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Abstract

The Lagrange-Galerkin method has proved a very successful method
in Computational Fluid Dynamics (CFD) in practice, but has suffered from ques-
tion marks about its stability when the integrals are approximated by quadra-
tures. In this paper we will prove instability for wider ranges of quadrature
formulae than previously considered. We will also introduce an approximate in-
tegration technique on triangular grids that cheaply recovers the unconditional
stability of the Lagrange-Galerkin method with no loss in accuracy. The same
technique can also be used for the exact projection of data from one arbitrary
triangular grid to another, different, arbitrary triangular grid. This could be used

in grid adaptation algorithms or in triangular multigrid procedures.



1 Introduction

The Lagrange-Galerkin method is a scheme that combines the method of charac-
teristics with a standard finite element procedure, see Benqué et al. (2], Bercovier
et al. [3, 4], Douglas and Russell [9], Ewing et al. [13], Hasbani et al. (18], Le-
saint [25], Pironneau (31], Russell [38] and Siili [43], for example. There are two
versions of the scheme available depending upon whether one travels forwards in
time along the particle trajectory or backwards. In Morton and Priestley [28]
these two schemes were labelled the weak Lagrange-Galerkin method and the
direct Lagrange-Galerkin method. In this paper we shall only concern ourselves
with the direct Lagrange-Galerkin method, although everything proved here can

be equally well applied to either version of the scheme.

Below we shall briefly describe the derivation of the Lagrange-
Galerkin scheme. In Section 2 new results about the instability of quadrature
will be proved. These show that even wider classes of interpolatory quadrature
formulae than previously realized are unstable when used in conjunction with the:
Lagrange-Galerkin method. This makes the search for a stable implementation
of the method, on triangles if the scheme is to make full use of the advantages of
the finite element procedure, even more important. In section 3 a new integration
technique for the Lagrange-Galerkin method on triangles will be introduced that,
is really just an extension of the area-weighting method introduced by Priestley
[32] and Morton et al. [29]. This involves performing an exact projection from one
arbitrary triangular grid onto a different arbitrary triangular grid, and as such-
has applications outside of the Lagrange-Galerkin method. Ta demonstrate its
effectiveness a simple test problem is solved in Section 4 and preliminary results

are also given for a standard test problem involving the Navier-Stokes equations.

Consider the Cauchy problem for the scalar, linear advection equa-

tion for u(z, t):

us + a(z,t).Yu = 0, zeRY, t>0, (1.1)



U(g_, 0) = U’O(E)a (12)

where u belongs to L*(R?), d being the number of dimensions. For the purpose
of proving certain theoretical results the velocity field a(z,t) is assumed to be
incompressible, i.e. V.a =0 Vz,t. but this is not a restriction in practice. We
can define characteristics paths or trajectories, X(z, s;t), in two ways, either as

the solution to an ordinary differential equation,

X(z,s58) = =z, (L.3)
dX(z,s;t) R
__dt__— = Q(X(ﬁa 35 t)7 t)’ (14)

or, if desired, as the solution of the integral equation
t
X(z,sit) = z+/ a(X(z,s;7),7)dr.

In order to simplify the notation we will denote the foot, or depar-
ture point, of the characteristic path at time ¢ by g and its arrival point at time

t*+! by y. In terms of the more general notation above, these are

z = X(y,t";t") and y = X(z,t" "),

A unique (absolutely continuous) solution to equations (1.3, 1.4)
can be guaranteed if it is assumed that a(z,t) belongs to the Bochner space
L}(0,T; (W'*)4), see Mizohata [27] for example. The solution to the original
partial differential equation (1.1,1.2) is now given by the relation

w(X(-t,t+7),t +7) = u(,1). (1.5)

For an approximation, U™, at time, t" expanded in terms of finite

element basis functions ¢;,
. Z U_yn ¢j ’
i
the direct Lagrange-Galerkin method uses eq. (1.5) to seek U/"+! in L*(RY)
satisfying
(U™ 4:) = / U™(2)di(y)dy Vi, (1.6)



equation (1.6) being obtained by taking the weak form of (1.5), i.e., multiplying
(1.5) by #:(y) and integrating over the whole domain with respect to y, the L?
inner product over IR? being denoted by (-, ). This is the same approach as that
used by Bercovier & Pironneau (3], Douglas & Russell [9] and Pironneau [31], for

example.

A second, alternative, formulation has been proposed by Benqué
et al. [2] and this is referred to as the weak formulation, or the weak Lagrange-
Galerkin method, by Morton and Priestley [28] because the adjoint of the differ-
ential operator in eq. (1.1) is applied to a test function. The results in section
2, and the new method introduced in section 3, are equally applicable to this

formulation.

The convergence and unconditional stability of the Lagrange-Galer-
kin method applied to the solution of (1.1) is addressed in Morton et al. [29].
Also in this paper certain special cases are mentioned where the stated results
can be improved upon. E.g., for one-dimensional constant linear advection the
Lagrange-Galerkin method with piecewise linear elements on a uniform grid be-
comes third order accurate. When g(z,t) is a smooth function the method is
second order accurate on a non-uniform mesh. Other theoretical results can be
found in Lesaint [25], Siili [43], Siili and Ware [45] and in Priestley [33], which con-

tains a short review of some of the properties of the Lagrange-Galerkin method.

Apart from certain trivial problems, the integral on the right-hand
side of (1.6) has to be approximated in some way. There appear to be three ways
of accomplishing this in a stable manner, all of which have problems. Priestley
[32], Morton et al. [29] introduced the area-weighted Lagrange-Galerkin method
which, in contrast to normal quadrature, approximates the velocity field in such
a way that the integrals can then be carried out exactly. This approach is stable
and converges and gives reasonable results. However, there is, formally, a severe
loss.of accuracy compared with the exactly integrated method and the high order

quadrature methods. It was also considered difficult to generalise area-weighting



to triangular grids.

