SHOCK MODELLING ON IRREGULAR GRIDS

P. GLAISTER

NUMERICAL ANALYSIS REPORT 4/86

This work forms part of the research programme of the Institute for
Computational Fluid Dynamics at the Universities of Oxford and Reading
and was funded by the A.W.R.E., Aldermaston under contract no. NSN/13B/2A88719.



ABSTRACT

Two irregular grid schemes, based on Roe's linearised
Riemann Solver, are presented for the solution of the Euler
equations of gas dynamics in one-dimension. One of these
schemes gives particularly good results for strongly shocked
flows. The schemes are applied to some standard test problems

including infinite shock reflectiaon.




1. INTRODUCTION

The (linearised]) approximate Riemann solver of Roe [1 ]
reduces the soluticn of the Euler equations of gas dynamics to that
of three scalar problems. We seek here to extend the scalar algorithm
proposed by Roe [2 ] to grids for which the mesh spacing is not constant,
whilst retaining an oscillation free scheme. In addition, we suggest
a modification of this scheme for strongly shocked flows on a grid where
the mesh spacings are in constant ratio. Results for both schemes are
presented for a variety of test problems.

In §2 we state some desirable properties of an irregular grid
scheme for the soclution of a scalar conservation law and in §3 derive
a central scheme and an upwind scheme for an irregular grid. 1In §4
we combine the schemes given in §3 to yield a scheme that is free from
spurious oscillations. In §5 we present a different irregular grid
scheme from that given in 8§84 for use with strongly shocked F}ows while
in 56 we describe some specific test problems that can be used to test
such schemes. Finally, in §7 we display the numerical results achieved
for these test problems and compare the two different schemes proposed
here. In the Appendix we show that the scheme given in §4 for a non-linear
scalar conservation law is Total Variation Diminishing (TVD) under

suitable restrictions.



225 DESIRABLE PROPERTIES OF AN IRREGULAR GRID SCHEME

In this section we define conservation and accuracy for a f
difference algorithm on an irregular grid. In addition we give
conditions for a finite difference algorithm to be total variati
diminishing (TVD).

We consider the scalar eguation

u, +au =20 (x,t) € (-=,x) x [0,T]

and define an irregular grid xj in the x direction where

X, = X, + Ax, ;. In addition we consider (x., ,,x, ,), where
J j-1 j-3 J=z7 jtz2
x..1 = 3{x, + x, .1, as the neighbourhood of the point x. with
J*z J+1 J
Ox, = 3(Ax, , + Ox, ,) (see Fig. 1)
J-2 i)
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2.1 Conservation

Using the differential equation (2.1) we have

) J+s j*z NAL
_t J u dx = { Ut dx = - I
X._l X._1 X1
i-3 j-2 .
X 1
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- T Jx u dx = - a[u[x.+%,t3 = U[Xj_%'t]]
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Thus
3 or
z at [ J 2 u dx = = a z (U(X.+lrt] - U[x'_l’t)]
all j X 4 all j o
j-3
E2 a [uR - UL]

by cancellation, where denote the values of u at the left

LIL,UR
end and right end of the region of consideration.

A discrete analogue of equation (2.2) is

{i.e. boundary terms) where uj denotes the approximation to

u(xj. nAt) and ud denotes the approximation at Xj at the next time
level, i.e. u[xj, n+1 At).

We say that a scheme of the form

for solving equation (2.1) is conservative if eqguation (2.3) holds.

A standard interpretation is to consider the approximate solution
of equation (2.1) as consisting of a set of piecewise constants (see

Fig. 2).

i+

(2.3)

(2.4)



2.2 Accuracy
We say that a scheme of the form given by equation (2.4]) is pth
order accurate if it is exactly satisfied for all polynomials of degree

up to and including p; 1i.e if eqguation (2.4]) is exact for

0 .
Uj o Xj’ x;, x?,...,x? . If the exact solution is a polynomial of degree
k then at node j, without loss of generality, uj = x?,
ud = (xj - aAt]K. By choosing xj to be the origin of x then for pth

order accuracy we require

(-aAtJK = - 2 Y

for k =0,1,...,p.

2.3 Total variation diminishing, (TVD)

The total variation of the solution of the solution ug at time

nat is defined to be

n, _v (.0 _.n
TV(u') = § luj+1 Uj|

and a scheme that is total variation diminishing is one where

n+1 n)

TV(u ) £ TV(u

An important consegeunce of the TVD property is the prevention of
spurious oscillations in the solution.

For a general scheme written in the form

. , AU, , + D, bu,
J J-3 J-z MK 211 iz

where C,
j-

be shown [ 3] that sufficient conditions for it to be TVD are

NI=

, Dj+l are functions of [ujJ (i.e data dependent), it can
2
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(We denote Au, , = u, - u.).
Jta J*1 J

In the next section we derive two schemes for an irregular grid.

3 2 A CENTRAL AND AN UPWIND SCHEME ON AN IRREGULAR GRID

In this section we develop two schemes for the solution of eguation

(2.1) on a general irregular grid.

