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Introduction '

The theory of fluid flow through porous media gives rise to free
boundary problems.governed by ellipfic'partial différential equations.
Traditionally these problems have been éolved using the triai free
boundery method (see e.g. Birkhoff [5]1). In 1971 Baiocchi [2], (3]
introduced a technigue which allowed m;ny porous flow free boundary
problems to be reformulated as variational inequalities. This approach
has two advantages, firstly we can now prove existence and uniqueness
theorems for the problem and secondly the reformulated problem can be
solved using simple numerical techniques which compare very favourally,
both in ease of programming and in speed of execution, with the older

heuristic algorithms.

In this report we shall consider an extension of this technique
to a problem where the flow region consists of anisotropic material,
in particular where the principal directions of flow are not parallel
to the horizontal and vertical axes, as would océur, for example, in
a natural dam composed of tilted streta., We show that, under some
restrictions on the geometry of the dam, this problem can be

reformulated as a quasi-variational inequality.
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The Physical Problem. !

Two water reservoirs are separated by a porous dam and water seeps
through this dem from the higher‘reservoif tQ.the lower one., We wish
to fiﬁd the quantities associated with the motion, e.g. flow region,
equipotentials, streamlines, pressure, discharge etc.. We limit our-
selves to a homogeneous dam on a horizontal impermeable base for
steady, irrotational, incompressible, two dimensional flow. We also
neglect capilliarity and evaporation effects. However in this problem
the principal directions are not horizontal and vertical as in previous

cases which have been studied.

Equations of flow.

The governing law of flow through a porou: medium is Darcy's

law which relates the potential u to the velocity vector Ve

If we define wu as

u=y+2(_.:Y(.I.L) (1)

vhere y 1is the height above the dam base
P 1is the flvid pressure

Y 1is the specific weight of the fluid
then Darcy's law states that

¥ = -KVu (2)

(see e.g. Bear [4], Poluborinova-Kochina [8]).

In the case of an isotropic, homogeneous medium then K =k =a

positive constant, but in our case K = {ki j} a full two by two matrix.
]



Remark In a practical case this matrix K would not be gi;en directly
but rather the angle of tilt of fhe principal directions, 6, and the
permeabilities along these diréctioné m and n. The matrix would then
be recovered from the fact that the vectors in the principal directions
(cose,sinB)T and (-sine,cose)T are eigenvectors of K with eigenvalues

m and n respectively. This leads us to the equations:

- 2 . 2
kll = mcos 6 + nsin 0
-k12 = k21 = (m-n)sinbcosd
k., = msin26 + ncosze

22

from wvhich we have that K 1is positive definite.

Mathematical Statement of Problem, [see Fig.1l]

We define
D = {(x,y) : a<x<bj O<y<¥(x)} (3)
vhere Y(x) € C2[(a,b)], such that Y(a) = Y(b) =0 (%)

and Y(x) is concave on [a,b], a<0,

Further we suppose that C e (0,b), such that

1(0) =y, (i)
: (5)
Y(c) =y, (ii)
Given K = {kij}’ i,j = 1,2, vwhere
ks > 0 ,i=1,2 (i)
ki =ks; o, 1,0 =1,2 (i1) (6)
kllk22 - k12k21 >0 (iii)

R L T TN AR AL TR, T S SYRTCC TS L TV 0 TSN TS (TR AR Sy I sl Lot NSt Neicawn o ey oy



then we seek to find a subset 9 < D such that there exists-a function

u(x,y) satisfying the following conditions:

VK% =0 in @ (1)
U, =v (9)
£

]
o

[
o

(KVu)'§|r = (11)

f
Remark Equation (7) comes from Darcy's law and the continuity equation
Vev = 0; boundary conditions (8) and (9) are derived by assuming zero
atmospheric pressure and from the fact the boundaries in contact with
stationary bodies of water are equipotentials. Boundary conditions (10)

end (11) are no flow conditions across streamlines.

In order to exclude some non-physical solutions we shall also

impoée the relation
(Kzu)'glr <0 : (12)

s
which simply states that any flow across the face must occur from the

inside to the outside of the dam.

Given this statement of the problem we are now in a position to

define a weak solution to the problem.



Weak Formulation.

