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Abstract

The author describes a method for solving the equations of gas dynamics for
tracking interfaces in multimaterial flow using a Volume of Fluid method.
The method firstly involves a Lagrangian phase followed by one of three re-
covery steps, piecewise constant (1st order), piecewise linear (2nd order) or
piecewise parabolic (3rd order). Experiments show that when the recovery
steps are applied to the linear advection equation there is a large improve-
ment in the final solution with each increase in accuracy. However, this im-
provement does not appear when solving the gas dynamics equations when
moving from piecewise linear to piecewise parabolic recovery. An error has
also been identified when the interface does not align with the diaphragm
and consequently the contact discontinuity in the Sod problem.
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Chapter 1

Introduction

The solution of hyperbolic PDE’s has numerous applications. However, only
very simple cases are solvable analytically. This has meant that the devel-
opment of accurate and robust numerical schemes has become an important
area of research.

One such application is in the study of compressible flow in computa-
tional fluid dynamics (CFD). Here shock fronts can develop from relatively
smooth initial conditions. It is these discontinuities in the flow that can
make numerical schemes give very poor results. First-order schemes like Go-
dunov’s Method [7] smear out these shocks while second-order methods like
Lax-Wendroff produce spurious oscillations which can make positive variables
like density take negative values.

Numerical methods for solving the equations of gas dynamics can be s-
plit into groups, finite element, finite difference/volume, spectral methods
etc. This paper concentrates on finite difference/volume methods. These
methods can be further split into subgroups, Eulerian and Lagrangian. In
Eulerian methods the numerical mesh remains in a fixed position and the
various flow variables are calculated at specified points on the mesh (usu-
ally at either grid nodes or grid centres) at each time step. In Lagrangian
methods the mesh moves to follow particular fluid elements as time passes.
Both types of method have advantages and disadvantages. Of particular in-
terest in the present investigation is interface tracking in multimaterial flow.
Here Eulerian schemes have problems tracking the interface so a Lagrangian
scheme may appear to be the obvious solution. In one dimension this may
be a satisfactory approach but in two dimensions distortion and tangling of
the Lagrangian mesh makes it unacceptable.

Schemes have been developed that capture the advantages of both meth-
ods without the disadvantages. These are referred to in papers by Van Leer
[11, 12] and Colella and Woodward [3] and describe Eulerian schemes with a
Lagrangian phase. The basic steps are identical for schemes of this nature.
Firstly the Lagrangian equations are solved for a single timestep and new



values of the particular variables are found along with the new Lagrangian
mesh values. Secondly a remap or advection step is performed to move the
new Lagrangian values back on to the Eulerian grid.

The schemes in [11, 12, 3] are slightly different from the ones presented
in this paper. Here the Lagrangian phase is calculated using a method given
by Debar [5] using artificial viscosities. The remap steps are similar to those
described in [11], using a piecewise constant or piecewise linear reconstruction
and in [3] a piecewise parabolic reconstruction.

Two test cases have been used, Sod’s shock problem and the Blast Wave
problem (see [15]), to determine the robustness and accuracy of the methods.

To summarise this paper: Chapter 2 firstly introduces three advection
schemes and applies them to the linear advection equation in one dimension.
These three schemes are then applied, along with a Lagrangian phase, to the
gas dynamics equations as recovery or remap steps. This chapter provides a
summary of the work done by Stokes [14]. Chapter 3 introduces the changes
needed to be made to the schemes so that they will track interfaces between
different materials. Finally Chapter 4 provides a conclusion for this work.



Chapter 2

Background

2.1 Numerical Schemes

The methods described here are applied to the linear advection equation but
they can easily be translated to apply to the gas dynamics equations. The
basic equation is

da Jda
5 + A% =0 (2.1)

where A is the advection velocity.
| Ti-1/2 | Tit1/2 | Ti4+3/2 |
[ | | | | ]
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Figure 2.1: Numerical grid.

The notation in the methods described below refers to the, not necessarily
uniform, grid in Figure 2.1 with the ¢+ 1/2’th cell situated between the nodes
at z; and z;41. The cell volume is given by

A.’L'H_l/g = Ti41 — T4 (22)
and we define
Az; = Aziti/, ; Azi_q/, (2.3)



The initial discretisation is similar for all three methods. The steps are
as follows:

1. Given the initial function a(to, ), determine the mesh averages

1 Tig1
Qir1)z = Ao /r' a(to, z)dz (2.4)

2. Replace the original distribution by either a piecewise constant, linear
or parabolic function.

3. Integrate over a finite time step At subject to the usual CFL condition

o<1 (2.5)
4. Determine the new mesh averages.

2.1.1 Piecewise Constant Method

Here the initial distribution is replaced by a piecewise constant distribution

as in Godunov’s method and is advected some finite distance AAt, see Figure
A

Figure 2.2: Advection of the piecewise constant distribution

The updated average in cell 7 + 1/2 can be calculated using the conser-
vative formula



At
A3Ui+1/2

(fi = fiyr) (2.6)

n+l _  n
Qif1/ = Gzt

where the intercell numerical fluxes f; for this method are given by

[ Ay it A0
fz o { )\ai+1/2 lf /\ < 0 (27)

This is simply the CIR or first order upwind scheme applied to the linear
advection equation.

