on the bursting membrane problem
used by Sod (1978). As was to have been expected, various previously
unforeseen features arvse in both approaches. These are described, and

remedies proposed in the appropriate sections of this report.

The layout of the paper is as follows. After a brief description of
the original MFE development of Miller we describe a novel viewpoint which
clarifies the issues and shows the power of the method for scalar hyperbolic
conservation laws. The issues arising in the extension of the method to
systems of equations are discussed and first results given for the application
of the method to the Sod shocktube problem 13. Finally a

discussion is given of the advantages and limitations of the method.



2 BASIC METHOD

We begin with a short summary of the MFE method as developed by
Miller and other514. We confine ourselves to one dimension and initially

to hyperbolic conservation laws of the form

u. +f =0 , (2.1)

and describe both the basic method and some recent results which bring out
the local nature of the method.

In the MFE description the object function u is replaced by a continuous
piecewise linear spline with moving nodes. This approximation v may be

written
N+1
vix,t) = ) a.(tla,(x,s(t)) , (2.2)
.2 J J
j=0
where the aj are time dependent basis functions, ones which take the
value 1 at a (moving) node and zero at all other nodes (see Fig. 2.1). The

aj are the nodal coefficients (heights) and the Sj (formed into a vector s)

are the nodal co-ordinates.

Figure 2.1
Basis function ajy
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Assuming fixed boundaries, differentiation of v with respect to

time gives

N
= : + 8 > (2.3
Ve T %% 7 qu gey %5850 Ay )
(dropping dependence and using a dot for the time differentiation). The
results of Lynch15 show that the function Bj is given by
B, = - V. o (2.4)

and is a second-type basis function which has the same support as aj



but is discontinuous at Sj' It is also solution-dependent through Vo

in (2.4).

Figure 2.2
Basls function Bi

To obtain éj and éj (and hence the evolution of the approximation

(2.2)), Miller minimises the residual

llv, + Fv (2.5)

in the L2 norm over the éj and éj. This gives the (semi-discrete) MFE

equations in the form

0,e00,N+1) (2.8)

1]

]
(@n]

<hj. v, + f[v]x> (]

t

[j =2 ‘1)--.:N'J. (2-7]

L]
o

+ f(V)x>

<Bj. Vi

Note that equations (2.8) are the Galerkin equations for (2.1) and, since
the a, are a partition of unity, conservation is incorporated. Combining

J
(2.8) and (2.7) into a single system we obtain

Alyly = g (2.8)
where

y = {ao;a1,s1;...;aN.SN;aN+1} , (2.9)

Aly) 1is a 2x2 block tridiagonal matrix (apart from boundary effects) with
blocks
I_-<a.,a.> <a.:B.>
J J J J

(2.10)
<B.,a.> <B,,B>
#5% ByrBy

and the corresponding block of g is
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B ™ g : (2.11)
< . -'F
B“_| [v]x>J

Since A is singular if the nodes become collinear (parallelism) or if
nodes overtake Miller adds penalty functions to (2.5) to prevent these
singularities occurring. This modifies the ODE system (2.8) so that it
becomes stiff. He therefore uses a stiff solver to carry out the time stepping
for y and hence V.

It has been shown by Wathen and Bain8816 that the matrix A possesses

the decomposition

A = MTCM (2.12)

where both M and C are 2x2 block diagonal matrices (though with the blocks
of M staggered with respect to the blocks of C). As a result A 1is
trivially invertible and there are only two sources of singularity of A,
namely that of M and that of C. Singularity of M corresponds to
collinearity of nodes (parallelism) and is easily circumvented without recourse
to penalty functions (see below). Singularity of C corresponds to node
overtaking. This is modelled as the formation of a shock (see below) and again
penalty functions are unnecessary.

Moreover it has also been shown 18that, if D 4dis the matrix of diagonal
blocks of A, the preconditioning of A by D_ll gives a matrix D_1A which
has eigenvalues *3 only (apart from boundary effects). All this means that
A 1is easily invertible by for example conjugate gradient methods and the
ODE system (2.8) does not need a stiff solver.

