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1 Introduction

The aim of data assimilation is to combine measured data with mathematical models in
order to obtain accurate estimates for the current and future states of a physical system.
Variational data assimilation finds the particular solution to a set of model equations that
gives the best least squares fit to a set of observations. Variational techniques, in which
adjoints are used, are currently being implemented to treat very large scale systems occuring
in numerical weather forecasting [4]. An important question that arises in data assimilation
concerns the period of time over which the process remains accurate. The behaviour of
systems that are sensitive to perturbations is notoriously difficult to estimate accurately over
long time scales. In this study, an attempt is made to extend the time period over which
data assimilation is successful, so that values from the model correctly match observations in
a consistent manner.

2 Model equations

The assimilation process is applied to a discrete form of the third-order Lorenz equations [5],
given by

& = a(y-rz)
g = re—y-—zz (2.1)
= zy - bz.

The Lorenz equations constitute a Fourier truncation of the flow equations governing
thermal convection, where a is the Prandtl number, 7 is a normalized Rayleigh number,
and b is a nondimensional wavenumber [3]. There is an inherent diversity in the nature
of the solutions to these equations, dependent on the values of the parameters a, b, 7. In
the case where the parameters are set at 10, 8/3, 28, respectively, a deterministic chaotic
system results. The qualitative behaviour of the system is then highly sensitive to the initial
conditions. Three unstable stationary points exist, at the origin and at (i6\/§, +6/2, 27). At
the origin, the linearized system has one positive and two negative real eigenvalues, making
the equilibrium a saddle point with a single unstable mode. At the two non-zero equilibria,
the linearized system has one negative eigenvalue and two complex eigenvalues with positive
real parts, inducing unstable spiral modes at each point. The system is dissipative with all
trajectories entering a bounded ellipsoid in ®#3. Further properties of the Lorenz equations
are described in [5].

Discrete approximations to the equations (2.1) are formed on a uniform grid using the
second-order explicit Runge-Kutta scheme known as the modified Euler method [1]. The
discrete model equations are defined by
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Ti+1 = f(x,-,y,-,z,-,At)
1
= z;+ 5aAt(2(yi — ;) — aAt(y; — z;) + At(re; — v — 2:2;))
Yit1 = g(iEi,yi,Zz‘,At)

vi + %At@("'mi — i — 2iz) +

At(ra(y; — i) — (ro; — yi — iz) —

zi(iyi — b2) — azi(yi — @) — aAt(y; — 2:))(2:yi — bz))) (2.2)
zivr = h(zi, i, 2, AL)

zi+ %At@(wiyi — bz) + At(ayi(yi — i) + zi(ra; — yi — i)
+Ata(y; — zi)(rei — yi - zizm) — by — bz))),

for:=0,1,..., N — 1, where z;, y;, 2; approximate the states of the continuous system at
time t; = 1At € [0,T] and At = T/N.

This discrete system, although sharing many of the properties of the true continuous
Lorenz equations, does not necessarily provide a solution to the continuous problem and no
attempt is made here to do so. Both continuous and discrete systems are chaotic in nature
and are sensitive to perturbations, and thus the discrete model provides a test case which is
qualitatively similar to the continuous case.

In recent years discrete models of the Lorenz equations have been used popularly as test
problems for the application of advanced data assimilation techniques [3],[2],(7],[6]. Like
many systems in meteorology and oceanography, these models are dissipative and volume
reducing, tending to a set of zero volume. Variational assimilation is applied to discrete
Lorenz models in [3] and [2], and it is shown that the ability to track the chaotic trajectories
of the system is limited to short times. The objective function that measures the least-
square error between the observations and the model solutions is found to exhibit more and
more secondary minima as the assimilation interval increases, making it difficult to find the
optimal. In [6] the accuracy of the solution to the variational problem for the Lorenz system
at the end of the assimilation period is studied as the length of the period is increased. The
error between the assimilated solution and the observations is shown to saturate at a finite
value, and hence the inclusion of past observations has a limited impact on predictability. In
all of these studies the deviations of the model solutions from the observations are all equally
weighted in the objective function. The aim here is to investigate the effect of time-varying
weights on the length of the interval over which variational assimilation is accurate.