The EPIC algorithm of Eastwood, see Eastwood & Arter [12], for
example, is essentially the direct Lagrange-Galerkin method. It overcomes the
conditions of the stability theorem of Morton et al. [29] by using a quadrature
that does not integrate quadratics exactly, namely a compound trapezium rule.
This same rule (or one with fewer sub-intervals) must also be used to calculate the
integrals that give the elements of the mass matrix. Since the Lagrange-Galerkin
method loses accuracy rapidly if the full mass matrix is not used, this means
that many sub-intervals need to be taken. This becomes very expensive in higher

dimensions if a product rule is used.

The Spectral Lagrange-Galerkin method of Siili & Ware (45] uses
globally smooth basis functions. Convergence and unconditional stability are
proven for Fourier polynomials even under quadrature, as long as the relevant
Gaussian quadrature is used. The problems with this method are its cost, its
propensity to give oscillations and, in common with spectral methods in general,

the difficulty in applying it to arbitrary domains.

In practice, then, because of the difficulties with the above imple-
mentations, quadrature formulae have been generally used. Although Lesaint
[25] gives theoretical results involving quadrature, little work had been done on
this aspect of the method. In Morton and Priestley [28] some elementary results
were given regarding the effects of quadrature. Possibly the most interesting re-
sult is the stability theorem given by Priestley [32] and Morton et al. [29], later
extended to include diffusion by Sili [44], which may be achieved by a simple
Fourier analysis of the constant coefficient advection equation. The consequences
of this theorem are quite wide ranging. Gauss-Legendre quadratures are uncon-
ditionally unstable, whilst Newton-Cotes formulae, various Radau formulae, and
Gauss-Lobatto quadrature formulae (of which vertex and Simpson’s rule are the
lowest order versions) are only conditionally stable. Even though Gauss-Lobatto

is one of the best quadratures as regards stability, in the case of Simpson’s rule



the region of stability is still only [0,1/3], a considerable restriction compared

with the unconditional stability of the exactly integrated scheme.

Up to a point these results are largely academic in that, for the
schemes using the higher order quadratures, for which the region of stability only
decreases, it can be very hard to generate signs of instability because of their high
accuracy. In calculations involving the Navier-Stokes equations, with all the non-
convective terms being treated implicitly, detecting instabilities becomes even
more difficult. Using bilinear elements on rectangles for the rotating cone prob-
lem Morton et al. [29] were unable to make a 4x4 Gauss-Legendre quadrature
go unstable, although Priestley [32], showed that for a one-dimensional constant
coeflicient example, where it was possible to maintain the CFL number in the un-
stable range, the scheme did eventually become unstable. The danger, in practical
calculations with the Navier-Stokes equations, for example, is that near bound-
aries or around stagnation points the scheme will be exposed to fairly constant
CFL numbers in the unstable region. Once the unstable modes in the solution
have been excited they can then grow very quickly even with the more accurate
integration schemes. However; we know of no examples where, in a physical sit-
uation, the quadrature instability has caused any problems. Priestley (33, 34);
though, has suggested a version of the Lagrange-Galerkin method for use in solv-
ing the advection problems associated with multidimensional wave models, see
Roe (36] for example. Without diffusion the problems caused by the evaluation

of the integrals could become more apparent.

2 Unstable Implementations of the Lagrange-

Galerkin Method

In Priestley [32] and Morton et al. [29] it was shown that when the right-hand
side of (1.6) is evaluated using the most common types of polynomial interpo-
lating quadrature, Gauss-Legendre and Gauss-Lobatto, the method becomes un-

conditionally unstable or conditionally stable, respectively, a severe reduction
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on the unconditional stability obtained with exact integration. We can talk of
‘the’ Lagrange-Galerkin method here since Morton and Priestley (28] showed the
equivalence of the two approaches, even when quadrature was used, for the con-
stant coefficient advection equation used in the Fourier analysis. Here we present
some new results on quadrature that again show wide classes of quadrature to be
unusable for implementing the Lagrange-Galerkin method. Firstly we recall the

main result on quadrature from Priestley [32] and Morton et al. [29].

THEOREM 1 [Priestley (1986)] If the right-hand side of the Lagrange-Galerkin

method, using piecewise linear elements on a uniform mesh, is approzimated by

a quadrature of the form

/01 f(z)dz ~ wo f(0) + i Wi f (Tk) + Wi £(1), (2.1)

where the weights wy, ..., wn4; and the quadrature ponts0< 21 <...<zp <1
are free to be chosen ezcept that we assume that the quadrature evaluates the.
integrals of quadratic polynomials ezactly, then the method is unstable for CFL

numbers v € (2w, z,) if

2wy < 1. (2.2)

From equation (2.2) it is then trivial to show that Gauss-Legendre
quadrature, for which wy = 0, leads to unconditional instability. A little more
work gives conditional stability results for Gauss-Lobatto and Newton-Cotes in-

tegration formulae. We now prove some new results for quadrature based schemes.

THEOREM 2 There are no unconditionally stable implementations of the La-
grange-Galerkin method with piecewise linear basis functions using symmetric 4

point quadratures of the form (2.1), that integrate quadratics ezactly.

Remarks 1) By the Lagrange-Galerkin method it is meant the method using the

full mass matrix. Mass lumped, full or partial, variants of the scheme are not



included in this theorem.

2) Symmetry does not seem to be an overwhelming constraint on
the quadrature since all the integration schemes used in practice are of this form.
In one-dimension, for constant coefficient linear advection, the idea of using a
Gauss-Radau type quadrature, changing the fixed end according to the flow di-
rection, to circumvent Theorem 1, seems quite attractive. Problems are evident

in two-dimensions though, particularly with the extension to triangular elements.

3) For a successful implementation of the Lagrange-Galerkin method
it 13 not necessary to integrate quadratics correctly, see Eastwood and Arter
[12} for example, where the compound trapezium rule used does not integrate
quadratics exactly. To achieve this, though, a partial lumping of the mass matrix
is required. A disadvantage is, in the zero CFL number case, failure to reproduce

the correct L, projection.