2.1.2 Piecewise Linear Method

This method, developed by Van Leer [11], approximates the initial value
function by a piecewise linear distribution (see Figure 2.3).

Figure 2.3: Piecewise linear approximation.

As in the piecewise constant scheme the updated average for cell ¢ + 1/2
is calculated using (2.6). The difference occurs in the way that the fluxes f;
are defined. In the piecewise constant case Atf; defined a rectangular area
which crosses the intercell boundary. Here these areas are trapezoids and so
the calculation is only slightly more complicated.

A ai—1/2 + = (A.’L‘i_l/g - )\At) if A Z 0

24872

= (2.8)

Maip1je = B (Aziyyp + AAL)| i A <0

2824172




All that is left to do here is to define the slope of the line

5(1 Aa’i-{-l/Z
— 2.9
811,' A$i+1/2 ( )

Scheme 1 from [11] is used here. This defines Aa by centrally differencing a,
le.

1
ACli+1/2 = §(ai+3/2 - ai-1/2) (2-10)

As the scheme then stands it is 2nd order accurate but may produce spurious
oscillations when used. However, it can be made completely monotonic, in
the linear advection case, by applying a monotonicity algorithm given in [11]
so that the slope is now given by

. _ ) asgn(aiys/a —ai—1y2) if f>0
(Ait1/2)meno = { 0 otherwise (2. 5)

where

1
o = mm(§|a2~+3/2 - Gi—1/2|, 2|ai+3/2 - ai+1/2|, 2|(1i+1/2 - ai—1/2|)
B = (ai+3/2 - ai+1/2)(ai+1/2 - ai—1/2)

2.1.3 Piecewise Parabolic Method (PPM)

This method, developed by Colella and Woodward [3], approximates the
initial value function by a piecewise continuous parabolic distribution (see
Figure 2.4).

As in the piecewise constant and linear schemes the updated average for
the ¢ 4 1/2’th cell can be calculated using (2.6). This scheme is much more
complicated than the two previous ones and we simply describe a summary
of what is given in [3]. In this sub-section the subscript of cell centre 7 + 1/2
will be replaced by j as the equations are quite complicated and this makes
for easier reading.

Let a be given by a parabolic profile in each zone, i.e.

a(z) = ar; + z(Aa; + as (1 — 2)) (2.12)

where



Figure 2.4: Piecewise Parabolic approximation.

r— Z;

z = Az, z; <z < zTip1 (2.13)
with
Aaj = aR,j — AaL,; (2.14)
1
ae,; = 6(aj — -(ar; + ar,;)) (2.15)

2

We calculate ay, ; and epg; first by interpolating to calculate a;, an approxi-
mation of a at the node z;.

Az, 1
Az;+ Azjp (i1~ a5) + S b1 ATjpk
2Az Ay [ Az, + Az; Azjvo + Azjqy
{A;ri + Azjpy |20z + Azjyn 2Az54 + Ax;
Az; 1 + Az;
2Az; + Azjqq

i1 = a; + X

] (¢j41 — aj)

Az 1+ A.’D.-+2 .
Smajp1 + Az a2 2 5 a; v (2.16
a’]+1 + .'E_7+1 ij _I_ 2A5Cj+1 h a‘]} ( )

——A(IZJ'

with



min(|éa;l, 2|a; — a;-1],2]a;41 — a;)sgn(éa;),
if (aj41 — a;)(a; — aj-1) >0

renliy =
0 otherwise
(2.17)
where
Az
a;, = J
g A.’I?j_l + A:B] + ij+1
ZA:BJ'_l + A:Ej ij + 2ij+1
ij+l 1 ij (G’J+1 - a’]) + Amj—l __I_ij (aJ - aJ—l)

This equation helps to improve the representation of discontinuities. With
these definitions ar,; and ag; are defined as

ar.; = GRr,j—1 = a4 (218)

This scheme is now 3rd order accurate but may again produce spurious
oscillations unless a monotonicity algorithm is applied. For most of the time
ar,; and ag ; will be assigned as in (2.18). However if g; is a local maximum
or minimum then the interpolation function is set to be a constant (2.19). If
either ar,; or ap; is sufficiently close to a; the interpolation parabola takes
on values which are not between ar; and ap ;. If this is the case either (2.20)
or (2.21) is applied. Here ar, ; or ag; is reset such that the opposite edge of
the cell from the one being reset has a zero derivative. In summary,

ar; — 45, ar;— a; if (ap; —a;)(a; —ar;) <0 (2.19)

aL,j — 3aj—2aR,j

lf (aR,]‘ - aL,j) (aj — aL’j _;_ aR'j) > (”‘R"?‘ —G“L'j) (220)

aRr; — 3(1]'—2(1[,']'

ar,; + aR,j> (ar; — ar,;)?