A triplet {4, @, u} is said to be a weak golution of the previous

problem if:

{ $ € c®([0,c1); ¢ decreasing on [0,c]

$(0) = y,; ¢le) =y, (13)
If we set [see fig.2]
D, = {(x,y) € D : a<x<0}
D, = {(x,y) € D : esx<d} (14)
D, = {(x,y) € D ¢ O<x<c}
then
Q= Dl u D, u {(x,y) € D3 ¥y < ¢(x)} (15)
u € BY() a () (16)
ulyp =y, s ulgp =y, ulp =¥y (17)
8
u|l, =y 1
rf i ( 8)
! KVu « W axdy = 0 (19)
Q
V v e clip) ' | (19)°

vith ¢ = 0 in a neighbourhood of y = Y(x).



Remark Equation (19) contains in the weak sense equation (7) and

boundary conditions (10) & (11).

Iemma 1 u >y almost everywhere in Q.

Proof. We have that X-Kg(y-u) = 0 in Q and therefore the funetion

Y-u satisfies a maximum principle on {; We have from the boundary
conditions that y-u56 on 9@ -~ JAB[. We can show by an extension of

the Hapf maximum principle (Gilbarg and Trudinger [6]) that if the

maximum were to occur on JAB[ then the directional derivative corresponding
to KV(y-u) on JAB[ must be in a direction moving strictly out of the
region Q. But from the boundary conditions on JAB[, KV(y-u) = [klz’k22]T

end from (6) (i), k,, > 0 so that the maximum must occur on 3Q - JAB[,

Reduction of the problem to a quasi~variational inequality.

We now introduce an extension of u to ) by setting

- u(x,y) (x,y) € @
u(x,y) = (20)

y (x,y) D .30

Letma 2 u € Hl(D) n c°(B)

Proof. See Baiocchi [3]

oy ] ] .
Lemma 3 VeKVu = - s (klzxn)l- 3 (k22x9) in the sense of

distributions on D, where Xq is the characteristic function of R, i.e.

1 (x,y) e @

Xq = (21)
0 elsehwere



Proof. < VKV, ¢> = - f KVu-Vydxdy
Rl s

= - I KVu-Vedxdy - f KVyVydxdy
: 4 Ap-g T T

2= - fn-n (klzwx + k22¢y)d?dy (from equation (19))

= - Xn o{k, V. + k.. ¢ )dxdy
ID D-R""12"x 227y
= 3_(x ) + L (x ) ¢>
ax ‘12 *p-q’ T 3y ‘%22 Xp\g’®

9 ]
(- & G xg) o % Oy ), v

Now we can introduce a change of unknown functions by setting

o -~
wix,y) = f {y+k22t~-_u(x+k12t, y+k22t}dt (22)

= ¥/ky,

We introduce the following region [see figs. 3,4]

Ko

F1o
m (y-yl)< x< 7= (y-y,) + c} (23)

' D), = {(x,y) € D : O<y<¥(x);
22 22

and impose the following condition on y = Y(x).

k .
Y (x) # Egg x € (a,b) (24)
12

[This has the effect of restricting the geometry of the dam for the use

of this method with certain values of the parameters m, n, 6],

- Note that by introducing a change of variable in equation (22) we

can write w in the following form.



k ! ‘
w(x,y) = g f_r - Uz + 22 (rmy), 1) (25)
.. Tee o : . e o

Because u € Hl(D) we can differentiate this to obtain the

following relation

w ow : ~
kyp 3 * Koo Y- u(x,y) (26)

o~
therefore from w we can recover u.

Theorem 1 {@, Q, u} is a weak solution of the problem if and only if

v(x,y) satisfies.

¥lpg = 05 kypw, + Eap¥ylap = Y733
(271)
KoV ¥ k22w_1|BC = Y=¥pi Kyp¥y + kpowilppg = 0
w(x, Y(x)) is concave V. x e (0,e] - (28)
VeKWw = Xp\p, * Xp, * H(v - B(w)) = xg (29)
vhere H(+) is the multivalued Heaviside distribution defined by
{0} t<0
H(t) = {h:0shs1} =0 (30)
{1} - t>0

and B(+) is defined in the following remark.

T —— e ————— e —
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Remark Because of relation (26) and definition (20) we can define

ow C oW
Q= (Dfnh) v {(x,y) € D), : k1o ox * ¥oo 3y © 0} (31)
so that on D\Q we have,
v W _ \
Ko sx Y hp 3y = 0 V:(x,y) e D\ (32)

Note that these relations imply that the function w(x,y) at each
point (x,y) is bounded below by the value of W on the boundary

y = Y(x) at the point determined by the intersection of the vector
(k12’ k22), passing through (x,y), with the curve y = Y(x). We shall

refer to this value as B(w(x,y)) for each point (x,y).