Proof Consider quadratures of the form

wif(z) & ' z)dz.
> wnf(en) = [ f(z)

From Theorem 1 it is clear that we must have quadrature points at the ends of

the interval, i.e.
Iy = 0
Iz = 1.

Symmetry imposes the further conditions that

W = w3
w = Wy
T, = (1 - 332).

The condition that constant functions are integrated exactly implies that we need

11)0+’LU1+’U)2+’LU3=1, (23)

9



which, together with the previous conditions automatically means that linear
functions will be integrated exactly. The remaining condition we wish to impose
is that quadratics are integrated exactly, i.e.,

woxg + wlzf + wga:g + wamg =

(2.4)

| =

Eliminating all variables except w; and z;, (2.4) gives,

1
T 122y (1 —zy)°
For stability, from (2.3) and (2.2), we require

wn

1—2w1=2w02x1

ie.
1
l—— >
63:1(1 - .’171) -

Rearrangement then gives the condition that

Ty.

:Bl(l - :1,'1)2 2 (2.5)

B =

for stability.

The maximum, for z; € (0, 1), of the function on the left-hand side
of (2.5) occurs at z; = 1/3 and since 4/27 ¥ 1/6 we deduce that there is no value

of z; that gives a stable scheme, hence the result. o

Conjecture 3 There are no unconditionally stable implementations of the Lagrange-
Galerkin method with piecewise linear basis functions using symmetric 5 point

quadratures, of the form (2.1), that integrate quadratics ezactly.

Assuming ¢, < v < z,,, then we can write down the four terms

contributing to the right-hand side of the Lagrange-Galerkin method as

14
> wix {(V — e U +(1-v+ a:k)U,-"_l} ,

k=0
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m+1

Z WETh {(l +v = )U, + (2 — U)U,-"} ,

=p+1
P
Zwk(l — flfk) {(l/ - xk)Uv,":_l + (]_ —v+ l'k)U'n}
k=0
and

m+1

Z, wi(l — zk) {(1 + v —z)Ul + (z — V)U,-'_“_l} .
k=p+1

Summing these four parts and adding, and subtracting, summations over k = 0 to
k = pin order to complete the summations from k = p+1 to k = m+1 we then get

the following expression for the right-hand side of the Lagrange-Galerkin method,

mz.'jl Wk (U,-"_l {xk + Tpv — xi} + Ut {1 =2z +v — 220 + 2.1:;‘:}

k=0

+ Ulx {—V + T + Tpv — J:Z})

+zp:> Wi (U:'_2 {.’Ekll - xi} + U,n_l {V — T — JThv + 3$I2c}

k=0
+ U {—21/ + 2z + 3Tv — 33:2} + U, {—xk +v+azi— zky}) X

Since the quadrature evaluates quadratics exactly the sum from k = 0 to k = m+1
can be replaced with the values of the integrals. Now, replacing terms by their
Fourier transforms and denoting the sin and cosine of the half angles by s and ¢

respectively, we have

2, : 2 4
1- 3 + ké:dwk(u — T) (—43 + T (83 - 4sc))
P
+ ¢ (—2usc + 8s3¢ Z wi(v — zk)xk) (2.6)
k=0
which, for p = 0, reduces to the expression used in the proof of Theorem 1. Un-

fortunately, the expression seems to be too unwieldy to be of much use outside

of this case.

For 5 point symmetric quadrature, conditions can again be written

down but now they only lead to restrictions on the values of the weights and the

11



positioning of the one free abscissa. It is then possible to test a quadrature, sat-
isfying those conditions, with the formula (2.6) to investigate its stability. Some
100 million 5 point symmetric quadratures, that integrate quadratics exactly and

are stable for v € [0,z,], were tried and all were found to be unstable for some

v € (z4,1/2). .

The main cost, as we will discuss more fully in the next section, of
the Lagrange-Galerkin method is not in the inversion of the mass matrix, which
can be done very cheaply using preconditioned conjugate gradient methods (Wa-
then [46]), nor is it in the cost of calculating the integrals per se. The main cost
is in calculating the trajectory, i.e., the value of the departure point £ and, even
more importantly, which element this point is in. Once this information has been
calculated the function evaluation is quite trivial. It would make sense, therefore,
if as much information as possible were extracted from any one departure point.
That is, instead of just evaluating the function at the departure point we also
make use of its derivatives, again quite trivial to calculate, and use a quadrature
by differentiation formula, see Lanczos [24], Krylov [22], Ghizzetti and Ossicini.
[15], Davis and Rabinowitz [7] (pages 105-106), Lambert and Mitchell (23], Ham-
mer and Wicke [17] and Struble [42] for example. These methods do not seem
as common as their counterparts that just use function va.iues but they do have

benefits in certain application areas, see Squire [41] for a discussion of some of

these.

Despite the attractions of having to perform fewer trajectory calcu-
lations and fewer searches to achieve a given order of accuracy for the integration,
we shall see, in the following two theorems, that no useful Lagrange-Galerkin
schemes arise from using quadrature by differentiation formulae. First we con-
sider quadratures given by Lanczos [24]. These are of the form

1 =1

[ a5 cnaw (0 4 (-0fpm), @

k=0



where
n_ (2n—k)!
k=t (28)
THEOREM 4 The direct (and weak) Lagrange-Galerkin methods with piecewise

linear basis functions lead to unconditionally unstable schemes when the integrals

are evaluated using the Lanczos quadrature by differentiation formulae.

Proof In (2.7) we put

f = UMz)¢;(y)
fto= U™(2)8;(y) + U™()¢)(y)
2= 2™(2)4(y)
ff =0 Vi>3.

Remarks The higher derivatives vanish because, at a point, the integrand is at
most quadratic. However, the weights of the remaining terms change, leading to
a different approximation of the integral, as the integrand is not quadratic over
the entire interval, but piecewise quadratic. The formulae for f! and f? are not

more complicated because for constant coefficient linear advection z = ¥y — aAt

and hence 9z/dy = 1.