3.1 Central scheme

Consider the centrally based scheme

J _ apt
u- = u. - a. — (u, - u, ,J)
i %3 I

u(xj,n+1AtJ. We consider conditions on

For conservation as defined by eguation (2.3) we require

where uj = u(xj.nAt] and uJ =
aj_%, %+%.
1 z j
—_ (u” - u,
A Q11 ; J
But
1 z j
==y (u” - u.J)Ax,
B a11 3 3

and hence by comparison of equations

by eguation (3.1) is conservative if

]ij = —a[uR = uL]

(2.3) and (3.2) the scheme given

1f we now require in addition that the scheme is first order

accurate as defined by equation (2.5) then we must have

——aAt=~a_‘.aA_t
J-z ij

aht

] - B. (ax. )

j-3 j+3 ij j+3

(3.1

(3.3)



On substitution of i using equation (3.3) and rearranging we
8 +1

obtain

o]
Ni=
>
X
G
+
1
Q

J*s3
Thus

(o, 5 = 3)ax. , =K (3.4)

a constant, independent of j. We determine the constant K by

making the scheme second order accurate on a regular grid, i.e. on

a grid where ij_l = ij = Ax for all j.
2
Putting o, , = a,B., , =B for all j, equations (3.3) and (3.4)
J+z 3*z
become
a + B =1 (3.5a)
(o - 2)Aax = K (3.5b)

For second order accuracy {(on a regular grid) we require

(-apt)? = —u% (0 - (-Ax)2) - s% ((ax)? - 0)

i.e. o - g = 24t (3.5)

Combining equations (3.5a-b) and (3.6) we find

a=é—[1+——a“},s=%{1—a“]

AX AX
and
K= (a- 3)ax = g
2
Therefore, from (3.4)
i _ _aht
[aj'*'l - 2JAXJ+% = K il T
1 ait =
i.e aj+% B [’I+Ax.l]- (1 +vj+%)
J*z



where vj+, = aAt/ij+l is the C.F.L. number for the cell
2

2

Also, using equation (3.3),
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Thus the desired scheme becomes

J 1 aAt
=y, - 501 + Ju, - u, ) —

N b Vi-stY J-17 Ax
o 1 - - ast

(1 vJ+%)[uj+1 u.) A

We can rearrange equation (3.7) to give, for a » 0O,

Joy, - . abt
u uj (uj uj_1J A
1 B B aht
+ 301 vJ_%)[u UJ-1) e
< 1(1 - } abdt
3 (1 v +%](UJ+1 u.l ij
and, for a < 0O,
‘j — - - ﬂ
u uj (Uj+1 uj] ij
1 ~ aAt
+ 2('] + \)j+%J(Uj+1 UJ] __AXJ
- 301 + v, Jlu, - u, ) T
j-3 J j-1 ij

[x.,x, 1.
J

1

It is now possible to identify the following Lax-Wendroff type

two stage algorithm for solving equation (2.1): for a > O

J=1 _ j-3
u =u, , %
j-1 Ax]_1
I A
AX AX

(3.7)

(3.8)

(3.9)

(3.10a)

(3.10b)



- i1 g._1
T Us g * Sk S (3.10c)
J AXj_1 ij_1
. g. 1
TR IR TR ik R, (3.10d)
J Ax,
J
where
. = - abt(u, - u, ,) (3.10e)
b5y T 7 Aty Ty
and
= 301 - |v, 1o, {3.10F)
By-y = = | J-%' b5
Schematically we have for each cell an increment stage, in the form
. 1/ B, b, /B
ﬁ%—% N j=8 T3
' i '
Fi gl
a>g a<ao
together with a transfer stage of the form
. /D /bx . /8 /Bx
Bi-4"% 31 Bi-177%; B3-477% 31 B3-4"73
! i | l
J=1 J J-1 J
a > 0 a <o

3.1 Upwind scheme

We now repeat the analysis of the previous section for the case of

an upwind scheme. Here, we must distinguish between the two cases



_10~

(a) a>» 0 and (b) a ¢ 0 at the outset.

(a) a » 0.

Consider the upwind scheme

J g ) ant : ) aat .
u uj o ; 1 (uj uj_1] Bj_:.,/2 ij [Uj-1 uj_z)
(3.11)
For conservation as defined by equation (2.3) we find that the scheme
given by equation (3.11) 1is conservative if
) + B, = 1. (3.12)
“5-5 TPy
In addition, for first order accuracy as defined by equation (2.5)
we obtain
o aht ) aht
aht = - o, , ij (A J_%) BJ._E,/2 A [AxJ a/2]
On substitution of aj_l using equation (3.12) and rearranging we
2
find that
. Ax + 3AX, = B, A + 1Ax,
Bi-g BXgop * 3%gay T Byg BXgusy, T 2y
Thus
. Ax ., + 1 Ax, =K , (3.13)
Pt Mg T2 By

a constant, independent of j. As before, we can make the scheme second

order accurate on a regular grid to determine K.