Proof of Theorem 1. (i) Assume that {@, 2, u} is a weak solution of

the problem, then (27) is self-evident from (20), (22) and (26).
To show that (28) holds we must prove that w*“(x, Y(x)) < O i.e. that

w’(x, Y(x)) is decreasing in the x-direction., From {25) we have that

v(x,¥(x)) = =« —

. fY(x) - k

ux(x + k—12 (t-Y), 1) ar (33)
22 (o] 22

Now if we look at the discharge g(x) through any section of the dam in

the direction (kl2’ k22) then ve can define

Y(x) (KVu)+(k,p, -k, ,)ay
RIS fo k22
1122 12 '~
= Io N L dy (34)

22
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9

therefore v (x,Y(x)) = o a(x) (35)

for a constant a>0

but condition (12) esserts that the function q(x) is decreasing for-
s<x<c. In particular it is constant for O<x<s and decreases along

I (due to seepage). Therefore ve have shown that condition (28) holds.

In order to show that equation (29) holds we apply the operator
k1 I + k L to the difference between the two extrerne sides of
2 9x 22 9y .

equation (29) and from equation (26) and lemma 3 we have that
.

)

(k12 3%t Koo a =) (VKWW - XQ) =0 (36)
Therefcre VKW - Xq = constant (37)
along the vectors (klz’kzz)‘

In order to show that this constant is zero!it is sufficient to
note that u is analytic in a neighbourhood of th; base of the dam then
Wwe can explicitly calculate V+KVw - Xo from relation (22) in order to
obtain (29). Hence w satisfies the conditions of the theorem,

(ii) Let w satisfy the conditions of the theorem and define

~ ow W .
u=sy- k12 - ™ k22 3y in D

(38)
=g .

Boundary conditions (17) on u follow directly from relation (38),

the definition of 9(31) and conditions (27).

In order to prove (19) first note that (x,y) € D = Q (the ‘dry'

section of the dam) k12 ax + k22 ay = 0 from equation (32), We can
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ow oW _ . R
also show that kll 3% + k12 3y = g, where g 15 a constant multiple

of the discharge, in the following manner:

‘ 9 9 i
We apply the operator kll T + k12 3; to the function w as

defined in equation (25), we obtain

k 2 Yy k
ow ow Iy 12 = 12
K. =—+ k. . =— = — {2k +__._}I u(x+_('[-y), t)dr
11 9x 12 ay k22 11 k22 x k22

(x,y) € D-Q. But using the fact that E =y in D-0 we have

2
k Y(x) LI
ov 1 12
k — 4+ k = e {=k + } f (x + — (-r-y) T)d‘l’
11 °x 12 k22 11 k22 N k22 ’

3l

= constant (by equation (34) and the remark following). From the above

wve have that (x,y) € D=-Q %% = constant, %% = constant. Now

! KVu.Vy dxdy
Qa - -

[y, ¢ xpp e, + G+ ey axay

fn Cyq (oKqpWyy = EopWy) + Kpp(l-k

12%xy = k22wyy)]¢x

+ Dk (kv - kzéyxy) + k22(1-k12wxy kyy yy)}w dxdy
(substituting for u from equation (38))

= I 1(KoVyy = Kpp¥yy) + Kpp(lyqwy  + kv )T

12" xy’ ""x

t o Dkyp (g = Tpp¥iy) *+ Kpplygvy + kv, )T dxdy

(using VKV = 1 in Q from equation (24))
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. 2
f fﬂ (kla- Ky ko) ¥ = Yty ! dfdy

) 4
= (kllk22 f ko ) fn LA f wxywx.dxdy

(using W, = constant, v, . constant in D-Q)

2 3 3
(kllk22 - LI )ID 3;'(wxwy) -5y (wxwx) dxdy

_ 2 :
= (knk22 -k, ) fan wx(wxgx + wydy)

0, because

=0Oon JABL and y = O on y = Y(x) 0

Let us now introduce the following functionals which are an extension

of those for the isotropic case.