3 Data assimilation problem

A 4-D variational data assimilation scheme is applied. All the observations (data values)
across the whole time interval are matched to the model solutions simultaneously. The
scheme involves minimizing a quadratic objective function 7 subject to the model equations
(2.2). The problem is stated as follows.

Problem 1 Minimize the objective function

i=N-1
J = Z di((%: — 2i)” + (5 — 9:)° + (5 — 2)")At (3.1)
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subject to the constraints

$i+] = f(m‘iayiazhAt)
vier = 9(@i, ¥, 2, At) (3.2)
ziv1 = h(zi,ui, 2, AL),

where %;,7;, % are given observation values, z;,y;,2; are the model values and d; are the
respective weights at time t; = tAt, fort=0,1,...,N — 1.

The constrained minimization problem can be converted into an unconstrained problem
using the method of Lagrange multipliers. Since the initial values g, yo, 20 completely
determine the solution to the model equations and are the only degrees of freedom available,
the problem can be restated in the following form.

Problem 2 Find the initial values wg,y0,20 and a set of parameters {lz;, ly;, lzz-}fil to
minimize the cost functional

1=N-1
L = T+ > (e, %) - 2is1)
=0
Hyiv1(9(@iy viy i) — Yigr) + lziga (h(24, y4, 2) — Zig1), (3.3)

subject to x;,y;, z; satisfying the model equations (2.2) fori=0,...,N — 1.

The solution to this problem can be interpreted as the set of initial values that provides a
best least-squares fit of the model solutions to the given observations.

Necessary conditions for a solution to Problem 2 involve the corresponding adjoint equa-
tions of the system, given by

lay = 0, lyy = 0, lzzy = 0, (3.4)
and
. af 0 oh
lz; = 2d;A4(E; — ;) +lzip (‘BTI) A i (8:3) A lzi (8m)
- af 0 oh
lyy = 2d;A4(F — i) + lzip (%) N lyir1 (%) = lzi41 (%) _ (3.5)

1z

- of d oh
AL — 7) + i (ai) 1y (a—j) e (87) ,

fori =N —-1,N —2,...,0. The gradient of the objective functional £ with respect to the
initial data (29, %0, 20)? is then given by

VL = (lwo, lyo, lZO).

For any specified set of intial values (zo,yo,20), by forward time-stepping the model
equations (2.2) and then backward time-stepping the adjoint equations (3.5), the initial values
(lzo,lyo, l20) of the adjoint equations can be found. These initial values must be equal to
zero if the objective function is minimized. Otherwise they provide the local descent direction
needed to find an improved estimate for the optimal initial values of the model system using
a gradient minimization technique. The simplest gradient iteration method, the method of
steepest descent, is applied here. The convergence criterion used to stop the iteration is given
by the condition ||(Izo, lyo,l20)T ||, < 0.001. (Here |||, denotes the L; - norm.)
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Figure 1: Solutions over a long time interval: 0 <t < 16
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4 Application of Data Asssimilation

The main aim is to capture the general properties of the ‘true’ solution through the data
assimilation process. With the Lorenz model, as the time interval is increased, the objective
functional becomes increasingly sensitive to perturbations in the initial conditions [3] and
inaccuracies in the best fit to the observed data accumulate until the assimilated solution
takes qualitatively the wrong pattern.