= . (2.21)

lf et (CLR'J' e aL,j) (a]' —
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Once ar,; and ag; have been calculated we can write down an explicit

expression for a?“ given by
ily) = 3o, a(z)de
’ ° 2.22
;J;R(y) — i‘fxit+y a(m)dx ( )
Assuming z is positive this results in:
) = o (B (1 B)a) remg
‘ry) = ar; —2 (Aaj - (1 - %z) ag,j) for z = ALZJ,
Then these can be substituted into the explicit conservative formula
At
ait =a} + A, (fi = fir1) (2.24)
where (32D o
ARZL(AAL),  ifA>0
fi= { MRS R(=AAL), if A <0 (2:25)

This completes the descriptions of the advection algorithms used for the
linear advection equation. They differ only very slightly for the gas dynamics
case as will be pointed out later.

These interpolation methods could be made even higher order accurate
by using higher order polynomials such as cubics. A piecewise monotone
cubic interpolation method is given by Fritsch and Carlson [6] but will not
be discussed here.

2.1.4 Numerical Experiments

A comparison is made here for the three different schemes when a square wave
is advected through the mesh with 100 space intervals and CFL condition of
0.5. In Figure 2.5 the square wave has been advected through the mesh once
and in Figure 2.6 it has been advected through the mesh 10 times. Periodic
boundary conditions apply in all cases.

These graphs clearly show that the first order method is of little use here.
The quadratic reconstruction produces the best results, as expected since it
is a 3rd order method. This inevitably increases the running time of the
code. The results for the quadratic reconstruction after advection through
the mesh 10 times are comparable with those of the linear reconstruction
after once through the mesh. This implies that the increased accuracy of the
PPM scheme outweighs the decreased running time of the piecewise linear
method. Table 2.1 gives a measure of the accuracy and convergence of the 3

11
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Figure 2.6: Square wave advected through mesh 10 times. 100 cells, CFL=0.5
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‘ No. of cells H Constant || Linear H Parabolic ‘

100 0.102733 || 0.031923 || 0.019397
200 0.078056 |[ 0.018196 || 0.011134
400 0.056305 |[ 0.010637 || 0.006410
800 0.039887 || 0.006223 || 0.003708

Table 2.1: Convergence rates for scalar advection of a square wave advected
through the mesh once using the 3 different advection steps. Measured error
is the average value of |(@ — @epact)|-

schemes with the 3rd order PPM scheme giving the best results as observed in
Figures 2.5 and 2.6. All the schemes appear to be completely monotonic for
the linear advection equation. In the next section these schemes are applied
the equation of gas dynamics.

2.2 Gas Dynamics Equation

All the schemes mentioned here for solving the equation of gas dynamics use
a two step method. The first step is a Lagrangian phase in which the grid
moves with the fluid. New (temporary) grid point positions are calculated
here which can be used along with the original grid points to calculate volume
fluxes which can be passed on to the second step. This step was implicit in
the methods described in section 2.1. The second step is called an advection,
remap or recovery step. Here the methods described in section 2.1 are used to
remap the values from the Lagrangian phase back through the fluid onto the
original Eulerian grid. Here AAt is replaced by the volume fluxes calculated
in the Lagrangian phase.

2.2.1 Lagrangian phase

Here we solve the Lagrangian equations of gas dynamics. The standard
equation for one dimension are given and can be found in [4].

Conservation of Mass

(pzm)e =0 (2.26)
Conservation of Momentum
ou ap
- 2.27
P ot Jx ( )

13



Conservation of Energy

Oe p Op
hal SR i o 2.28
ot p Ox (2:28)
The Equation of State for an Ideal Gas is taken to be
p=(y—1)pe (2.29)

When discretising these equations, pressure (p), internal energy (¢) and
density (p) are stored as cell averages at the cell centres. These quantities
are denoted by subscript ’i+1/2’. The velocity (u) is stored at the cell nodes

and is given subscript ’2’. The grid is shown in Figure 2.1. The discretised
equations of (2.30-2.36) are:

Momentum

nti ntl
n_ At[pi+12/2 + Q12 — Pi—12/2 - q?—l/z]

M =] 2.30
ut ul Mzn ( )
1
M; = §(Mi‘1/2 + Miy1/2) (2.31)
Mi+1/z . A58i+1/2,0i+1/2 (2-32)
Node motion
1
2t =l 4 SAY(u] + i) (2.33)
Mass
Az? I
ntl  _ i+1/2Pi+1/2 934
P1,+1/2 Am?:_ll/z ( . )
Energy
n n+1 n nt1y, g n
el €n+1/2 B E[uﬁl Ui — U — Y ](Pi+1/2 + qi+1/2) (2.35)
i+1/2 = € - .
. 2 Mi+1/2
Equation of State gives
pﬁll/:z =(v— 1)/’?:11/25?:11/2 (2.36)
where
nt+ 1 n n
Pi+12/2 = §(Pz'+1/2 + Pi:11/2) (2-37)

14



This is now an implicit set of difference equations which can be solved by
1

a predictor-corrector method. For the predictor step we take p?_:fﬂ = Pir1/2
for each particular variable and for the corrector step we use (2.37). The
correction step is only required once for formal second order accuracy.