Dropping the subscript j from the test function ¢;(y) and the super-

script n from U™ and integrating over [y;_;,y;41], we use the following quantities,

M) =0, #(i) =,

1 -1
b)) =1 Sw)=5 or —
é(yj+1) =0, ¢ (Yj41) = %17

U(z(y;-1)) = vUjmz + (1 = v)Ujes,  U'((yjc1)) = Ui — Ui

h 1
' U, -U,_
Ulz(y;)) = vUios + (1 = )U;,  U'(a(y;)) = __J_hJ__l
’ Uy —U:
Ula(yi1) = w0 + (1= )ja, - U'(alyinn)) = 2L

13



The derivatives of ¢ are, at best, ambiguous at the ends of the intervals but we
choose the most obvious values. We replace y; by y;t to distinguish the values

from the intervals [y;_i,y;] and [y;,y;+1]. Our approximation to (2.7) is now

given by

1 n-1

o7 2o Ol (7 5) + (CDA05) + F6F) + (<1 lusa) . (29)

k=0
Expanding the terms in (2.9) with the expressions given above and simplifying we

then get the following expression for the right-hand side of the Lagrange-Galerkin
method:

1
or 1267 (Ui + (1= 0)Uj)
0
+C7 ( vUj-z + (1 = »)Ujea = U = 2(1 = v)U; + vU; + (1 = v)Uspy)
+03 ( —Uima+ Ui +U; = Uj) }.
Replacing the U’s with their Fourier transforms, where again s = sin(8/2) and
c = cos(6/2), we then get the transform of the right-hand side to be
1 . )
0—3{20{‘ (1 - 2v(s? + zsc)) +C7 ('—4.32 + 8v(s* —isc + isac))
+C3 (832(1 -8 - isc))} .
Before calculating the amplification factor, A, the algebra can be simplified some-

what by assuming v = 0. The equation for the modulus of the amplification

factor then turns out to be

3
~645*C7C5 +4C7" +165*CY +645°Cy" — 645°CY° — 325°CPCT). (2.10)

2 4 1
{ 1— 4i+ "%} A2 = 5{—163’0{‘0{' +32s°CPC3 + 64s°CPCT
0

Using the fact that CT'/C§ = 1/2 Vn, (2.10) can be simplified to give the following

condition for the avoidance of unconditional instability,
Ct +6C3 - 3C7 < 0. (2.11)

For the improved trapezium rule we have CZ =0, C? = 1, C? = 6 and Cla= 2.

Substituting into (2.11) we immediately see that this is an unconditionally un-

14



stable scheme.

Forn > 3 we use the values from equation (2.8) and it is then quite
easy to deduce that in order to avoid unconditional instability we need 2n—1 < 0.

This is clearly untrue and hence the resuit. o

Remarks It is very disconcerting that this result is achieved by just consider-
ing the case v = 0. Even Gauss-Legendre quadrature managed to be stable for
v = 0. Although both types of quadrature have similar error estimates involving
f*(1), where 1 is some unknown point, with Gauss-Legendre quadrature v is
strictly within the domain of integration. With the Lanczos formulae this is not
s0, see [24], and singularities outside the domain of integration can seriously affect
the convergence of the quadrature, see Squire [41] for example. Since the piece-
wise linear functions we are dealing with do not possess continuity of derivatives

across elements, this explains the instability even at v = 0.

Mass lumping does not lead to any useful schemes. Nor does trying
to alter the ambiguous values of the derivatives of ¢ we have to assume at the

ends of the intervals. °

We now consider quadrature by differentiation formulae with nodes
purely internal to the region of integration. It is possible to consider formulae
with nodes at the extremities, as in [29], but this results in much more com-
plicated algebra a.nd.does not seem to exclude any other common rules. The
main purpose of the following theorem is to exclude some particularly accurate
rules quoted by Ghizzetti and Ossicini [15]. The least accurate of these (formula

4.13.10 of [15]) uses only two abscissae to give the approximation

/_ 11 f(z)dz = f(—a)+ f(a)+0.09620177[f'(—a) — f'()]
+ 0.02930120(f"(—a) + f"(a)] + R(f),

15



where

a =0.6292111 and R(f)=0 if f(z) is a polynomial of degree < 7.

THEOREM 5 The direct (or weak) Lagrange-Galerkin method evaluated using

a quadrature of the form

d m
/ohf (@)dz ~ 305 weh™ () (2.12)

=0 k=1
that integrates quadratics ezactly and has abscissae 0 < z, < 2, < ... < T, <1

leads to an unconditionally unstable scheme.

Proof The powers in & can immediately be disregarded as they cancel with terms
from the definition of the derivatives, with the remaining power cancelling with
a similar term from the mass matrix. As discussed in Theorem 4 we need only
consider d < 2 and we will also only consider v < z,. The integral on the right-
hand side of the Lagrange-Galerkin method is then approximated by two parts.
From element [j — 1, j] we get

Zz;l Wk.0 {[fj'—lzk(l — T+ V) + U,-a:;,(a:k - l/)}
+ i wea {Ujm1(1 = 226 + v) + U;(2z4 — v)}
+ Y w2 {2(U; - U;o)}

and from element [j,j + 1] we get

Zim weo {Ui(1 — 2)(U = 2k + v) + Uja(1 — 24) (2 — )}
+ - Z:;l Wk 1 {U,‘(—2 + 2.'1:], = l/) + U_,'.H(l - 2a:k = l/)}
+ - wea {2(U; — Upa)} -

Combining these two parts we see that we have an approximation of the form

(2.12) to the integral
1
/; (U,-_.l(a: —2?+av)+U;(1 =22+ 222 + v — 2ev) + Ujpa(z —v —2* + :w)) dz

and since the quadrature rule integrates quadratics exactly we can simply replace

both summations by

1 2 1 v
ng-l + §Uj + ng+1 + g(Uj—l - Uj1).

16



This has a Fourier transform of 1 — 2s2/3 — 2ivsc and it is then a trivial matter

to show that for stability we require
isi(1-s%) <.