An alternative viewpoint is to replace the set of basis functions Oy
aj'Bj (i = 1,2,...,N+1) N
(see Fig. 2.3). The set {¢k1'¢K2} span the same space as the set {dj,Bj}

by the half-hat functions ¢K1’¢K2 (k = 1,2,...,N+1)
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so that (2.6), (2.7) may be replaced by

<¢k1' Vi + f[v)x> =0 (2.13)
<¢k2' v * f[v]x> =0 (2.14)
and, if we write
N
v, = k§1 [0, 19 q * Fotp o] (2.15)
(c.f. (2.3)), we obtain the alternative MFE equations
Cﬂ =b ., (2.16)
where
W = {w11,w12;w21,w22;...;wN+1'ﬂ,WN+1‘2} , (2.17)
C 1is the 2x2 block diagonal matrix with blocks
<¢k1'¢k1> <q)k’l'¢k2>hi
(2.18)
<¢K2'¢K1> <¢k2'¢k2>
and the corresponding block of b 1is
b, = [ <¢,,, -flv) >
=i AL : (2.19)

l—<¢k2’ _'F[V)x>_l

From the connection between the ¢'s and the o,B's (see Fig. (2.3))

we also have

Myo=w o (2

where (apart from boundary effects) M is the 2x2 block diagonal matrix with

blocks

.20)
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j-3
J , (2.21)

¢ being Vo and j-3, j+i3 referring to the elements on either side of
the node j. The relation to the Miller approach with A = MTCM is completed

by noting that

g=Mb i (2.22)

Equations (2.13) and (2.14) are the normal equations for the L2 projection

of f[v]x into the space spanned by the ¢k1'¢k2' The result is the best
linear fit in L2 to the function 'F(v]x in the element k. Since this is
identified with v, we have at any instant that 2 is the best local fit

to f[v]x within the element k.
Once w is known y is determined from equation (2.20). If the nodes

to the left and the right of the kth element are j and j+1, we have

= w

a
k1 (2.23)

i M3

-4 s = W

8544 k~3+1 k2

Subtraction and division by As = s, = Sj gives

— = — (W - w, ) (2.24)

where

- a.,)/(s, - s5,) (2.25)
J J+ J

31 1

is the slope of the solution. To obtain the right hand side, we note that

[-1,1] is an eigenvector of C with eigenvalue %As so that

. s wlh m )
(W W) = =111 =<6, = b4

k2 K1 —F(V]x> » (2.26)

which gives

iy (%
dt  (As)? ) k2 'k
J

Jf(v) dx . (2.27)
1 X



This can be written

du
K 12 — ~
L = 2.28
gt (asz 0 Fd Gtz
where
S,
- n o oq [ 3]
= 1 = — .
f z(Fj + fj+1l. f e [S f(v) dx . (2.29)
J

Equation (2.28) shows how the slope Hy depends on the flux function
f. In particular it shows how “k increases or decreases depending on the
convexity of f.

The revised viewpoint above brings out the local nature of the method.
The movement of each node is generated by a local projection of the flux
function of the approximation in adjacent elements.

Time stepping is carried out on the semi-discrete equations (2.8)
or (2.20) with (2.17). Such is the well-behavedness of the system that

there is no need to use other than explicit Euler forward time stepping of

the form

N s AT (2.30)

[Note that ﬂh is determined from (2.16) and the time stepping is only in
(2.20)1.

The method breaks down if either C of (2.17) or M of (2.20) is
singular. Singularity of M corresponds to parallelism of nodes. There is
then an infinity of solutions of the system (2.20) as a result of blocks (2.21)
being singular. Uniqueness is easily restored by imposing an external condition
which suitably sets the position of the parallel nodes10'16.