2
: (k -k, “)Y”
a(u,v) = I {v [rqu + (xp, - 11%207%1p ) u
D : (kpp=k, )

2.,
(kyykpp=ky )Y

1)

+v [(k12 ) u +k,, uyJ

( 22 12

2
Kop(ky KooKy 5")

k.. Y*)2

Y“vu&} dxdy  u,venl(p) (ko)
G koo-kpo

-2 -
c kllY -2k12Y +k22

L(v) = - f v dxdy + j
D-D, bk Ytek,,

v(x,Y(x))(¥(x)-y,) dx

12
o k12Y -k22

2
a k..Y "-2k._.Y%+k
+ 11 29 ¥
f xsY(x))(¥(x)-y,) ax (%1)

ver}(Dp)
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A P )

j(z,v).=I (v(x,y) - Bla(x,y))) axdy vozeE'(D) (41)
2 i ; Dh

where B(z(x,y)) is defined in the remark following the statement of

theorem 1 and

N £, £>0

£ =4o, t<0, °

: . 1
Lemma & a(.,.) is coercive for all functions veH (D), v = 0 on JAB[.
Proof. Let veHl(D), v = 0 on JAB[

a(v,v) = f KVve Yvdxdy
D

2
kpp(kyqkpo=kyp )
- 22— Y*ovv, axdy
D (kaa-klzr )

The first part is coercive by the ellipticity of K, therefore,

by conditions (6) on K we must show that

“ I Y*“vv_dxdy 2 0
D y ‘

but - I Y’ vv dxdy = -; f
3 D Yy ‘ -

e %— (v2) axdy
D v

. 4 Ih Lo IY(X) 3(v2)

5
- ayax = -1 f 1°v3(x,Y(x)) ax

a (o] a

and so by the concavity of Y the lemma is proved. [
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Remark., a(.,.) is one of the bilinear forms associated with the

2o o . X . .
operator ~ V°*K¥(.) which contains (k12 33+ X 3;)(.), the

expression which occurs in the natural boundary conditions (27)., It _
is also easily shown that j(.,.) is a proper, lower semi-continuous

convex functional,
Definition:

We have now from standard variational inequality theory (see

Glowinski [7]).

i 1l i
Lemma 5 For any zecl(D), a unique w = wix,y; z) ¢ H (D) with

wIAB = 0 such that for any veHl(D) with leB = 0, we have

a(w, v-w) + j(z,v) 2 j(z,w) + L(v-w) (k2)

Lemma 6 We can regard variational inequality (42) as a weak formulation

of the problem:

Find weHl(D) such that
VeKVv = Xp-p, + xﬁhH(V‘B(Z)) | (43)

for a given z with w satisfying boundary conditions (27) and D),

shown in Figures

Proof, See Baiocehi [1].

Because of lemma 5 it is now obvious that the solutions which we

are seeking are the fixed points of the map, z + Vs i.e. we must solve:
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. l
Problem 3: Find weH (D)3 WIAB =0 and

alw,v=w) + j(w,v) 2 j(w,w) + L(v-w)
' ' ' (46)
veH1(D) with v'AB =0

This problem is a quasi-variational inequality and we can prove
that there exists a maximum solution Y oax and a minimum/solution Vinin®
It can also be proved that (wmax(x,’Y(x)))“ < 0 in (0,c¢) while in
general (wmin(x, Y(x))) £ 0 in (0,c) (thus violating condition (28))
but however there does exist, in the family of solutions, & minimum
member of the family satisfying (28). The proofs of these statements
can be found in Baiocchi [1], but it is useful here to give a sketch
of the proof of existence for a general quasi-variational inequality
as the proof is of a constructive nature and the numerical techniques
used in this paper are based on it} tﬁis will be found in the Appendix.

We therefore have an existence theorem for weak solutions but uniqueness

is, ir general, an open problem,

Numerical Results /f

The numerical algorithm is based on the constructive nature of the
existence proof (see Appendix), so that we have to solve a series of

variational inequalities for each of the maximum and minimum solutions.

We first solve

vy w° = 0 (47)

with the given boundary conditions (27). From this solution we

anVmeetrad. 2OV L ey 4 s - = - s e LB : E
vwdLuaevl oWy @b UShCLAvTU iU LUT NCWACA LULIUWINE Lhe §talement ol

i e 1= e s PR i
T RIS ) £ 7Y N T AR S ST T R A T T TE ST GRS L 4 T ST AT A T M S T T T S e NPT RTINS TR YA i T



16.

Theorem 1, wé then solve the variational inequality with this value
of B(+), to obtain wl, calculate B(wl) and so on: This gives a

numerical approximation to the maximum solution.

For the minimum solution we start by solving

VeKeV v "= 1 (48)

From this we obtain B(wo) which will in general not satisfy the
concavity condition (28). Hence we adjust the values to the minimum
Piecewise linear concave envelope of B(wo) (see Figure 5) and then

use this to obtain a new solution,

We can discretize the equations using either the finite
difference or finite element methods combined with successive

overrelaxation.,

This means that in theory we have an outer iteration to approximate
the sequence of solutions, and an inner iteration (SOR), however in
Practice [as in the simpler case of Baiocchi [1]] we can retain
convergence by doing one SOR iteration and then recalculating B(:).