Except in the case v = 0 this is clearly untrue and hence the result. °

THEOREM 6 No quadrature of the form
[* fla)dz ~ af(=a) + 2(a - @) f(0) + af(a), (2.13)

with a > 0, leads to an unconditionally stable scheme when used to approzimate

the integrals arising from the Lagrange-Galerkin method (1.6).

Remark Although this result appears to be weaker than the others proved here
and in [29], it is a surprisingly general result. The previous work has tended to
imply that there is some stumbling block in using a quadrature rule that inte-
grates quadratic (and higher order) polynomials exactly. Since the vast majority
of quadrature rules, with a weighting function of 1, increase their accuracy by
integrating ever higher degree polynomials in z exactly it is tempting to ask what.
happens if we attempt to integrate other functions of z exactly instead. This can
be achieved using equation (2.13) and choosing different values of or. For example,
with

b sinh(a) — a

cosh(a) — 1

the quadrature integrates the functions 1,sinh(z) and cosh(z) exactly. With

_a- sin(a)
1 — cos(a)

the quadrature integrates the functions 1,sin(z) and cos(z) exactly.

Proof Transforming the quadrature to the range [0, 1] we have

) a a
|, Fwddy ~ 510) + (1= )£ (1/2) + S ().
With our integrand f(y) = U(z)¢;(y) we get, for the right-hand side of the jt
equation (assuming v < 1/2),
1
7t +205 4+ Upa) = (U1 = 2U; + Upa)

14
~(Uje1 = Uppr)- (2.14)

va
+5 (Ui = 2U; 4+ Ujt) + 5

17



The Fourier transform of (2.14) is 1 — s + as? — 2vas? — 2ivsc and hence for

stability we require

1 —28% 4 2as® — 4vas? + s* — 2as? + dvast + ast — dva’st

4
+4v2a?s + 40?5t — 4?50 < 1 — 532 + 334, (2.15)
which simplifies to
2 2
-3 +2a —4va + 4v* < 0. (2.16)
It is now an obvious condition (v = 0) that we require
1

The maximum value of (2.16) occurs at » = 1/2 in which case the condition

(2.16) becomes 1/3 < 0 independently of a and hence the result. o

Corollary 1 Simpson’s rule has the largest stability region of quadrature rules of
the form (2.13).

Proof It is a simple task to calculate the maximum value of v allowed by (2.16)
for a given a. Not surprisingly we find that the maximum value (over @) of these
maximum values occurs at the limit of (2.17), i.e., a = 1 /3. This is then Simp-

son’s rule. °

Remarks Despite our earlier remarks about the wisdom of trying to integrate
polynomials exactly, it is rather amusing that this actually turns out to be the
best possible choice of function (or choice of a) for the case considered in (2.13).

Cases with a < 0 can be dealt with in an analogous manner.

Following the strategy of the EPIC algorithm, [12], where quadra-
tures that do not integrate quadratics exactly are also applied to the integrals
forming the mass matrix, we investigate unconditionally stable schemes based on

partial mass lumping by the quadratures (2.13).
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Corollary 2 The 3 point EPIC algorithm is the least diffusive of the uncondi-
tionally stable algorithms formed by applying (2.13) to the mass matriz as weil
as the right-hand side.

Proof Analysis of the effect of the partial mass lumping just involves changing
the right-hand side of the inequality (2.15). The Fourier transform of the full
mass matrix (61—5, 2 é) Urtt is (1 - %) A, leading to the current right-hand side
of (2.15). Using the quadrature rule to evaluate the terms forming the mass

matrix gives the partially lumped mass matrix,

(l—a l4a 11—«

n+l
4’2’4)UJ

which has a Fourier transform of (1 — s2(1 — @))). Replacing the right-hand side
of (2.15) with (1 — s*(1 — ))? and simplifying, we get, for stability,

4yg? (—a +as?~ao?s*+as?v+v - usz) <0.

As before, an obvious necessary condition for stability can be obtained by putting

8? =0 (or s> = 1) in the bracket. This tells us that we need
v—a<i0
and since v < 1/2 this means that we require

a2

DN =

Since larger values of « imply greater amounts of mass lumping, and hence more

diffusion, a minimum is achieved at a = 1/2 and hence the result. o

Remarks It is well-known that the 3 point EPIC algorithm is totally inadequate
for all but the smoothest data, being barely more accurate than 1 order upwind-
ing. However, it appears that this is the best unconditionally stable scheme of
this form and hence we conclude that there are no useful schemes resulting from

quadratures of type (2.13).
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3 A Stable Implementation on Triangular Ele-

ments

3.1 Description of the method

In the preceeding section it was shown that the results given in Morton et al. [29]
can be extended to even wider classes of integration rules, including quadrature
by differentiation formulae which would have been particularly beneficial to the
Lagrange-Galerkin method because of the reduction in time spent calculating the
positions of the departure points. It was also shown that it is not just those for-

mulae that interpolate polynomials exactly that cause the method to be unstable.

In other application areas, namely grid adaption and triangular
multigrid, it is necessary to project from one arbitrary triangular grid onto a
second arbitrary triangular grid just as it is in the Lagrange-Galerkin method.
Although Gauss-Legendre quadrature can still lead to an unconditionally unsta-
ble scheme even when diffusion is present, Siili [44], the author is not aware of
any published results for the Navier-Stokes equations, say, where the instabilities
inherent in the quadrature approximated Lagrange-Galerkin method have caused
any noticeable problems. However, in these other related application areas they

have been observed, see Peraire et al. [30].

