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1. INTRODUCTION

During the 1950's two very different epproaches to numerical shock modelling
were developed - shock fitting, in which the position and evolution of shocks is
approx;mated explicitly, and shock capturing by finite difference methods operating
on a fixed mesh. There was a prolonged lull in developments from the late 1850's to
the early 1970's, as the two methods seemed to have reathed a stalemate, but the
last ten years have seen rapid progress on many fronts - theory of conservation laws,
numerical methods and analysis of convergence. An indication of the situation is
provided by the excellent survey of Gary Sod (1978). This stimulated widespread
interest and even the best results given there now look very poor by comparison
with those from current methods.

Yet still these mainly shock capturing methods lack the precision achievable
with shock fitting techniques on the coarse meshes that must often be used in two
and three dimensions. One way of achieving this and bridging the gap between the
two viewpoints is to use shock recovery: the results obtained on a fixed grid by

a shock capturing method are scanned for the presence of shocks whose positions and
strengths are found and this information used in the subsequent evolution. The
mesh may or may not be adjusted. .

Such a viewpoint is natural to those working with finite elements and we shall
consider here some r;cent developments of these methods for evolutionary problems
which are pertinent to shock recovery.

In contrast to finite difference methods, the objectivé with finite elements

is to create at each time level the best least squares fit to the solution from an

'appropriate space of trial functions. Typical choices are piecewise constants or

piecewise linears. Obtaining intermediate values in order to model advection
accurately or to calculate flux functions requires formulae comparable with those for
polynomial interpolation. Recovery of sub-gridscale information, such as éhocks or
boundary layers, requires more specialised technilques which take maximum advantaée
of any available knowledge about the solution.

let us consider first the problem of obtaining intermediate results from those
given on a uniform mesh. Typically a finite difference method will provide grid-point
values uJ at xJ = jh, J an integer; then, for example, mid-point values are given
by truncating the interpolation_formula

Y 3 .y u, , *tu
UJ—! & [1 ’56 + 'ma ouo)( 1 1 1]: [101)
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usuppose UJ ore the nodol volues dofining a continuous pilocowlso lincar approxilmation

in the stondard nototion. On thou othor hond
which 1g the best L2 it to u(x): thet 1s, the UJ ore given by the Galerkin

aquations

[[E(J)UJ¢J(X) = u(x)]¢i(x)dx = 0, Vi, (1.2)

where ¢J(x) are the hat-shaped linear basis functions. Then intuitively we can

see that the UJ will overshoot the true nodal values u, of ul(x) and indeed we

J

have the well-known recovery formula

-
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For reasonably smooth u(x), the three-term formula 12u, ~ U + 10U, + U,
J J-1 J 3+1

is remarkably accurate. To compare with (1.1), suppose now we need the nodal values

for a similar approximation on a mesh shifted by ih: then the natural formula is

-
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o § I U, .
(1 + G2, = (1 4 587 + 5 ...][312 i). (1.4)

The operator on the left is natufal since it corresponds to the mass matrix in the
tridiagonal system of equations given by (1.2). We see that the implicit four
point formula given by truncating (1.4) is nine times more accurafe than the four
point explicit formula given by (1.1). This is one of the bases of the greater
accuracy that is often attainable with finite element methods - at the cost of more
work because of the implicitness.

One of the overlap areas between finite differences and finite elements ig
-provided by the use of piecewise constant approximations, as for instance in some
finite volume methods. We shall use a notation in which the value Uj is understood
to extend from (j-i)h to (j+3)h on a uniform mesh, or from xj_% to xj+%
on a non-uniform mesh: the basis function, which we shall also denote by ¢j
when there is no confusion, has unit value over this interval and is zero elsewhere.
The Galerkin equations (1.2) for an L2 best it have a diagonal matrix in this case
and Uj és the average of u(x) over the interval, an interpretation which is shared
by most finite difference schemes. In contrast to the piecewise linears, U, under-

J

shoots the point values and the recovery formula corresponding to (1.3) becomes

- - 52 3 g4 :
Uj (1 246 +’EI_‘—0'6 ...)UJ' (10—))

For the shifted projection, we now have exactly the same formula for the Uj-} as
(1.1) for the point values. Thus the only important point about the interpretation

of UJ as element averoges is to use (1.5) to obtain uJ bofore, for instance,

calculating flux functions.