1]
R
[ol]
3
a
w

1l

B for all j

Thus set Ax., , = Ax, = Ax, o, , .
J-z J Jtz Jtz

so equations (3.12) and (3.13) become
o+ B =1 (3.14a)
(B + §Jax =K (3.14b)

For second order accuracy (on the regular grid) we require



M

t t
(-ant)? = —a% (0 - ( -ax)2) - Ba—f\; ((-ax)? - (-2px)?)
i.e. o + 3B = 9%;

Combining eguations (3.14a-b) and (3.15) we find that

= 1 _ abt ? . _ adt
a= 3 3 AX " B = 3 l1 AX
and
A
K= (B+ 1ax = 25L
2
Therefore
i apt
. 1AX + 3AX =K = —=—
BJ_%A J—% 2A J+§ 2
i.e. N
= 1 A J+% apt - 1 +
B:_: -3 = = e = -3(r, - v, )
2 B%5-3 i-¥) = I
and using equation (3.12)
o = 3(2 + r, -V )
j-3 - Ty-4 j-3
where rf , = A0x, ,/Bx, ,, the ratio of successive mesh spacings.
-3 3+ 3-8

Thus the upwind scheme when a > 0 becomes

- 302 + r, -V, . u,
‘ j-3 j-8 3 J-17 Ax,

At
i =V =l
+ s(r -3, j_:,,/2](u - J‘2] Ax
We can rearrange equation (3.16) to give
A
W = U, - (U, - ) act
J Jj-17 Ax,
J
A . ) abt
+ 2[ J'afé \)j_:,,/z)[uj_,1l 3—2] '——ij
- %(r+ - v, Ju, - o, ) adt
J-z J-3 J—'] ij

for a > 0.

(3.15)

(3.18)

(3.17)



Before we interpret equation (3.17) as an algorithm involving

an 'increment’ and 'transfer' stage we derive briefly the corresponding

upwind scheme when a < O.

(b) a < 0.

Consider the upwind scheme

If we now apply the same procedure as before we

following expression for a. ,, B
2

X,
o j-4 alt ] - =
a, . =3 |2+ + = 3(2 + 7, ,
N AXJ+'5 AXJ+‘3J *
and _
= _ il
BJ+% = 2[PJ+32_ + \)J+12)
where
r. , = Ax. /Ax,
Jts J-z J*z

Thus the upwind scheme when a < 0 becomes

‘j = -1 - AY) .
u uj 3(2 + rj+% + j+1i](uj+1 u.)
1 il =
+ 2(rj+;; vj+%€)(uj+2 uj+1l
which, on rearranging, gives
uw = u, - (u -u,) af
J J* J A
I r. _
ATy T Ve lUgag T Y]
il B a At
= z[I"J.+5 + Vj+|_](Uj+1 u,) AX_

arrive at the

(3.18)

(3.19)

(3.20)



Combining the schemes given by equations (3.17) and (3.20) we
stage algorithm

can identify the following Warming and Beam type two

for solving equation (2.1): for a > 0O

. +
uJ T Uj-1 + 3%, (3.21a)

ij_/]

h' (3.21b)
s 1 3 - °
o =y 2 %
J AXJ AX
and, for a < O,
- i1 . 1
ud 7T T J-3 AJ*z (3.21¢)
J BX5oq BXyq
w o= u, o+ Pyey ) (3.21d)
J Ax .
J
where
¢, , == aptlu, = u, ) (3.21e)
J-z -1
as before, and
hT = 3(rs, = [v. 4]6, (3.21¢)
J~z J& 5 J-z & 2
Schematically (for each case) we have for each cell an increment
stage of the form
¢ _1/AX. /
J J % AX -1
I [} | i
Jj-=1 J J-1 J
a~> 0 a <o

as before, together with a transfer stage of the form



=%, T 377 7] Jra 73 J*z

,/ij

We now have two finite difference schemes for the numerical solution

of equation (2.1), unfortunately, neither scheme on its own can be a
total variation diminishing scheme.

In the next section we show how to combine the schemes developed
here to obtain a single total variation diminishing scheme guaranteed

to have no spurious oscillations in the solution.

4. A TOTAL VARIATION DIMINISHING SCHEME ON AN IRREGULAR GRID

In this section we combine the two schemes given in the last
section to obtain a scheme which is total variation diminishing
(TVD) and which, as a conseqguence, avoids spurious oscillations.

We again distinguish the two cases (a) a > 0 and (b)) a < 0.

The Lax-Wendroff type scheme given by equation (3.8) may be

written

where Av, = v, - v,
The 'incremental flux' term

'% AUy
j 2

(4.1)



of (4.1) by itself can never produce spurious oscillations at, for
example, discontinuities of the solution. However, the 'anti-diffusive

flux' of (4.1),

_—_[%[1 : I\) ||]AU. |] ¥

J*z J*s3

that arises from the transfer part of the algorithm may produce such
spurious oscillations (see §7). To overcome this we limit the amount ot

antidiffusive flux, i.e. consider the algorithm

A
j - ant = aprt
ud = =222 AU,y - = WL, = = v A y)
I 8xy TdtE Axy Tgrr 2 Itz T (4,2a)
where . , 1s the limiter assumed to be of the form
. vyl ] 8

S T Y 1 u.
0o, = wtm.,,) with m. ., = = © le T (4.2b)

J J \EELENS RIS

We note that ¢;+1 5 i, Y correspond to the Lax-Wendroff
2

31 = Myes
and Warming/Beam upwind schemes, respectively.
We can consider § to be one of a wide class of limiters,

(see [ 4]), e.g. the 'Superbee’ limiter. In particular, we shall

specify that ¢(m) 2 0 with y(m)} = 0 for m < 0. Furthermore,

A

we shall stipulate that 0 < y(m) € 2 and that 0O < Q%Tl 2 (see [41).
We now show that the scheme given by equations (4.2a-b) together with

these restrictions is TVD if aAt/ij_ < 4 for all j, 1i.e. the local

Ni=

C.F.L. number v, , £ 3.