The sensitivity of the problem can be seen in Fig. 1 where the time period is set to T' = 16
with N = 1000 equally spaced time intervals. The observations are generated by the model
with the initial values (g, ¥o, 20) set to (1,1,1). An estimate, or ‘first guess’ solution, is found
from the model equations using the initial values (2,2,2). In the figure the observations are
denoted by a solid line; the ‘first guess’ solution is displayed as a dotted line. The final values
of the two solutions at T' = 16 are indicated, respectively, by a circle and a star. The figure
shows the £ — z phase plane diagram of the solutions. The results are seen to diverge widely
from each other.

Fig. 2 demonstrates the effect of data assimilation with constant weights d; = 1, 7 =
0,...,N — 1, in the objective function (3.1). The observations are again represented by
a solid line, and the solution to the data assimilation problem is shown by a dotted line.
Qualitatively the match between the two solutions is better than in Fig. 1, especially at the
start of the time period. The final value of the assimilated solution at the end time T' = 16
(indicated by the star) is, however, still far away from the observed value (shown by the
circle).

The choice of the weights d; in the objective function J influences the overall dynamics
of the assimilated solution and an appropriate choice may extend the time period over which
accurate data assimilation is possible. A set of weights generated by a decaying exponential
function with respect to time is now considered. The weights are given by

b= Nt eup(—vin), (4.1)
1o exp(—7jAt)
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Figure 2: Application of data assimilation with constant weighting
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fori=0,...,N — 1, where v is a specified constant. The motivation for this choice is that
the error in the discretised Lorenz equations increases roughly exponentially with time. A
decaying exponential weighting function compensates for an increase in error, ensuring that
the more accurate values earlier in time have a stronger bearing on the final result. Such
weights also guarantee that the final initial values chosen are closer to the observations at
t = 0 and therefore are more likely to reflect the behaviour represented by the observations.

Obviously, the question of whether the use of time-varying weights is beneficial depends
on the value given to the parameter 7. For the case where the weights are given by (4.1) with
v = 1, the solutions to the data assimilation problem over the time period 0 < ¢ < T = 16,
with a timestep of 0.016, are shown in Fig. 3. The observations are again generated from the
‘¢rue’ initial values (1,1,1) and the minimization procedure is initiated with a ‘first guess’
solution obtained from the initial values (2,2,2).

A comparison between Fig. 2 and Fig. 3 shows that the application of time-varying weights
produces a better overall result than the use of constant weights. Over the time period the
data assimilation process with constant weighting picks a solution that follows a different
trajectory to that of the observations. The time-weighted solution is more accurate, but
is diverging from the true trajectory at the end of the time interval. The values at the
end of the time period weakly influence the overall data assimilation process, allowing for the
aggregation of error. The insight given by these results suggests that a less extreme weighting
distribution needs to be selected.

In Fig. 4, the solutions to the data assimilation problem over the time period 0 <1 < 16
are shown for the case where the weights are given by (4.1) with v = 0.5. The time-step is
kept at 0.016 and the observations are again generated from the ’true’ initial value (1,1, 1).
The same initial estimate of the solution is taken. When the new weighting is applied, the
trajectories obtained by the data assimilation process match the observations almost perfectly.

This shows that the weighting must be balanced so as not only to ensure a more accurate
initial condition, but also to ensure that the errors in the model solutions at the end of the
time period do not dominate over the gains in accuracy obtained at earlier times.
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Figure 3: Application of time varying weights with v = 1

Figure 4: Application of time-varying weights with v = 0.5
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5 Conclusions

The results of the study show that a decaying set of time-varying weights can extend the
time period over which data assimilation is successful and can improve the accuracy of the
assimilated solution over the whole time period. For chaotic systems of the type arising
in numerical weather prediction, the accuracy of the solution at the end of an assimilation
period is critical, as this information is used to initialize the next forecast.

To show that time-varying weights can be used more generally, a more extensive inves-
tigation is needed. The effects of errors in the observations and the effects of larger data
sampling intervals need to be examined. Ideally, a method for finding an a priori weight
function that maximizes the extent of the accurate data assimilation period is also needed.
These are topics of current research.
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