This means that the cost is equivalent to solving one variational

inequality for each of the maximum and minimum solutions.

It is more efficient to use finite differences than finite
elements, Firstly, in terms of programming effort, because the
forcing function changes discontinuously in the region D at a different
place in each iteration. It is difficult to evaluate the load vector
in the matrix equations, and this has to be re-evaluated at each
iteration. Secondly, the algorithm takes on a simpler form using

finite differences.
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Ir A =‘{ai5} is the finite difference operator approxihating

the operator -.VoKY(o) then the SOR equations (with relaxation parameter

w) are:
(m+1) (m) 351 (mt1)
..V, = wf, + (1-w) a,.w. -w )} a,.w,
i1 1 i 111 S =153
. . J=l
7 : (m) (m41)
jeisr I .
. S . - . (m+1)
Notice that this is a nonlinear equation for v « However

it is equivalent to finding the value of t which gives the minimum

of the following functional

=1 2 o)

i-1 n
- [wf. + (1-w) aiiwi(m) -0 z ai,w.(mfl) -w X a..w.(m)]t
& j=1 9 J j=isan Y9
} (50)
vhich is easily calculsble,
The functional J has the following form
2 + - '
J(t) = 3at® + A(t-p) + bt , a, A >0 (51)
that is
Jat® + (M)t - pA =T, t2p
J(t) = (52)

Jat? + bt = J t<p

We shall show that this has a unique minimum, Obviously, as the
two parts of the function are convex then there are only three possible
placés for iocal ﬁinima to occur, at the zeros of J*(t) of which there
are possibly two, corresponding to the zeros of J; and J°, or at the

point t = p,
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Firstly we shall show that it is impossible, given values of

a, A, b, p. for J7 and J° to be simultaneously zero.

J, =at+ (b+x) , t>0p .
: (53)
Jo =at +b s t<p
Then, if there were two minima, they would occur at the points
R RREY
(54)
t =-"b/a s, t<p
but this implies
b D A
~geEE == (55)

i.e, ~% < C wvhich contradicts definition (51).

If the derivatives of J+ and J_ do not hav: zeros within their

.

range of definition then the minimum obviously ocecurs at t = p. Thus

the minimum of J oceurs at the point td given by

b+A b+
- ) e - (),
t, = -2, 2 <y
P otherwise .

Also note that it is only possible to use finite elements if the last
term in equations (49) is H(wi(m) - pl). This has the effect of

slowing the convergence of the sequence of solutions.
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Ap;gendix Sketch of existence theorem for solutions of

quasi-variational inequalities.

Suppose that .
V is a real Hilbert space defined over D (A1)
a:VxV+R is a continuous bilinear, V-coercive form (A2)

We have two members Vys vzeV such that

v, s v, (pointwise) ’ (A3)

1 2
We have a mapping $:[v,,v,IxV + (=2, =]

such that ueV and such that ue[vl,v2], Pu,):V +> (e, 0]

(AL)
is convex, proper, and lower-semi-continuous, such that
ir nl < u, (pointwise) then ¢(u.l,-) < B(u,,*)
Let us look at the following problem:
Problem Al
Find ueV such that
a(u, v-u) + #(u;v) 2 @g(u,u) .
. : (a5)
veV
Find ueV s.t. given weV
a(u, v-u) + #(w,v) 2 glw,u) vev (46)

for which we have existence and uniqueness Glowinski [T], and define
e mapping &(w) = u . We now have to look for fixed points of this
mapping i.e.

i

find ueV such that

Hu) = u (47)
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Denote by {Uﬁ} the sequence generated by

Uo g V°KVUo = 0 on the region D with the appropriate

boundary condition

(28)
um+l = Q(Um) s
and similarly by (U™} the sequence
i Z-KXUO = 1 on the same region D with the same
boundary conditions as for (A8)
(a9)

v = o)

It is then possible to prove, using e maximum principle argument, the

following thecrem [see Baiocchi [11]].

o
Theorem Um < Um+l <U
. {210)
B> B, U,
Therefore if we set
U,= lmU < °
) iigand
(A11)

v = 1imu'“zuo
m-o

we can be assured that they both exist as we have bounded monotonic

sequences. So we have a range of fixed points

U sU<U (A12)

where U 1s a solution of Problem AI,
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