The stable implementation proposed here is an extension of the
area-weighting technique of [32, 29]. The situation we are faced with is shown
in Figure 1, where the arbitrary background grid is depicted as the regular grid
(purely for demonstration purposes only it must be stressed) and the triangle we
wish to integrate over as the irregular triangle, with nodes 1,6 and 9 as depicted
in the figure. The integrand of (1.6) is now formed by the product of the linear
function over the triangle (1,6, 9) with the piecewise linear functions defined on
the background grid. The integrand is then made up of piecewise quadratic func-
tions, with the pieces being formed by the intersection of the background grid

with the triangle in question.
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The shapes of the regions caused by the intersections can be trian-
gles, quadrilaterals, irregular pentagons or irregular hexagons, i.e., they can have
3,4,5 or 6 nodes and sides. Given the positions of these nodes, and the values of
the two linear functions at these points, we can then quite simply calculate the
integral exactly, for example by splitting the region into triangles for which an
analytic formula can be written down quite simply in terms of the nodal values.
We shall now concentrate on the more difficult question of determining the re-

gions.

This problem is greatly simplified if extra information about the
grid is stored, apart from the usual connectivity table. The most important new
information to be stored is that of which two elements are either side of a given
side and which sides go up to make a given element. Less importantly it is also
useful to store node-node connections and which two nodes form a given side.
It is not strictly necessary to store any additional information as it could all be
calculated as needed, but by storing the first two arrays mentioned, in particular,
the computational time will be substantially reduced. The second pair of arrays
are much more readily calculated ‘on the fly’ and so these should be dropped first
if storage is a problem. However, all of these arrays are integer arrays and their

storage is not likely to be a problem in practice.

The logic in the region identification procedure is perhaps most
analogous to that used in moving front grid generators, see Cavendish (6], Jin
and Wiberg {20}, Lo [26] and Sadek [39] for example, but is much simplified as

there are no nodes or topology to generate.

The vertices of the triangle are first transported by the velocity
field, there being no advantage with arbitrary triangular grids in transporting the
entire triangle by its centroid value as in [29]. This gives us the positions labelled
1,6 and 9 in Figure 1. The interior of the triangle is then assumed to have moved

in a linear manner governed by the movement of the nodes and hence the area
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we wish to integrate over remains a triangle. That is, we make the approximation

X((1-p—ay, +py, + qy, t"*Y ")~ (1-p—g)X (g, ™ )

X (3, "5 0) + 0 X (gt 17) (3

to the trajectories over an element parameterised by (p, ¢) and with nodes Y ¥y
and y,. For the Lagrange-Galerkin method this indeed represents an approxima-
tion since, aside from uniform translations and uniform rotations, triangles are
not mapped onto triangles by a more general velocity field. We shall see later that
this approximation, theoretically, does not lead to a drop in accuracy. With the
extra grid information that is now stored about the sides of the background mesh
it is a fairly easy task to determine the points where the transported triangle
intersects the background mesh. These points are labelled in an anti-clockwise
fashion. The initial front is then given by the edges {(1,2),(2,3),...,(13,1)}.
Choosing an edge from the active front, (1,2) say, we then proceed to identify a
region for integration, by always moving in the most anti-clockwise sense possi-
ble. From node 2 there are 3 possible points we could move to, namely, node 3,
the node marked A and the unmarked node below A on the background mesh.
This latter node can be immediately discounted. Of the two remaining possibil-
ities it is clear the edge (2, A) is the one we require. From A, knowing we have
come from 2, we readily identify the next edge as (A, 13) and from there we use
the existing edge (13,1) to complete the region. The nodes of the new region
are, by construction, already labelled in the anti-clockwise sense which makes the
integration over the region that much more simple. Having identified this first
region it only remains to delete the edges (13,1) and (1,2) from the front and in-
sert the two new edges, giving a new front {(2,3),(3,4),...,(13, A),(A,2)}. We
can then continue to identify all the other regions in exactly the same manner.
Complications arise, as in the moving front grid generation codes, when a front
splits. Once recognised as having happened each separate front can be treated as

described before.

This procedure is obviously entirely general and in particular copes

22



with the trivial case of the element we are integrating over lying compietely within
a triangle on the background mesh and with the case where entire elements of
the background mesh are totally enclosed within the element over which we are
performing the integration. That is, we are not dependent on an element of one

mesh intersecting with elements of the other mesh.

As we have said before the problem of transferring information
from one grid to another has applications apart from its use with the Lagrange-
Galerkin method. In one of these other application areas, namely grid rezoning,
very similar appearing problems have been solved, see Ramshaw [35] and Dukow-
icz and Kodis [11] for example. This method involves replacing the integrand,
q(z) say, by V.F, where F = F(z) is some flux to be determined from q(z).
The purpose of this is to then apply the Gauss divergence theorem to simplify
the integrals considerably. However, due to the Galerkin projection in (1.6), our
integrand, unlike those considered in the grid rezoning problem, depends upon
values from both meshes. In particular this means that the vector functions F(z)
cannot be constructed in a single pass over the old mesh with the integrals then
being evaluated in a single pass over the new mesh. Hence, for the exact projec-

tion problem, it seems that the direct approach described here is more appropiate.

Clearly the code for doing this procedure in the general situation
is significantly longer and potentially more time consuming than the linear inter-
polation needed for interpolating at quadrature points. In the next section the
rotating cone problem is used as a test case. For the present purpose, though, we
just use it as a means of extracting and comparing run times for performing the
projections with the standard 7 point Gaussian quadrature and by the exact pro-
jection method presented here. The meshes used are shown in Figures 2-5. The
times for 40 time-steps of the rotating cone problem are shown in columns 2 and 3
of Table (i). Rather surprisingly we see that the exact projection is substantially
quicker than the 7 point quadrature. There are two reasons for this. The least
important is that much of the new code uses operations that only require integer

logic and hence are very fast. More important is the fact that the integration
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part of the code is a minor consideration compared to the calculation of the tra-
jectories and, in particular, determining which element of the background grid a
departure point came from. Assuming an unstructured mesh, in the exact projec-
tion method we have to do one global search for each node which means we have
to do nele/2 global searches (nele being the number of elements and assuming
that there are roughly twice as many elements as nodes). For the quadrature case
it is possible to do only nele global searches if one searches only for the departure
point of the first quadrature point from the element and then does local searches
to find the elements containing the departure points of the other six abscissae.
The searching used in Table (i) was very simple and as a result, on the two finer
meshes anyway, it caused us to have to perform approximately 2(nele) global
searches. Even allowing for this factor, though, we see that the exact method

would be still be faster.