Singularity of C corresponds to one node overtaking the next as
in Fig. 2.4. 1In that case we cannot determine the projection of f(v]x into
the (null) element. Instead we regonise the event as indicating the occurrence

of a shock. Support for this view is given by a result of Morton17 who showed

that in the present case the MFE equations carry the best L2 fit to the solution.
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In place of the two missing equations of (2.16) or (2.8) we

use the Rankine-Hugoniot shock relations

S, = é.+1 = gﬂij'ffj;l (= V) (2.31}
b je1 7

where V 1is the shock speed. The effect is to partition the region into two
regions in each of which the method is applied; the connection across being

made by the internal boundary condition (2.31).

[sj,aj)

“h_“-—[q_—_— Figure 2.4

(Sj+1,aj+1)

When a node runs into a shock it is absorbed by the shock in that (2.31)
is used to recalculate the shock speed V while one node is able to be deleted.
The time step can be chosen to be as large as the shortest time for any two
nodes to become coincident. In general, however, accuracy will determine a
lower time step.

This, then, is the complete algorithm for a scalar hyperbolic conservation
law in one dimension. Results are shown in Section 3 for two simple eguations,

(1.1) with € = 0 and the Buckley-Leverett equation.

d =0 . (2.32
ut +|LU2 + %[1_U)2JK )

The corresponding MFE algorithm for higher dimensions incorporates the same
essential ideas of shock recognition and the avoidance of degeneracy using algebraic
considerations. A full description is given in Wathen & Baines (1985) and
Wathen (1984). From this latter reference, we reproduce the results of two

dimensional computation of the MFE solution of the hyperbolic conservation law

2
%%+V. u 2:[]
uz + 3(1-u)

which arises in the modelling of hydrocarbon reservoir flows (Figure 3).
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We continue the paper by discussing the extension to systems of
conservation laws with particular reference to the Euler equations in one space
dimension.

3.1 EXTENSION TO SYSTEMS

In extending the above ideas to systems the most important question
to be answered is whether (A} to work with separate nodal coefficients but a
common mesh or (B) to give each component of the system its own finite element

mesh with individual model coefficients and co-ordinates.

Where discontinuous features are likely to occur simultaneously
for all components, as in the case of shocks, there is a strong argument
for using a common mesh. However, a nicer algebraic structure is obtained if
each component is given its own finite element mesh. We shall briefly describe
both possible strategies, called method (A) and method (B) respectively.

In method (A) we seek continuous piecewise linear finite element

approximations

N+1

plx,t) = ¥  p.(t) a,lx,s(t)) (3.1
5 J =
j=0
n+1

mix,£) = } m(t) a,lx,s(t)) (3.2)
J=0 b7
N+1

e(x,t) = ) e,(t) a,(x,s(t)) (3.3)
joo 3 j =

to functions p, m, e (density, momentum and energy) on the single mesh
(t) = {s (t), s,(t) (£33 (3.4)
s = {sg > 8y se s rSyLg . .

The evolution of pj, s, 1s then determined by solving the density equation
{((2.1) with u = p, f{u) = m) using the MFE method as described for the scalar
equation. We have chosen the density as the variable which determines the
nodal movement, rather than any other choice, because it is the experience of

many workers that the density is the most sensitive quantity in many compressible
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flow situations. J.H.B. Smith190$ RAE has, however, indicated to us that for
certain flows, the density may not be an appropriate choice. The examéle of
a jet flow into an orthogonal free stream highlights this point. With the
understanding that there may be some single variable which satisfies our
desired criteria, we continue to describe method A with, for definiteness,
the density as this variable.