One quantity yet to be defined is g. This is known as the artificial viscous
pressure or artificial viscosity and is included in the equations to decrease os-
cillations in the numerical solution. Artificial viscosity is, in general, problem
dependent. Two artificial viscosities are given here: the HEMP artificial vis-
cosity and the Christensen flux-limited viscosity. Both viscosities use the
same equation for ¢ but define Au differently (see [1]).

. { copis1/a(Du)’ + crciyipa|Aul if Au <0 (2.38)

0 otherwise

Bu;
Sz
uy T T Uy T \1
Au An
8“-11
‘ 2
Ui41 [ Ui 17|
| | | |
[ I | I
t 141 1 141

Figure 2.7: The Hemp artificial viscosity approximates the velocity field as
a piecewise constant function. The Christensen flux-limited viscosity uses a
first order Taylor expansion to improve the accuracy of the velocity jump.
The slopes are limited by using Van Leer’s monotonic MUSCL difference
scheme.

As is shown in Figure 2.7, Au for the HEMP artificial viscosity is simply
given by

Au =ty — Uy (2.39)

In the Christensen flux-limited viscosity Au is given by using a Taylor ex-
pansion of the velocities at the nodes and keeping only the first order terms,

so that
B AX Quiyy AX Ou;
Au = <’U/H_1 - T-a;) . (’Uﬂb + T 8:{;) (240)

where AX is the length of the element. To get the improved approximation

two first order slopes, S;, and Sg, and a second order approximation of the
slope S¢ are defined as

15



5, — 2(u; —ai—y) Sp = 2(uip1 — u;) (2.41)
- Ti— gy Tig1 — &4 '
Lit1 =Ty L o Ti—Ti—1 s = [
So = (z.‘—m-l) (ul ul_l) ol (mi+1—x.‘) (UH'I ul) (2.42)
Tit1 — Ti—1

Monotonicity determines which of these slopes are used and 88—1231 is given

by
ou;
0z

The values of the constants ¢y and ¢, are problem dependent.

= 5logn(S1) + sgn(Sw)min(1Se), Sk ISc)  (2.43)

2.2.2 Remap step

In this step we move the mesh back to the Eulerian grid where it started
before the Lagrangian phase. The basic remap routine is the same for all
three methods so that it can be written as one subroutine of the code. The
only difference comes when defining the effective densities, specific energies
and velocities. These are calculated similarly as in the linear advection case
in (2.7) for the piecewise constant remap, (2.8) for the piecewise linear remap
and (2.25) for the piecewise parabolic remap with one slight difference. These
equations are the equation of the fluxes, the effective quantities, f} being
simply these equations divided by A. Also where we had AAf it is replaced
by 6V, the volume flux in the equations. The equations for advecting density,
internal energy and velocity are now defined as:

Density
. M; + 6V fr — Vi f
ntl _ T7i41/2 i +1J4+1 9 44
pz+1/2 A$i+1/2 ( )
where
§Vi = o — o} (2.45)
Internal Energy
ntl 6?111/2 in+1/2 + 5Mifi* - 5Mi+1 ,-*+1 9 46
Civ1/2 = ; (2.46)
M0
6M; = 8Viff (2.47)

where Ml‘+1/2 is the post-remap mass, f/ is the effective density and 6 M; is
the mass flux.

16



Velocity

Since velocity is stored at the cell nodes and not at cell centres like the
other quantities, it needs to be defined separately. One possibility would be
to write an extra piece of code that remaps node centred quantities. This
would be the best option if the code’s speed was a consideration. However
it is easier to use a method called Half-Index Shift (HIS) given in papers by
Benson [1, 2]. This technique allows the cell centred remap routine to be
used by defining two new variables 1;; and %;s:

Yit1/2,1 = Ui (2.48)

Yit1/2,2 = Uit (2.49)

These quantities are then remapped in exactly the same way as the in-
ternal energy, i.e. just replace € with ¥;11/21 and iy1/22 in Eq. (2.46) to
get the remapped quantities 1/~)i+1/2,1 and '/;i+1/2.2- Then these quantities are
substituted into (2.50) to find the remapped velocity

ﬁ?"‘l _ (Mi—l/Z'L/)Ni—l/Zﬂ + -]\:41'+1/21;Zi+1/2,1)

M1+ Mitq1)2
The last thing to mention is the timestep. The Lagrangian phase requires
that a sound wave cannot propagate more than one cell width and the remap

step requires that the fluid cannot be advected more than one cell width. The
equation to calculate a safe timestep is

(2.50)

A$i+1/2 A~’l7i+1/2

)F’U )F’U

Civ1/2 Uq Uit

A9Ui+1/2)

At = min(F;, (2.51)

where F, and F, are constant which are both set as 0.5 and c;1q/; is the
speed of sound in the cell given by

YPit1/2
Civ1/2 = _/T;//? (2.52)

This completes the description of all three methods for solving the gas
dynamics equations.