All the obove formuleo apply to smooth underlying functions ul(x). In tho
.prosence of boundofy loyers or shocks, the recovery process 1s tho semo in principle
but must use different rccovery functions: while formulas like (1.3) may bo derilved
by replocing u 4in (1.2) by an interpolating opline, Barrett & Morton (1880) in
thelr work on diffuaion-convection problems used recovery formulac of the general
form

< U - G'¢i> - Oo (1-6)

in which the recovery function U was exponential in form and the recovery was
perforhed very locally. (Here and below we use the notation <-.,+> to denote the
L2. inner product in the space variablés). The main point is to use whatever
information is known about the approximated function wu(x) and to exploit the fact
that U(x) 4is its L2 best fit - or nearly so in evolutionary problems.

In the next and main section of the paper, we shall describe Characteristic
Galerkin methods for approximating unsteady conservation laws and their application
to shock cepturing and recovery. Finite element methods are strongly based on the
"Balerkin formulation but as their development for problems other than those which
are steady, linear, elliptic and self-adjoint progresses one finds that the formu-
lation has to be generalised and the Characteristic Galerkin methods result from
such a generalisation. This part of the paper is not meant as a review nor is it
primarily intended to promulgate new methods which have been widely tested on
practical problems: it is rather my aim to present a new viewpoint and to show how
this naturally links together important ideas and algorithms developed by Godunov
(1959), Boris & Book (1973), van Leer (1979), Engquist & Osher (1980), Roe (1981)
and several others. In the final section of the paper the moving finite element
method due to Gelinas, Doss & Miller (1981) will be described from the same view-

point and cdevelopments of it to capture shocks presented briefly.

1 2. CHARACTERISTIC GALERKIN SCHEMES

2.1 Basic ECG scheme

Consider the scalar conservation law in one dimension

atu + axf(u] =0 ' (2.1a)

‘or atu + a[u]axu = 0, (2.1b)

where a(u) = 9f/du: and suppose ul(x,t) 1s approximated at time level nAt,

in terms of basis functions ¢,(x), by

3
n Y n
Ut (x) = X(J]thbjtx). (2.2)

Then the characteristic Galerkin method based on Euler timo-stepping, and hence

colled tho Euler Characteristic Galerkin or ECG-mothod by Morton & Stokes (1981)
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.advection and the corresponding test function, when the characteristic speed a

ond Morton (1902), takos tha form

ST u”,¢J> " At<axf(UnJ,¢g> = 0, (2.3)
Hero ¢g is the upwind-avoraged test function,
n 1 x+a' (x) At
o, (x) 17— [ $,(z)dz,
J an(x]At X J (2.4)

where a"(x) := a(U"(x)). The method was introduced in order to model accurately
the advection of continuous proflleo ‘It is equivalent to exactly trocing the

evolution of u" (x) along characteristics by the equation
uly,t + At) = u(x,t) where y = x + alulx,t))at (2.5)

and following this by L, projection onto spah{¢j}-

A continuous piecewise linear approximation is appropriate for accurate

is constant and for various positive values of the CFL number y = aAt/h, is

shown in Fig. 1, The effectiveness of such a scheme in advecting a steep ramp
function over a coarse grid is shown by Fig. 2: <the small scale oscillation shown
there is typical of least squares best fits by piecewise linears and it is seen thét
there is little change in it from that produced by the projection.of the initial

data. In this constant coefficient case on a uniform mesh, the scheme (2.3) reduces,

in terms of nodal values, to

(1 + ~62](Un+1 - ug) +ulag - S62 %252A_]U3 . (2.6)
and corresponds tohshifting the projection by the distance aAt that the character-
istic has travelled in one time step. Clearly for u = 3 the formula (2.6) reduces
to that obtained from the first two terms of (1.4) and the ninefold impraovement of
this over (1.1) is consistent with the advantage of (2.6) over any of the usual
explicit four point difference schemes for advection. As it stands (2.3) may be
quite expensive to evaluate exactly but several efficient approximat%ons of the ideal

test function ¢; which reproduce (2.6) are given by Morton (1982).