1
2

The scheme given by equations (4.2a-b) can be written



where
lP-l-
.
C, , = aat 1y, y =22 (7 s = v D
j-z  Mx, + j-3 =
J M. 1
j+3
2 )
. 0 (1= v, )
2 lbj_% |VJ_%’ }I
and
D. , =0
J*z
Now, if we stipulate that iy T aAt/ij_l < 3 for all j, then
2 2
aAt ) + aAt +
£ — 32 ) = —= (1 + )
CJ_% = AXJ (1 + 3 FJ—% Ax ( I‘J_%
_ abt ij_% + ij+5 - 5 aAt < 1
Ax Ax ., Ax .
J-z2 J-z2
i * > > 0 > >0 >
since wj-é 20, 2z wj+é/mj+% =R 0} VJ_% = and 1 - lV-_%| =
Also
c,,z228 -1y z0
Jj-3 Ax .,
J
. +
since 2 2z 9y, , 20, vj_% z 0, wj+l/m ,1 20 and
r R RV r (1 -v, ) 2z0 It follows from equations (4.3),
J-2 J-3 J-z J*z
(4.4), (2.8) and (2.7) that the scheme given by equations (4.2a-b) is

j-1 aAt/ij_ £ 3 for all j.
2

Ni=

(4.3)

(4.4)

Consider now the Lax-Wendroff scheme given by equation (3.89) where

a ¢ 0, and write the scheme with limited antidiffusive flux in the form



[
o
>
ct

u uj A Auj+5
J
A
+ ant . j
o — (1 - | 1) (4.5a)
B wJ_% > vJ_§| AUJ‘%J a
where ¢ 1is a limiter with the same restrictions as before, A+vj = Vi+1 =
and
- - S P C BTN I
., Twlm, ) with m, , = [ : (4.5b)
Vipy SWTyeg) W j-z 1= v, 4] Au,
N Jz
This scheme can again be rewritten in the form
ud = u, - C, , Au. , + D, , Au, |,
J J7z J"2 J*z J*z
where
c, , =20
J~3
and
aht 1 =
DJ"‘% = “AX—J_ -1 + 3 IJJJ+% (1 |\)j+l|]
by
= 3 2 : (r,+1 - |V-+1|)
m. J J
J-3
If we similarly stipulate vj—l = aAt/ij_l > -3 for all j, then
2 2
Vo1
- R TR Ll B T LD
J+§ Ax. - J+- J+
j m,
J~3
E wj+l (1 - |Vj+1l]
< - 28t g, i+2r, ,) = - LR R )
Ax jtsz Ax +3
J
+
_ _ aht M3+% ij—% . _ fapt ’ (4.5)
Ax Ax . AX = :



_’]8_

since ¢, , 20, 2=z ,/m: , 2 0 and 1T - v ‘} > 0. Also
+3 J-z J~=2 J+2
o, 2-22Y (1 -2y 20 (4.7)
Jtz Ax
3
since 2 2 . , 2 0, v <0, . /m. , 20 and
J*3 J*z J-z 17z
r, 1T !v. ‘I =pr. , (1 +wv, ,)20. It follows from equations
J*z J*z Jtz J-3

(4.68), (4.7), (2.8) and (2.7) that the scheme given by eguations {4.5a-b)

B ., z -3 for all j.

[SIE

is TVD if vj = alt/Ax

1
2

Schematically we have constructed the following algorithm

+ ¢._1_ /\
15(1 - o) ] . J :
l\)J_§| IPJ_

.
11 v v, .,/
s ij_1 ? | J-%' wj'%¢J‘% X
. .
-3
=8 (4.8a)
J
]
Jj-1 J
a~>~o0
11 - v, e L. /A.m I N S Y S
: V55 1¥5-385-478%5 ’ V53005 g85.470%;
b5-3
ij_1
(4.8b)
1 ]
J=1 J
a <0
where
¢J'% = -alt Auj_% (4.8c)
and
N
(r> , = |v, . _au
B * , * j-3-5S 3 j- 3
"= p(m® ) with mt, = —d2 J—2 .
wj‘% v j-3 e mj‘% (1 - Jv, ]3au

(4.8d)



_']9_

and

s = sign (a) ‘ (4.8e)

We can combine these two schemes to obtain approximate solutions with

a TVD property (see Appendix) tc the non-linear scalar conservation law

u, + (fFlu)) =20 (4.9)
t X

as follows

b, /6%, b, ,/6x,
-z 3 j=3
At
K;jAFj‘% (4.10a)
I
Jj-=1 J
Sj_15 -
b. ,/Ax .,/”"‘F_ﬁh—ﬁﬁ“ﬁ§ b, ,/bx
j-3 -1 J=3
YSI
Ax._1 J-z
J (4.10b)
| ]
Jj-1 J
s, , ¢ G
J-3
where
AtAFj :
Ty 4.10
Ax . ,bU. . U & s o : Y
- J7z J~z
vV, , =
J~z2
L1 ftiu.) u, = u, (4.10d)
Ax . j j 3=