2.2.3 Numerical Experiments

The first test case is Sod’s shock tube problem in which a diaphragm at
the centre of the tube (z = 0.5) separates two constant states (see Figures
2.8, 2.9 and 2.10). The initial conditions of these states are pg, ux and px

17



[ No. of cells “ Constant ” Linear ” Parabolic ” Lagrangian |

100 0.033293 || 0.020643 || 0.019279 0.015537
200 0.020181 || 0.010871 || 0.010014 0.008116
400 0.013139 | 0.006321 | 0.005825 0.003840
800 0.008648 || 0.003666 || 0.003320 0.001989
1600 0.006036 || 0.002145 || 0.001898 0.001061

Table 2.2: Convergence in density for the Sod problem using the 3 different
recovery steps and the pure Lagrangian code with Hemp artificial viscosity
(co = 1.5 and ¢, = 0.06) used in all cases. Measured error is the average

value of |(p — peact)/ Peact|-

(K = L, R: representing the state on the left and right of the diaphragm
respectively).

The results from the Sod problem show an increase in the resolution
from the piecewise constant method to the linear reconstruction. However
a similar increase in resolution is not seen when moving up to quadratic
reconstruction as was seen in the scalar advection case. The only slight
difference occurs across the contact discontinuity where in the linear case it
is spread over 5 cells and in the parabolic it is only spread over 4. This is
probably due to the loss of accuracy from the Lagrangian phase which is
only 2nd order accurate and it is this that drags the overall accuracy of the
scheme down. Table 2.2 shows clearly that piecewise linear and piecewise
parabolic recovery steps produce very similar numerical errors and that the
pure Lagrangian calculation appears to produce the best results.

The second test case is a much more severe problem, namely the blast
wave problem [15]. Here three constant states are separated by two di-
aphragms at « = 0.1 and = = 0.9. The resulting density profiles are given
below at eight different output times. See Figures 2.11, 2.12 and 2.13.

The results from the blast wave problem show that the extra effort needed
for the quadratic reconstruction is not completely wasted as was implied in
the Sod problem. The linear reconstruction tends to give a much larger
overshoot in the density profile associated with the smaller pressure jump of
the right hand state. A 3rd order accurate Lagrangian phase may be needed
to show the full benefits of using quadratic reconstruction. The 1st order
piecewise constant method is completely inadequate for this test problem.

The Christensen flux-limited artificial viscosity has been overlooked in
the results until now. Figure 2.14 shows a comparison of the Christensen
viscosity with the Hemp viscosity for four different cases. (a) and (b) are
pure Lagrangian calculations, whilst (c) and (d) include the remap step.

Figure 2.14 (a) and (b) show only small differences and both produce

18



good results compared to the results given in [15]. Figure 2.14 (c) and (d)
compare less favourably with the equivalent times in Figures 2.12 and 2.13.
Large overshoots occur in both cases and particularly when piecewise linear
recovery is used. Possibly the fact that the Lagrangian phase, the artificial
viscosity and the remap step are all 2nd order accurate in this case produces
higher dispersion errors.

19



Density Velocity
1 ) - 1 ;
0.8 0.8
0.6 0.6
0.4 0.4
0.2} ' i 0.2
0 : 0
0 0.5 1 0 1
Pressure Internal Energy
1 ; 3 :
0.8 4
2.5
0.6
0.4
2 L
0.2
0 ' 1.5 '
0 05 1 0 0.5 1

Figure 2.8: Sod’s shock tube problem - Plotting exact solution (solid line)
and Piecewise constant solution (dotted line). 100 cells. Diaphragm at 0.5.
Hemp artificial viscosity with coefficients cg = 1.5 and ¢y = 0.06. Initial left
state: pr = 1.0, ur, = 0.0, pr, = 1.0. Initial right state: pgr = 0.125, ug = 0.0,
pr = 0.1. v = 1.4. Output time ¢ = 0.15.