Moreover, recall that for the exact projection case it was found ad-
visable to store information about sides. This information can also be used in the
trajectory problem to keep track of where the departure point lands, removing
any need to perform any global searches. This can significantly reduce the cost of
the exact projection method, column 4 of Table (i). Of course if we use the same
information for the trajectory problem in the quadrature case then the benefit is
even greater and the quadrature implementation is at last faster than the exact

projection method, column 1 of Table (i).

3.2, Theoretical Results

Like the area-weighting algorithm of [29], to which this method is very closely
related, the procedure here reduces to exact integration in the case of constant
coeflicient advection, and hence unconditional stability, so a more general veloc-
ity field must be considered. Fortunately, much of the theory for area-weighting
in (29] is directly applicable to the case here. All that is required is to replace
Lemma 3.1 of [29] with
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LEMMA 1 If the velocity field a(z,t) belongs to L* (0, T; (W2)"), then the
distance between the true foot of the trajectory and the approzimate foot given by
(3.1) is of the order h*At, where h is a measure of the mesh size and d is the

number of spatial dimensions (d = 2 here). o

The stability of the method, with the restriction on a(z,t) given
above, can now be obtained immediately by using Lemma 1 in Theorem 3.4
of [29]). Actually, for the stability result, we can weaken the condition on g to
a(z,t) € L* (0, T, (W1'°°)d), since an error hAt in the foot of the trajectory is
sufficient to prove stability.

Convergence is proved using Theorem 3.6 of [29]. Here we can make
extra use of a(z,t) € L™ (0, T (W2'°°)d) to obtain an error of order A2. For the
area-weighting technique of (29] only a first order error estimate was obtained.
This represented a loss of accuracy over the exactly integrated method which is
second order, although in experiments on highly non-linear problems, Priestley
[32], the first-order estimate for the area-weighting technique was shown to be
pessimistic. For the exact projection method, which as we have said is not exact
for general velocity fields in the context of the Lagrange-Galerkin method, the
error caused by the approximation of the feet of the trajectories does not alter the
error estimate of the exactly integrated method and hence our earlier comment

about the adequacy of the trajectory approximation.

4 - Numerical Results

4.1 Rotating cone problem

This commonly used two-dimensional test problem looks at the advection of a

cone in a fixed, rotating velocity field governed by the equation:

us + 27(-y,z).Yu =0
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on the domain Q = (~1,1) x (—1,1), with periodic boundary conditions. The
initial data consists of a cos? cone centred at (—1/2,0) and of radius 1 /4. If
r? = (z +1/2)® + y? then
) cos*2rr for r<1/4
s 0 otherwise.

The initial data is interpolated rather than L? fitted. The four meshes used are
shown in Figures 2 — 5. Although these meshes are fairly smoothly varying (not
that this is particularly necessary for the exact projection method to work) it
is important to note that the meshes are totally irregular (as opposed to the
explanatory diagram of Figure 1) and have no prefered directions. This is an jm-
portant advantage over the triangle based upwind finite difference schemes, see
Deconinck et al. (8] and Roe et al. [37] for example, where the results seem to
be extremely dependent on the triangles being arranged in a way sympathetic to
the problem being considered. The time-step is chosen to be At = 0.025 and 40

time-steps are performed, i.e., one complete revolution is done.

The results for this problem are summarized in Table ii for the inte-
grals evaluated with 7 point Gaussian quadrature and in Table iii for the integrals
evaluated by the exact projection method. As we might expect there are no sig-
nificant differences between the two methods for this problem, the quadrature
giving a very accurate representation of the integrals. Conservation, though, is
better with the exact projection method. Since for the rotating cone problem it
is actually an exact implementation of the integrals in (1.6), we might expect it
to be exactly conservative but rounding errors and, more importantly, errors in

inverting the mass matrix mean that this is difficult to achieve in practice.

4.2 Lid-driven Cavity problem

This problem, with results, can be found in Ghia et al. [14] and Gresho et al.
[16] for example. The results presented here will be most directly comparable to

those in [14]. We solve the incompressible Navier-Stokes equations in the primi-
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tive variables, i.e.,

% + uVu+Vp=vViy (4.1)
Yu =0 (4.2)

where u = (u,v) is the velocity and p is the pressure deviation from hydrostatic.
The kinematic viscosity is denoted by v and the Reynolds number is defined to
be Re = UL/v, where U is a reference velocity and L is a reference length. In the
lid-driven cavity problem U = L = 1. The domain of the problem is [0,1] x [0,1]

and the boundary conditions are given by

v =0 everywhere

u=1 y=1, 0<z<l1

u =0 otherwise.
To apply the Lagrange-Galerkin method to equation (4.1) we replace the convec-
tive terms by the Lagrangian derivative D/Dt to obtain

%% +Vp—vViy=0. (4.3)
The finite element method can then be applied to equations (4.3, 4.2) in the usual

way, with the Lagrange-Galerkin method being used to treat the convective terms

and all the other terms being treated implicitly. This results in a matrix system

)
B 0 P 0

where M and K are the symmetric mass and stiffness matrices, B is the gradient

of the form

matrix and E(u) is just the right-hand side from the Lagrange-Galerkin method.
An important feature of (4.4) is that the matrix equations are symmetric. This
is a consequence of the use of the Lagrange-Galerkin method and means that we
can use the very efficient, and simple, conjugate gradient method with diagonal

preconditioning to solve the equations.
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The simplest choices of basis functions for us to use to test the
exact projection implementation of the Lagrange-Galerkin method are piecewise
linear functions for the velocities and piecewise constant functions (on the same
mesh) for the pressure. This choice allows us to use the previously generated
meshes, particularly the 40 x 40 and 80 x 80 meshes, and makes it quite simple
for us to extend this new implementation to the Navier-Stokes equations, but un-
fortunately this choice violates the Babuska~Brezzi stability condition, see [1, 5].
However, we can use a stabilization technique such as the method of Hughes and
Franca [19]. Although this method has been criticized, Douglas and Wang [10],
it is preferred here over the extension in [10] because the symmetric nature of
the Stokes problem, represented by (4.4), is maintained. The method, which has
been further analysed in Kechkar and Silvester [21], consists of replacing the finite

element discretization of equation (4.2) by

(@Y%) +8 Y [Ipl.ldlds=0 vge P, (4.5)

e€lp ¥ ®

where P, is the piecewise constant pressure subspace, u;, and p, are the discrete
approximations to u and p, I'; is the set of all interelement boundaries and []e is

the jump operator across the boundary e.