Sj-1 : 5ign[vj ) (4.10e)
H L
aAf,  =Ff, =, = flu.) - flu, ) (4.10F)
J-z J = it J Jj=1
b, , = -3 z Coiataf, Jp(M ) (4.10g)
j-3 2 (1 {VJ_5|]A A J_Ew _]‘15 £
AX ., |
and 1z i\) y — 09 |||| Af
AX . s )72 J=z7 J=z 7 5. s
Jm2 = ey J j-3
Moo= iz (4.10h)

(1 = l\), ‘!] Af .
J73 J-

N—

We can also extend our irregular grid scheme to include the
solution of the Euler equations for an ideal compressible fluid in one

dimension, namely

rp pu
ou + P+ pu?| = 0 (4.11a)
e tule+p)
t X
where
e = p + & u2 [4 11b)
vy - 1 2 p G

and o, U, p, & and ~y represent the density, velocity, pressure,
energy and ratio of specific heat capacities of the fluid, respectively.
Using the flux difference splitting technique of Roe [ 11 the
approximate solution of equations (4.11a-b) reduces to the solution of
three scalar problems and this can be done on an irregular grid using the
scheme given by equations (4.10a-h).
In addition, we can easily incorporate into the scheme a device
to disperse entropy-violating solutions and treat expansion fans correctly.

This is done by considering the one-sided scheme given by equations (4.10a-h)



as a two-sided scheme, sending increments to both ends of a cell,
(see [51).

In the next section we develop a slightly different irregular
grid scheme for the solution of the Euler equations for flows with

strong shocks.

Sr AN IRREGULAR GRID SCHEME FOR FLOWS WITH STRONG SHOCKS

In this section we propose ancther irregular grid scheme for the
solution of the Euler equations for flows with strong shocks.
Consider again the scalar equation (2.1) and the schemes

for a » 0

ul =y, - %SE (u, - U, ) (5.1a)
J 343 J J
and, for a < O,
ud =, - ae (u, - u,) (5.1b)
] Ax, J+ 3
J~z
Both of these schemes are conservative in the sense 2 (ud - uax, =
all j
boundary terms if ij/ij+1 = constant, equivalently
-2
ij+1/ij_1 = constant, r say, i.e. on a grid where the mesh spacings
2 2

are in constant ratio. We call this type of grid a 'Geometric grid’.
The two schemes given by equaticns (3.8) and (3.17) for & > O

can be rewritten as

u- = - — (u u ]
J ij+% J J=
1 alAt
+2[Fj+l |\) 11)[LJ - ,]]F
- 1 - k)
(1 |v.+%|J(uj+1 ujJ T (5.2)



22 -

and
u’ u, - %AE- (u u _1]
J Xj*% J
+
1 N
+ z(rj_%/ \)j_a/;|][uJ ’ 5
1 + |
(1 + 1, =, ;= v, ,j)lu,
j-3 J*3 J-3! J

Similarly, eqguations (3.9) ang (3.20) for a ¢ O

o=y, - L2 (u, - u,)
J Ax, J+1 J
J-z
1 + 1 ant
+ 2(FJ_% .\)J+%]J[uJ+1 J) i
1 ot ant
3 (1 |V ;_IJ(U 1]-——-——Ax
and
il = ait (
= — u - u,)
: "5 bx .y 4 J
+ 2(Fj+y | J+3/2|](UJ+2 3417 X
1 - i + _ aAt
301 + Fyey @ Tyt [v .]](uj+1 ) =
3 . ; aht 5 .
We can identify an increment - - Au.-, in each of equations
1 2

(5.2-5.5) that is the same as the scheme given by equations (5.1a-bJ,

but it is now not possible to identify a transfer stage in the same way

as we did in equations (3.8-3.8), (3.17) and (3.20).

For mildly varying geometric meshes, however, i.e.

where

r ~ 0(1), we can consider approximate transfers of the form

jep Yjes, WhETE Yy = -5 U

[vj+%l)(uj+1 N uj

can be rewritten as

(5.4)



In addition we can limit these transfers as we did in §4 to increase

the resolution of the numerical results without introducing spurious

oscillations into the solution.

The main reason for considering this different scheme, is that

when it is applied to the Euler equations for flows with strong shocks,

we obtain significantly
the scheme in §4. This
with strong shocks, the
are more appropriate in

entering the cell j-3

to a density by dividing by an appropriate mesh length.

downwind lengths in the denominator, i.e.

the faollowing sense.

better results with this scheme than using

could be explained by the fact that for flows

Ax

j¥3’

.
2

In an upwind scheme the mass

is sent downstream and this mass must be converted

It is consistent

with the upwind philosophy to regard the mass as smeared over the downwind

cell and the value held at j.

for strong shocks.

This subtle difference may be significant

We shall therefore state here the scalar algorithm that can be used

to determine the solution of the Euler equations (4.11a-b) on a mildly

varying geometric grid, (typically 5/6 ¢ r < 6/5), in schematic form

d. , VNS
J~32 2 J
Ax._1
i Y
.J+15 J_IE (5.66)
] 1]
=1 J
s, , » 0
J-z
4. Ihx. — N d. ,/bx
J-z il J-3
. WEBE (5.6b)
A
]_3"';.: { [}
J=1 J



where
[ AtAf’i_l
‘ S u, 7 u, (5.6c)
AX, AU, ] J=1
j-373-3
J7z2 =
!
P AtF'(u,)
e Uy Uy (5.6d)
| — 2
. 3
5 = signlv, ,) (5.6e)
J 3 N
A, , = F. f = flu.) flu, ) (5.6f)
j-z ] j-1 ] N
d, ; = -3(1 = | L)ataf, p(M, ) (5.6g)
et y Vi1 b -3 -1 &
and
(v - v, s | 1af
s 5., R
M., Ul SRS £ TN | = (5.6h)
R (1 - |v, ,|)af, |
-3 j-3
As in §4

we can incorporate a simple device to disperse entropy
violating solutions.