We minimise the L, norm of the density equation

2
Hpt + mxHL (3.5)
2
over p. and $. where
J J
L P
P = P2 ¥ j§1 ojoy S5B3) % PeqOpyaq iy
and
8 = - p . . (3.7)
J X J
We have assumed fixed boundaries SD’SN+1 but allowed variable states
Py and Pnsq O8 in Section 2. Other boundary conditions can be incorporated

10
when necessary . The corresponding MFE semi-discrete equations are

0,1,...,N+1) (3.8)

n
o

<aj’ p, + mx> (j

t

|
(an]

<s§, o *m> = (G = 1,2,...,N) (3.9)

X

which can be written as the matrix system (2.8) or (2.17) plus (2.20) and

solved for p., s. V..
J J J

Now time differentiation of (3.2) and (3.3) gives

N
e . < oM :
m = Mo, * j§1 [mjaj + sij] 1N+ (3.10)
N
e, =éa *+ ) [éa +35871 +& o (3.11)
t oo 2, N N+1 N+1

and since § 1is known the only unknowns in these expressions are hj,;and
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éj' Writing the Euler momentum and density eguations as

m + f" =0, e, + % =0 (3.12)

we obtain Galerkin equations on the mesh with the already found velocity

§., namely,
j Yy

Q%,mt+F?>=D (3.13)
i=0,1,...,N+1

<o, e + > =0 (3.14)
it X

for the m, and éj' These equations are not MFE equations in the sense of
Section 2 and the resulting matrix forms do not have the simple structure described

there.

The shock algorithm needs special consideration. Suppose that,
after a time step, a pair of nodes coincide. The resultant internal boundary
(shock or contact discontinuity) thus formed is subsequently moved at the

speed V given by the appropriate shock relation

m_+1 - m,
v . (3.15)
Piv1 7 P

As the states pj,p and mj,mj+ which form the shock vary so will the

3+ 1
speed of the discontinuity.
The evaluation of the inner products in (3.13), (3.14) deserves some

comment. Consider the integral <uj, ?$> which involves integrals of the

form
Si +1 b m?
o, — |—| dx B (3.18)
. Jex |p
=
i
where m =m, + (m., ,-m.J)x and =p. + (p. ,-p.)x are linear on the
J J+1 73 P TPy P5417P;

element between the nodes j, j+1. Evaluation of (3.16) when pj+1 # pj

yields

1 gt -
3 a + —u log(pj+1/p.] (3.17)
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where
Migq ~ M. a (m 1 m,)
a = E‘J—_pl P, - 2—3—_J—m. (3.18)
\EXTEAG ) RIS R
and m,+1 - m, 2
b=m +ap, =4m, - |[——-=df 5 L (3.19)
N N I |Pjeq T Py) 3
For pj+1 = pj, the value of the integral (3.16) is however
1 1
— {=(m, - m.)2 + m,.(m, -m,) + m? (3.20)
Py 33+ J j i J J

and it is seen that only by cancellation of large terms in the formula

(3.17) is the limit (3.20) achieved when

12
by Djomehri this causes computational problems, and we have followed his work

=) O N .
pj+1 pj -> As noted previously
in expanding the denominator in (3.16) (3.17) in a binominal series for small
values of pj+1 - pj. A similar technigue is used for terms me/p and
m®/p? which arise in the energy equation.

Method (B) seeks continuous piecewise linear finite element

approximations

(2]

oMM esPwen w2 @en

where u(1] =p, u[z) = m, u[B] = e. The whole of Section 2 is now
applicable, the only complications being the evaluation of the integrals (2.11)
or (2.19), and the shock algorithm. With regard to shocks, the difficulty
here is that because of inaccuracies in the numerical method, the shocks do not
(gquite) happen simultaneously. Nevertheless in the knowledge that such
features which nearly occur together should indeed occur together, a strategy
can be invented which overcomes the difficulty.

With regard to the evaluation of the integrals (2.11), we note that this
is the only point in this exposition at which we must consider the construction
of multidimensional algorithms which include conceptual differences from

procedures previously described and used in 1-D.
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The procedure that we use though not seemingly the most efficient
in one dimension, is in fact immediately applicable to 2 and 3-D. The more
obvious one-dimensional algorithm would be to construct the 'global grid’
which is the set of all node points of all variables. A simple ordering of
these in the single direction would then leave sub-element line segments on
which all variables are linear, and the necessary integral evaluations could
easily be performed. The generalisation of this in, for example, 2-D where
we use triangular grids for each components, would however introduce arbitrary
polygonal sub-elements over which to perform the integrations. The
alternative algorithm that we have actually employed is to directly apply
a quadrature formula for each element of the mesh of each particular component.
We then need only to find the value of other components at the appropriate
integration points. Because we are employing a finite glement representation,
these values are easily found without the need for interpolation.