One criticism of this procedure is that equation (4.5) cannot be
assembled in the usual element-by-element manner because of the interelement
jump operator. However, due to our storage of side information for the efficient
implementation of the exact projection method, it is very simple for us to assem-
ble these terms. The other main criticism is due to the appearance of a parameter
B > 0 that needs to be chosen. Although some insight has been gained in how
to choose this constant for the Stokes problem, Wathen and Silvester [47] and
Silvester [40], we have found the choice fairly forgiving in that there seems to be
quite a large range where the value stabilizes the discretization without having
any undue effect upon the solution quality. If we were concentrating on the ac-
curacy of the solutions here, rather than just demonstrating the implementaton
of the exact projection method, the precise choice might be more crucial. This

will obviously be a point for further investigation.
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The finest mesh used here has less than half the nodes of the coars-
est mesh used in Ghia et al. [14). Although Gresho et al. [16] did use coarser
meshes, they were using higher-order basis functions and had made some attempt
to adapt the grids to the problems. It must be stressed that the solutions pre-
sented here are to demonstrate the implementation of the exact projection method
rather than the Lagrange-Galerkin method itself. By using grids adapted to the

flow we would clearly hope to get far superior solutions to the ones presented here.

The first case is that with a Reynolds number of 100. We give
plots of vorticity, w = v; — u,, and velocity arrows. In Figures 6 and 7 the results
from the 40 x 40 mesh are given and in Figures 8 and 9 the results from the
80 x 80 mesh. A similar set of results is then given, Figures 10-13, for the case
Re = 1000. The results for Re = 100 are very good but even at the still fairly
low Reynolds number of 1000 the lack of resolution of the meshes is beginning to
show, although the solutions are not too bad, with the main features in place and
the positioning of the main vortex correct. The method copes as the Reynolds
number increases but the lack of resolution becomes steadily more acute. Time-
steps ranged from At = 0.005 seconds to At = 1 second, with the accuracy, for
these steady-state type problems, being governed more by the accuracy of the
trajectory solver rather than the time-step as such. Clearly for At = 1 much

more care is required in solving the trajectory equations.

5 Conclusions

The main results of the paper are of two kinds. First in projecting from one ar-
bitrary triangular grid to another it has long been known that for the Lagrange-
Galerkin method, [29], certain families of quadrature formulae give stability prob-
lems. These same problems have more recently been observed in situations not
caused by the use of the Lagrange-Galerkin method, [30]. In this paper we have

shown that much wider classes of quadrature than previously thought suffer from
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stability problems.

Second, an efficient method of exact projection from one arbitrary
triangular grid to another has been introduced. This provides an unconditionally
stable approximation for the Lagrange-Galerkin method with the same €rror as
if the method had been evaluated exactly. Moreover, it completely solves the
problems in the cases of grid adaption and of triangular multigrid. Early numer-
ical results for the Lagrange-Galerkin method using this technique applied to the
Navier-Stokes equations are presented and appear quite promising, although this

is the main area for further work.
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7pt. Gauss | 7Tpt. Gauss | Exact Exact |

No searching No searching
10x10 12 52 39 24
20x20 53 755 231 102
40x40 264 9947 1994 435
80x80 1465 101851 25469 1814

Table i: Timings (in secs.) for the rotating cone problem on a SUN SPARC 2

workstation for various implementations of the Lagrange-Galerkin method.

Maximum Minimum % Conservation [ error
10x10 | 0.30446 | -5.82863x10~? 91.66835 0.134232
20x20 | 0.77387 | -2.79735x10~? 99.83719 4.89047x10~2
40x40 | 0.97005 | -1.06939x102 100.16463 8.33986x 103
80x80 0.995 -2.81922x 1073 100.13378 1.63186x 103

Table ii: Results for the rotating cone problem with the integrals evaluated using

7 point Gaussian quadrature.

Maximum | Minimum % Conservation [, error
10x10 0.317 -4.74561x 102 102.48064 0.133472
20x20 | 0.78536 | -2.75947x10~2 99.73047 4.7934x10-2
40x40 | 0.96876 | -9.35397x10~3 100.00000 8.47666x 103
80x80 0.9939 -2.48703x103 100.00000 1.78774x10~3

Table iii: Results for the rotating cone problem with the integrals evaluated using

the exact projection method.
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Figure 1: The initial ‘front’ for determining the regions of integration.
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Figure 2: 10x10 grid. 135 nodes.
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Figure 3: 20x20 grid. 496 nodes.
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Number of elementsis 3660

Figure 4: 40x40 grid. 1911 nodes.
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Number of elements is 14720

Figure 5: 80x80 grid. 7521 nodes.
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Figure 6: Vorticity for the Re = 100 case on 40x40 mesh.
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Figure 7: Velocity arrows for the Re = 100 case on 40x40 mesh.
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Figure 8: Vorticity for the Re = 100 case on 80x80 mesh. Contours as in Figure
6.
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Figure 10: Vorticity for the Re = 1000 case on 40x40 mesh. Contours as in F igure

6.
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Figure 11: Velocity arrows for the Re = 1000 case on 40x40 mesh.
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Figure 12: Vorticity for the Re = 1000 case on 80x80 mesh. Contours as in Figure
6.
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