In the next section we give a series of problems

that can be used
to test the schemes given in §3,

§4 and §5.



6. TEST PROBLEMS

In this section we look at four test problems used to try out
the previously described algorithms. Each problem is concerned with the
propagation of a discontinuity {(shock) through an irregular grid.
Both the linear and non-linear scalar equations (2.1) and (4.9) are
considered, together with the Euler equations (4.71a-b).

Two types of grid are considered, a geometric grid and an abutted
grid (i.e. one where two regular grids with different mesh spacings are

joined). We test all three schemes given in §3, §4 and §5.

Problem 1

The first problem is concerned with the linear equation

i.e. linear advection, with initial data

The discontinuity moves from left to right with unit speed.

Problem 2
The second problem involves the non-linear equation inviscid
Burgers' eguation
u, + (3u?) =0

t X

and the corresponding jump condition
[3u2] = S[ul

where S 1is the shock speed, with initial data



The discontinuity moves from left to right with speed 5s

Problem 3
The third problem is the well known shock tube problem of

Sod for the Euler equations (4.11a-b) with initial data

p =1
Uy =20 X <3
p =1 J

and
p = 0.125
u =20 X > %
p = 0.1

where y = 1.4, (see [61).
The main features of the exact solution are a shock moving to the
right followed by a contact discontinuity also moving to the right but

more slowly and an expansion fan moving to the left.

Problem 4
The final problem is concerned with shock reflection using again

the Euler equations. We consider a region 0 £ x £ 1 with initial conditions

o =1
u

i.e. a gas of constant density and pressure moving towards x = O.
The boundary x = 0 is a rigid wall and the exact solution represents
shock reflection from the wall. The gas is brought to rest at x = 0 and,

denoting by (0) initial values, by (-) pre-shocked values, and by (+)
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0 2 0 + 1 =

post-shocked values, we have o =1, p =p s p = < + 1l

= - / 0
uO:-1, u = -1, =0, DO‘DO. p =pD, p+—%y+1+ (y+1)% + 16yp

L
and
_ 0 N
p =1, u = -1, p = p for x/t z S,

where

S=1(y=3+ Ay+112 + 16ypC ).

The shock moves out from the origin with speed S. This includes the

+
special case of an infinite shock when pO =0 and p /p = > .

Moreover, by suitable choices of pO we can vary the shock strength D+/p—.

In the next section we display the numerical results for the problems

described above.




7. NUMERICAL RESULTS

In this section we show the numerical results obtained for the four
test problems described in §6 using the schemes described in §3, 84 and
§5. Each of the figures refers to one of Problems 1-4 with either a grid
with constant mesh spacings, @ geometric grid or an abutted grid. In addition

we use either the 'Minmod' limiter 1.e.

g(m) max{(0,min(m,1)}

or the 'Superbee' limiter i.e.

g{m) = max(0,min(2m,1) , min(m,2]))

(For Problem 1 we also use the non-TVD schemes of 83.) With a geometric

grid or an abutted grid we call the scheme in 84 'Scheme 1' and the scheme

in §5 'Scheme 2'. In Problem 4 we apply a reflection condj‘m'rm+ at
x = 0
Problem 1
Figure 1 Caonstant Grid Warming/Beam
Figure 2 Constant Grid Superbee
Figure 3 Abutted Grid Warming/Beam Scheme 1
Figure 4 Abutted Grid Superbee Scheme 1
Figure 5 Geometric Grid Superbee Scheme 1
Figure 6 Geometric Grid Minmod Scheme 2
Problem 2
Figure 7 Constant Grid Superbee
Figure 8 Abutted Grid Superbee Scheme 1
Figure 8 Geometric Grid Superbee Scheme 1
Figure 10 Geometric Grid Superbee Scheme 2

(t} A reflected boundary condition can be implemented by considering an
'image' cell at the boundary and imposing equal density and pressure, and
equal and opposite velocity at either end of the cell. This results in

no net movement in the cell.
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Problem 3
Figures 11-16 refer to Problem 3 and only that part of the density

featuring the shock and contact discontinuities is shown. Figure 1ba
shows the complete solution for the density with increasing and decreasing

geometric grids throughout.

Figure 11 Constant Grid Minmod and Superbee
Figure 12 Constant Grid Minmod and Superbee
Figure 13 Abutted Grid Schemes 1 and 2
Figure 14 Abutted Grid Schemes 1 and 2
Figure 15 Geometric Grid Schemes 1 and 2
Figure 16 Geometric Grid Schemes 1 and 2
Figure 16a Geometric Grid Schemes 1 and 2
Prcblem 4
Figures 17-34 refer to Problem 4 using the Minmod' limiter. We choose

three geometric grid ratios, r , two values for the ratio of specific
heat capacities, Yy , and different shock strengths P;P- S (N.B. only

the density is given, as generally no difficulty is found in computing the

velocity and pressure with either scheme 1 or 2.)