20



Density Velocity
1 W ; 1 :
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0.2}
0 . 15 ’
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Figure 2.9: Sod’s shock tube problem - Plotting exact solution (solid line)
and Piecewise linear solution (dotted line). 100 cells. Diaphragm at 0.5.
Hemp artificial viscosity with coeflicients ¢ = 1.5 and ¢y, = 0.06. Initial left
state: pr, = 1.0, ur, = 0.0, pr, = 1.0. Initial right state: pg = 0.125, ug = 0.0,
pr = 0.1. v = 1.4. Output time ¢t = 0.15.
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Density Velocity
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Figure 2.10: Sod’s shock tube problem - Plotting exact solution (solid line)
and Piecewise parabolic solution (dotted line). 100 cells. Diaphragm at 0.5.
Hemp artificial viscosity with coefficients cg = 1.5 and ¢y, = 0.06. Initial left
state: pr = 1.0, uy = 0.0, pr, = 1.0. Initial right state: pg = 0.125, ug = 0.0,
pr = 0.1. v = 1.4. Output time ¢t = 0.15.
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Figure 2.11: Blast Wave problem - Density profile - Piecewise Constant so-
lution. 400 cells. Two diaphragms at 0.1 and 0.9. Hemp artificial viscosity
with coefficients ¢ = 1.5 and ¢;, = 0.06. Initial left state: py, = 1.0, vy, = 0.0,
pr, = 1000. Initial middle state: ppr = 1.0, ups = 0.0, ppr = 0.01. Initial
right state: pgr = 1.0, up = 0.0, pgr = 100. v = 1.4.
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Figure 2.12: Blast Wave problem - Density profile - Piecewise Linear solution.
400 cells. Two diaphragms at 0.1 and 0.9. Hemp artificial viscosity with
coefficients ¢ = 1.5 and ¢, = 0.06. Initial left state: pr, = 1.0, ur = 0.0,
pr, = 1000. Initial middle state: pps = 1.0, upy = 0.0, par = 0.01. Initial
right state: pr = 1.0, ugp = 0.0, pgr = 100. v = 1.4.
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Figure 2.13: Blast Wave problem - Density profile - Piecewise Parabolic
solution. 400 cells. Two diaphragms at 0.1 and 0.9. Hemp artificial viscosity
with coefficients cg = 1.5 and ¢z, = 0.06. Initial left state: p;, = 1.0, ur = 0.0,
pr = 1000. Initial middle state: pps = 1.0, upsr = 0.0, ppy = 0.01. Initial
right state: pr = 1.0, ugr = 0.0, pr = 100. v = 1.4.
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Figure 2.14: Blast Wave problem - Comparison of Artificial Viscosities. 400
cells. (a) Lagrangian code with Hemp viscosity. (b) Lagrangian code with
Christensen viscosity. (c) Piecewise linear remap with Christensen viscosity.
(d) Piecewise parabolic remap with Christensen viscosity. Two diaphragms
at 0.1 and 0.9. Hemp artificial viscosity as coefficients ¢y = 1.5 and ¢, = 0.06.
Christensen artificial viscosity as coeflicients ¢q = % and ¢;, = 0.5. Initial left
state: pr = 1.0, up = 0.0, p = 1000. Initial middle state: ppr = 1.0,
up = 0.0, ppr = 0.01. Initial right state: pp = 1.0, ug = 0.0, pr = 100.
v = 1.4. Output time ¢t = 0.01.
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Chapter 3

Interface Tracking in 1D

Interface tracking can be done in a number of ways and a summary of three
different methods, surface tracking, volume tracking and mesh moving meth-
ods, is given by Hyman [9]. Here we shall concentrate only on volume tracking
or volume of fluid methods. Various papers have been written that give de-
tails of these methods and they include {8, 13, 16, 17]. The volume of fluid
method uses fractional volumes of each material in the cell to keep track of
the interface position.

The single material methods given in section 2.2 have been applied to
multi-fluid flows so that the interface between the different fluids can be
tracked. Only two materials have been used here since adding more materials
complicates the problem without giving any extra information about the
interface tracking procedure.

The procedure used is to go through the methods given above but treat-
ing each cell as having two fluids in it. Each cell has a fractional volume
associated with each fluid. Provided the cell only has one fluid in it, it can
be treated exactly as before. When the cell is mixed the method reduces to
the 1st order donor cell method (i.e. piecewise constant approximation).

3.1 Changes

3.1.1 Speed of Sound Calculation and At

For each cell we calculate the speed of sound for each material separately so
that (2.52) becomes

Mmoo« o
Cip1jak = \/71 Bit1/2 (3.1)
Pit1/2

where m is the material number. This is then used in (2.51) instead of ¢;11/2
to calculate At. Then (3.2) is used to calculate the average sound speed in
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the cell.

m m 2 m
Z Fi+1/2 Civ1/2 Pit1/2
m

Z mFi+1/2mﬂi+1/2

(3.2)

Cit1/2 =

This sound speed is now used in the calculation of the artificial viscosity, q
for the cell as a whole. ™F;, 4/, is the fractional volume of material m in cell

i+ 1/2.

3.1.2 Lagrangian Phase

These equations are the 1-D simplification of the ones found in Debar [5] for
the 2-D case.

Position, velocity and artificial viscosity are calculated for the node/cell
as a whole. No changes are made to the equations of momentum (2.30), node
motion (2.33) and artificial viscosity (2.38) except that where p and p are
used in the single material code the average of these quantities is used here.

The internal energy, density and pressure are given by

m,"t5 n
AtAu P¢+12/2 Qitv1/2

mel = "eh — (3.3)
+1/2 +1/2 2A:c?+1/2 mp;t+1/2 Priiso
Au=ul, + u?_;"ll -yl — Pt (3.4)
Agh m p[a ’
mon +1/2 Mif1/2
Tiy1)2
mp?-l-—‘-ll/Z N ('m,), - l)mp?:ll/zme?:ll/g (36)

3.1.3 Volume and Mass Fluxes

Here 6V is the total amount of material to be advected which is in general
made up of the constituent volumes of each material 6V, and §Vpg,

OV = 6V4 +6Vp

It is these volumes which need to be calculated so as to advect each material
separately. When calculating the volume flux in a mixed cell two different
cases can occur (see Figure 3.1). In the first case we have

oV > Vg
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Figure 3.1: Calculation of volume flux in a mixed cell

so that

6V = Vg

6Vy =6V — Vg

and in the second case

6V < VB
with

6Vg = 6V

6Vy=0

For generality in 6§V, and §Vp we will use the notation ™8V; which represents
the volume flux of material m through node :. The corresponding mass flux

is analogous to (2.47), i.e.