We now consider application of the two methods to the well-known Sod
shocktube problem 18. The lack of an exact or approximate Riemann solver
in the MFE method at present causes immediate difficulty in moving away from
the initial discontinuous state. In fact the value of MFE methods in aerodynamics
is likely to be in computing flows which evolve from smooth initial data to
develop discontinuities. The shocktube problem run from the initial state is thus a
stern test. We have therefore used an exact Riemann solver made available
by Sweby to give the solution at a non-zero time tO' and used that data as
initial conditions for the MFE method.

The results are given in Section 4. Firstly we describe the results of
method (A). The shock and contact are modelled extremely accurately but it was
noticed that nodes in the rarefaction wave moved leftwards and upwards in such
a way that there was good resolution of the upper part of the rarefaction but
no resolution towards the bottom part. If the program was run for sufficient
time nodes in the rarefaction wave moved to the top of the wave and merged
with the node already there. That is, coincidence of nodal coefficients

and co-ordinates occurred in the sense that
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simultaneously.

This feature may be explained analytically by considering
equations (3.8), (3.9). Since the term m is piecewise constant on the
mesh s it lies in the space in which Py is sought. Thus no projection is

required and there is an exact solution of the equation

This leads to the results (c.f. (2.24) or (2.28))

dui
—% = 0 uﬁ = const. (3.23)
R L R _ L
(m./p.)" - (m./p.) m, m,
6, = i3 1370 §, = =— (3.:4)
N R L IR L oz
° J J J

for each k, j. We therefore see that, for all elements k, the slope uk
is constant in time, and that, for all nodes j in the rarefaction wave,
éj > 0 and éj ¢ 0 regardless of nodal separation. Thus‘nodes move leftwards
and upwards and merge at the top of the rarefaction, which means that resolution
of the rarefaction is lost.

This difficulty is seen in Fizure 4, where we have taken tO = 0.10.
We present the results in Figure 5 of an attempt to override this pr oblem.

For all nodes i in the rarefaction wave, we have enforced that 6i = 0,

by removing the relevant terms in the expansion for pt. For this rum we have

o
N

taken tD = 0.0072.

For method (B) the above difficulty does not arise because in general
the p nodes and m nodes will not coincide and the property (3.23) does not
follow, allowing more flexibility. The numerical results given in Figures

were obtained using 14 nodes on each of the three moving meshes.

i
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4. CONCLUSION

These first results for the present MFE methods as applied to the Sod
problem show that if a single moving mesh is used in the MFE solution with
piecewise linear approximation resolution in the rarefaction is inevitably lost
simply as a result of the nature of the approximation for m. We have tested

a method of overcoming this difficulty.

If separate moving meshes are used such problems may not arise, and indeed our

our computations using this method appear quite promising.
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FIGURE 1 Inviscid Burgers Equation : Solution plotted at
t =0, 0., 1.0 and 1.5 with At = 0.1
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FIGURE 2a Buckley-Leverett Equation : Solution plotted every
2 time-like steps with AT = 0.045

EXACT SOLUTION EVERY 0.09000 TIME UNITS

FIGURE 2b Buckley-Leverett Equation : Exact solution every
0.09 time-like units



FIGURE 3a Two-dimensional MFE mesh
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SOLUTION AT TIME 0. 1000000

|

FIGURE 4a



SOLUTION AT TIME 0. 440000

FIGURE 4b




SOLUTION AT TIME 0.0072000
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FIGURE 5a




SOLUTION AT TIME 0. 1440000
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FIGURE 5b




SOLUTION AT TINE 0. 1000000

FIGURE 6Ba




SOLUTION AT TIME 0. 1440000

FIGURE 6b