Figure 17 r = 1.05 y = 5/3 P*/p_ - ®
Figure 18  r = 1.05 y = 5/3 Pt p- 10
Figure 19 r = 1.05 Yy = 5/3 Pr e = 2
Figure 20 r = 1.05 Yy = 1.4 P+/P— =
Figure 21 r = 1.05 Yy = 1.4 P* o = 40
Figure 22 r = 1.05 y = 1.4 P+/p_ = 2
Figure 23  r = 1.1 y = 5/3 Pt ol =
Figure 24 r = 1.1 vy = 5/3 P* po = 10
Figure 25 r = 1.1 y = 5/3 Ptrpo = 2
Figure 26 ro= 1.1 y = 1.4 P+ ol = w
Figure 27 r = 1.1 Yy = 1.4 P+/p_ = 10
Figure 28 ro= 1.1 y = 1.4 .
Figure 29 r = 1.15 y = 5/3 P* ol = w
Figure 30 r = 1.15 y = 5/3 P* ol = 40
Figure 31 r = 1.15 y = 5/3 P+ o = 3
Figure 32 r =1.15 vy = 1.4 P+/P— =
Figure 33 r = 1.15 Yy = 1.4 P* oo = 10
Figure 3¢  r = 1.15 y = 1.4 Pt e = 2
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For Problems 1, © and 3 we sce very little difference in the results
using schemes 1 and 2. The discontinuity (shock) in each prablem passes
through the variable mesh producing little spurious oscillation. (The
upwind scheme of 83, however, yields spurious oscillations in Problem 1
as expected.) For Problem 4 we noticz that the wcheme of 85 performs
petter than the scheme of 84 when the shaock strength is large. This is
true for both choices of the ratio of specific heat capacities, Yy , and

each value of the mesh ratio, r . For mild shock strengths the results

from using scheme 1 and 2 are very similar.
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Figure 14

SOLUTION OF THE EULFR EQUATIONS YITH SIAB SYMMETRY - Sod's Shock Tube Problam
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Figure 19

SOLUTION OF THE EULER EQUATIONS VITH SIAB SYMMFTRY - Shock Reflect lon
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Figure 21

SOLUTION QF THE EULER EQUATIONS YITH SLAB SYMMETRY - Shock Reflection
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Figure 23

S0LUTION OF THE EULFR FQUATIONS WITH SIAB SYMMETRY - Shock Reflsct ton

KEY

p - Density

Exect Solutton
et time t = 0.9 s

sevese Approximate solutlon
at time t = (0.% s

PARAMETERS

< = 5/3%
Pressure Ratlo = (9
Mesh Retto = 1.1

‘Minmod® limiter used

P
g8 EBBD
A i ﬂ--!!-l.
34 "
24
14 e v
.l 2 03 6o x
Scheme
p
At
3
q
2
I .
o1 a2 L3 6s X

p =1
u = -1

p = 0.000

Raf lected Boundsry Cond!ttons

et x = 0

Scheme




onuxv@
8UO| 3| puoy Auepunog peide)jey

C OEQLUW

910 =d
[-=n

| = d

SNOTITONOT TVTIINT

pesn Jei|w|) ,pPOwWUl,

| *| = o138y ysey
0l = oliey eunsse.q

¢/ = A

SYITIAVEYd

8 9°) = 3 ew]3y 18

uo|anjos ejew|xouddy eee---
8 9°) = 3 6w|3 18
uo|iInjog 308xJ

Kiisueq - d

pp|

X w9 £ z0 10
....... i -
L
-.N
[
A E s aas & A .1-
d
| eweyag
X 49 £ (4] 10
- 1 o
a-N
L]
L
g = © 000 ssscammmy, 11-
LA |.n
d

U01398748Yy 3204ys ~ THITNNAS 8Y 1S HIIK SNOTIVIOT g3

3JHL dJ0 NOILMTI0S




-

SOLUTION OF THE EDLFR EQUATIONS YITH SLAB SYMMFTRY - Shock Reflect fon
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Figure 27

SQLUTION OF THE FULFR FQUATIONS VITH SIAB SYMMETRY - Shock Reflect fon
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SOLUTION OF THE EULER EQUATIONS ¥YITH SLAB SYMMETRY - Shock Reflection

KEY
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SQLUTION OF THE FULFR FQUATIONS VITH SLAB SYMMFTRY - Shock Reflect fon
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SOLUTION OF THE EULFR EQUATIONS VITH SLAB SYMMETRY - Shock Reflectfon
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3. CONCLUSION
We have devised

(linearised) Riemann

two new irregular grid schemes, based on Roe's

solver, for the solution of the Euler eguations of

gas dynamics, Both -chemes give similar results for flows with weak

shocks. The scheme o

shocked flow.

<

S
85,

however,

gives better results

for

3 =strongly
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APPENDIX

We show in this Appendix that the scheme given by eqguations

(4.10a-h) together with the same restrictions on the limiter
i.e.