m5Mz:m6‘/1,mflp

3.1.4 Remap Step

The first thing to advect is the fractional volume

o Aw?_:'llﬂmFiH/z + "6V, — ™6V
Fiii)2 = Ag"
i+1/2

then density

" Miy1ye + OV i =TV i
mALi41/2

" Piy1)2 =
then energy
Teiv1/2a  Miyio + TOM™ fi = TOMip ™ fip

m o~
Eit1/2 = -

i+1/2
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where

mMi+1/2 - mFi+1/2A-’Ei+1/2mPi+1/2 (3-11)
Here ™ f; represents the effective density or energy of the mth material
through node ¢ and ™Az;11/; is the post advection volume of material m in
cell ¢ + 1/2 given by
mA$i+1/2 = A331‘+1/2mf:—'i+1/2

Finally ©; and %, can be advected as in the single material case since
velocity is not calculated separately for each material.
The average densities and energies in each cell are given by

Pit1/2 = Z " Fi12" piy1)2 (3.12)
k

Z mFi+1/2mPi+1/2m€i+1/2

Z mFi+1/2mPi+1/2

€it1/2 = (3.13)

3.2 Numerical Experiments

Figures 3.2, 3.3 and 3.4 show the numerical results for Sod’s shock tube
problem using the interface tracking techniques described above. This is ex-
actly the same problem as in the single material case, i.e. the interface does
not separate two different materials so vy, = yr. All three cases, piecewise
constant, linear and parabolic, show the same sharp profile across the con-
tact discontinuity where it is only spread over a single cell. This cell just
corresponds to the ’mixed’ cell. In all three cases this method gives an over-
shoot in the internal energy profile near the contact discontinuity. As with
the single material cases the piecewise linear and parabolic solutions are not
noticeably different.

It was suggested by Jones [10] that if the interface was moved in the
Sod problem so that it did not initially line up with the diaphragm and
consequently the contact discontinuity, the results appear to show a small
error in the piecewise linear case. Figure 3.5 shows a small glitch when the
interface is in the rarefraction wave. He suggested that this may be due to
the drop in accuracy to 1st order in a mixed cell and that not reducing to
the donor cell method in a mixed cell and retaining accuracy may solve this
problem.

To show this glitch more clearly Figure 3.6 shows the absolute error in
the numerical solution for density compared to the exact solution for all
three recovery steps. Four peaks occur in all three graphs and these coincide
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with the head and tail of the rarefraction, the contact discontinuity and the
shock wave. The height of the first two peaks and the spread of the errors
in all the peaks can be reduced by either increasing the number of points
or increasing the accuracy of the method. The height of the last two peaks,
corresponding to the contact discontinuity and the shock wave, cannot be
reduced and correspond to approximately half the height of the respective
wave.

These errors are expected and will occur to a lesser or greater effect
depending on the numerical scheme. The glitch occurs at about z = 0.42
and in all three cases is much smaller than the other numerical errors. Figure
3.7 focuses on this error alone by showing the absolute error of the numerical
solution with the interface minus the numerical solution without the interface.
This shows that both the piecewise linear and piecewise parabolic produce
an error over twice as large as in the piecewise constant case. This gives some
strength to the argument that maintaining the same accuracy of the scheme
in a mixed cell improves this problem. However since no accuracy is lost in
a mixed cell in the piecewise constant case this would probably not solve the
problem completely. It is also clear that the error is not just confined to the
mixed cell but spreads out to pollute the whole computation.

Until now all the numerical experiments on interface tracking have used
only one material, i.e. v = vr. Interface tracking is designed to deal with
multimaterial flows and so to complete this section a Sod type problem is
solved for all three recovery steps, see Figures 3.8, 3.9 and 3.10. As with
all other experiments these show a similar improvement in resolution from
piecewise constant to piecewise linear recovery and no noticeable improve-
ment from piecewise linear to piecewise parabolic recovery.
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Figure 3.2: Sod’s shock tube problem with an interface - Solid line is exact
solution and dotted line is piecewise constant solution. 100 computing cells,
interface and diaphragm initially coincide at 0.5, Hemp artificial viscosity
with coefficients ¢y = 1.5 and ¢, = 0.06. Initial left state: py, = 1.0, ug = 0.0,
pr. = 1.0, 4 = 1.4. Initial right state: pp = 0.125, ug = 0.0, pr = 0.1,
vr = 1.4. Output time ¢ = 0.15.
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Figure 3.3: Sod’s shock tube problem with an interface - Solid line is exact
solution and dotted line is piecewise linear solution. 100 computing cells,
interface and diaphragm initially coincide at 0.5, Hemp artificial viscosity
with coefficients ¢p = 1.5 and ¢y, = 0.06. Initial left state: pr, = 1.0, ur = 0.0,
pr = 1.0, v = 1.4. Initial right state: pgr = 0.125, ug = 0.0, pr = 0.1,
vr = 1.4. Output time t = 0.15.
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Figure 3.4: Sod’s shock tube problem with an interface - Solid line is exact
solution and dotted line is piecewise parabolic solution. 100 computing cells,
interface and diaphragm initially coincide at 0.5, Hemp artificial viscosity
with coeflicients ¢g = 1.5 and ¢, = 0.06. Initial left state: pr, = 1.0, u, = 0.0,
pr = 1.0, v = 1.4. Initial right state: pp = 0.125, ug = 0.0, pg = 0.1,
~r = 1.4. Output time t = 0.15.
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Figure 3.5: Error in rarefraction wave for Sod’s shock tube problem with an
interface using piecewise linear recovery. 100 computing cells. Interface is
initially at 0.4 and diaphragm initially at 0.5. Hemp artificial viscosity with
coefficients ¢y = 1.5 and ¢y = 0.06. Initial left state: pr = 1.0, ur = 0.0,
pr = 1.0, v = 1.4. Initial right state: pr = 0.125, ug = 0.0, pr = 0.1,
vr = 1.4. Output time ¢t = 0.15.
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Figure 3.6: Numerical error (|ezact —numerical|) for Sod’s shock tube prob-
lem with an interface. 100 computing cells. Interface is initially at 0.4 and
diaphragm initially at 0.5. Hemp artificial viscosity with coefficients ¢g = 1.5
and ¢, = 0.06. Initial left state: pp = 1.0, uy = 0.0, pr = 1.0, 7, = 1.4.
Initial right state: pr = 0.125, ug = 0.0, pr = 0.1, yg = 1.4. Output time
L = (0515
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Figure 3.7: Interface error (|with inter face — without inter face|) for Sod’s
shock tube problem. 100 computing cells. Interface is initially at 0.4 and
diaphragm initially at 0.5. Hemp artificial viscosity with coefficients ¢g = 1.5
and ¢y = 0.06. Initial left state: p;, = 1.0, ur, = 0.0, pr = 1.0, v = 1.4.
Initial right state: pr = 0.125, ugr = 0.0, pgr = 0.1, yg = 1.4. Output time
t=0.15.
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Figure 3.8: Sod’s shock tube problem with an interface - Solid line is exact
solution and dotted line is piecewise constant solution. 100 computing cells,
interface and diaphragm initially coincide at 0.5, Hemp artificial viscosity
with coefficients ¢g = 1.5 and ¢z, = 0.06. Initial left state: pr, = 1.0, ur, = 0.0,
pr = 1.0, vy = 1.4. Initial right state: pp = 0.125, ug = 0.0, pr = 0.1,
vr = 1.2. Output time ¢t = 0.15.
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Figure 3.9: Sod’s shock tube problem with an interface - Solid line is exact
solution and dotted line is piecewise linear solution. 100 computing cells,
interface and diaphragm initially coincide at 0.5, Hemp artificial viscosity
with coefficients ¢g = 1.5 and ¢y, = 0.06. Initial left state: pr, = 1.0, ur, = 0.0,
pr, = 1.0, v = 1.4. Initial right state: pgr = 0.125, ug = 0.0, pr = 0.1,
vr = 1.2. Output time ¢ = 0.15.
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Figure 3.10: Sod’s shock tube problem with an interface - Solid line is exact
solution and dotted line is piecewise parabolic solution. 100 computing cells,
interface and diaphragm initially coincide at 0.5, Hemp artificial viscosity
with coefficients ¢y = 1.5 and ¢f, = 0.06. Initial left state: pr, = 1.0, ur, = 0.0,
pr, = 1.0, yr = 1.4. Initial right state: pgr = 0.125, ugr = 0.0, pr = 0.1,
vr = 1.2. Output time ¢ = 0.15.

40



Chapter 4

Conclusions

In Chapter 2 it was shown that in the linear advection case the 3rd order
piecewise parabolic method performed considerably better than the 2nd order
piecewise linear method which in turn is considerably better than the 1st
order piecewise constant method. Results show that a square pulse advected
through a mesh once with the piecewise linear method produces the same
attenuation as advecting the same pulse through a mesh 10 times with the
piecewise parabolic method. Unfortunately this large improvement does not
follow when it is applied to solving the equations of gas dynamics. In this
case the advection schemes are only a recovery step in the overall scheme.
A 2nd order Lagrangian scheme is applied before all three recovery steps. It
is probably this Lagrangian step that decreases the overall performance of
the method with piecewise parabolic recovery. To test this would require the
introduction of a 3rd order Lagrangian phase to see if this would improve
the overall performance but this has not been dealt with here.

Chapter 3 uses interface tracking techniques in association with the pre-
vious methods to give a very sharp contact discontinuity profile, spread over
only one cell even on a coarse grid. Asin Chapter 2 all the results shown give
little improvement in performance when piecewise parabolic recovery is used
instead of piecewise linear. An error has been identified if the position of the
interface is moved so as not to coincide with the diaphragm and consequently
with the contact discontinuity. This error is not just confined to the mixed
cell but also spreads out to pollute the flow. Although this error is small
compared to other errors it could easily be magnified when the methods are
extended to multidimensions. Unfortunately no cure has been found to this
problem as yet and is an area of future research.

The other obvious area of future research is the extension to multidimen-
sions of this work. This has been done on a quadrilateral mesh [5, 16, 17, 13]
but little work has so far been done on triangular meshes.
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