Y as in §4,
2z ylm) 2z G, 2z ym)/mz O
and
p(m) =0 when m< 0,
is TVD if
-min(r, ,,%) £ v, , < min(r. s 3) (A1)
J-3 J-z J-z
for all j.
The scheme given by eguations (4.10a-h) can be written in the
form
il = 1 At -1 - At
u uy 2(5j-% + 1) i AFJ_% 3 (1 5j+1] ij Afj+§
T S.y Pi-g S.,1 Py (A2)
72 Ay 72 Ay
where
AtAfj_l
= u, # u
Ax Au j =
3= g
vJ_l = 1 (A3)
2
AR ey u, = u,
AX, J J J-1
\ J7z
At
b, = -301 - . — Af, }
3-4 i IvJ_%IJ = i1 ¢[MJ_%] (A4)
and
ij_l )
~ - AF
bx . v,y 1 s
e 0 B B
J-z
M., = {AS)
JTz (1 - |v. ,Das,
J-3 J-s3
Firstly, we define



W
wl

+ (
Ve o = J Vi i N 0
J73 J7z =2
0 v, , £0
J=rn
v, . = 0 v, , 20
J~32 Iz
A v, , <D0
J-3 J-3
8" = (1 + vE J
j-3 j-z
+ 1 s = \)i )
T, = 3(r] .
LRI R ST
+ + A A
o, V., u, X
U (TR e T, e Lo 7 B/
J72 J72 6T ; vT , bu, o, Ax,
J~ 2 J-3 J-3 J- 2
0
and
M, , = 0 ) i
72 T, , v, , Au, , Ax, ,
M e T itz Jts3
i1 — -
J7z S, , v, , bu., , Ax., ,
-z J-z J-2 J-3
Ax,
(N.B. rt , = J-221 )
J-3 Ax,
J-2
Thus
"
v, , 20
J-z2
vi m =
J"3

and as a result of the restrictions given by equation (A1) we find

that

IA

v

(AB)

(A7)

(A8)

(A9)

(A10)

(A11)
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and T

e I+
|
o=

Using the definitions given by

vV
o

1\
o

equations (A3)-(A11) we can rewrite

equation (A2) as
. B
. L1 AX, U, s . X, u,
ey - tits BXgoy AUy s Vg BXgey BU4.
J Ax . AX .
J J
A_ + + ( + )
T ax, (Saer Ve Maer P Ve
- 53+% v3+l Auj+l ij+1 w[M—+%)
If we now use equations (A10) and (A11) to replace the terms
* z ; . * x
Gjt% vjt% AUJ:% ijt% in equation (A12) by Tj+% Vj+§ Auj+% AxJ+%
we obtain
uj =y, -C, , Au, , + D, , AU, _,
J J- =z J*z J*z
where
+ +
) i AX -1 \)J_15 - w(Mj+,] .
j-3 AX, i Ti-4
-J j+%
+ +
- 8, (M, )
3-3 VM- ]
and
B |
. o ij+% Vieg . Plm _%] -
j*3 ij Mo J*+z2
J-3
; 5j+' w(Mj+%1]

Now

(A12)

(A13)
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since v, ,
Jz

Similarly
since v,
+

Also

. +
since v, ,
J+z

Similarly

Kit=

R 111 - et )
ij Vj—-% 2 vj_% lP J_%
ij_% + .
2 _ 1
- ij Vi-t [1 zW(Mj_%J}
A, N
g Vg a2z (A14)
ij ]~z
+ . .
0, M, /M., 20, T, ,20 and 2 2z $(M. ,) 20
- S -3
&XJ+1 - =
- 2 1
Dj*% 2 ij \)J+% (1 (1 + v +%]lb[|vlj+,)]
AXJ+1 ) )
= 2 o
: ij \)J+% (1 z‘i’[f"lj+1])
&x +1 =
= p (1 -3°2) 20 (A15)
ij J+§
0, : T .20, 1.,z20 2 2 oM. ) 20,
¢(MJ_%)/MJ_% Sol and " -
o
Bxs O )
C.+1 aS A J*rz \)1.- R 1+ . %(I‘T - \)+- L)
J*z x,+1 J+ |V|+ j+1 43
J 43,
AXj*% + +
s ol
T, i TR T
- ij+% \)+ ij+% " ij.,,;,:
fel
ij+1 I*a ij+l ij+§
bx 1 + Ax
- _Jtz J*z dFfl 2v*
Ax Ax j+3
j+1 j*3
I Iz 3% T vy



LY S ~ IJ![MI,_|J ) i
D, , Lt AL -z V(e ., * v, )
j*s3 AxJ J*s3 [V]_ Jjt*s3 Jt
it
Ax
< - j+s v (1 + 2<% r J
S ij j+| 2 J+E
AxJ+% ~ f ij+1 ij_%
= - +
ij j+s ij+l AXJ+%}
AXJ+1 _ 2AxJ
= _ 2 . .
ij \)J+% ij+% 2\)J+%
since v,y 0, (M, ) 20, &,, 20 and (M) 20

Thus

J*z J*s3 J*+z
Now, either vj+l 2 0 so that
2
L s S$4 and v, =0
vj+l = vj+% £ 3 an vj+% =
giving
0sC, , +D, , €1 (A1B)
J+*z J*z
or v, , £ 0 so that
J*z
V., =v,,2-% ad v ., =0
J*z J*z J*z
giving
0sC,, +D, , &1 (A17)

It follows from equations (2.6)-(2.7) (A13)-(A17) that the scheme

given by equations (4.10a-h) for the solution of equation (4.9) is TVD if

- min(r,
-

IIA

,3) v,
j-

€ min(r, ,,3%)

+
1
J72

Ni=
NI

for all j.