2.2 Shock modelling with piecewise constants

In shock modelling, however, discontinuous approximations are often fTavoured
for either finite difference or finite element schemes. Let us consider piecewise
constants first. Then (2.3) needs careful iqtcrpretation even for rarefaction waves
because nol only is f[Un) discontinuous but so is @?, through the dependence on
a(Un), and these discontinuities coincide. Several finite differcnce mcthods havo
used the idea of resolving the jumps in U™ (x) by the correct phynlcal rarofaction

fans, This could be done here but is unnecos:ury if wo romvmhnr Lhnt, oven if the

ey S S S b i R A A e 2 SR



objectives of our colculotion ore perfoctly achioved, " (x) 1 only the L2 pro-
Joction of the oxoact solution ot time nAt: thus tho exact evolution of this
approximatelsolution is hardly justified. Suppose then that u(UE) =g 02 > aE_1

so that (2.5) loaves a gap in the definition of the mopping y -+ x end hence (2.3)
is 111-defined. We need use our knowledge of the exact solutions of the differential
equation only to the extent of recognising that the Jump in U"(x) would have been
resolved. So let us suppose, for instance, that Un(x) is the projection of a

function U"(x) which is linear between (k-i-18)h and (k-%+i0)h, with 0-< 8 < 1,

u
k-1
in - L(k-1)h, (k-%-30)h]. Then 8xf(an) is well defined and a little algebra shows

that, if a(l™ > 0, 36<min a(u™)At/h and max alG)at/h € 1 for x ¢[(k-1)h, khl,

and takes the constant value GE in t(k—%+%0)h. kh] and the value

=N oh ~N _
kh Bxf(ﬂn)En dx  # A_fk 8AtA_uk for J k
(k-1)h J i (2.7)
80 . 0" for § o= k-1
BAt -k J ’

where f and @ are defined using U rather than U. Suppose also that a similar
jump exists at (k+i)h and is similarly resolved. Then combining the two results
we aobtain from (2.3)

n+1

h(Uk

_ N xn _ 8h ,-ny _
UD) ¢ at(A_F] ¢ Tes200) = 0 _ (2.8)

Furthermore, from the fact that u"  is the projection of Ln, we easily deduce that

u" = [1 + (8/8)82707, (2.9)
K K
so that (2.8) becomes
ntl _*n _ wn .
Up = up - (AE/RIAFL. (2.10)

In other words, Un+1

depends only on the constant sections of U" and the depeandence
on the parameter © appears only in the recovery formula (2.9). We will below
generally use the limiting case ©® = 0 so that (2.10) becomes just the familiar
first order upwind scheme: however, it should be noted that increasing 0 will
reduce the false diffusion that ruins this scheme for smooth flows and, indeed,
taking 0.= 1 to make u" piecewise linear with knots at Jh gives a scheme
similar to that of Fromm (1968).
For a general rarefaction case, suppose f(u) has just a single sonic point
"U; that is a(u) = 0 and otherwiss a(u) # 0. Then from (2.4), we see that

W(x) =T, ¢J(x) =4 => Eg(x) = 1. (2.11)

It is also easy to see thaot if the CFL condition

aluat/h < 1 forn1c[ﬁ2_1,32] (2.12)

is satisfied, thon
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Thus we coan daduce thot, in the limit 0 - 0, (2.3) yilelds the followlng olgorlthm:

52_1. 02 20 : wuse A_fz to update UE -+ UE+1 (2.14a)
i 3% . q N " " n LY
Q.q» 8 S0 : use b_f, Ueq U4 (2.14b)
02_1 aE <0 : use fE—f[Uﬂ" ! UE > UE+1
; _ (2.14c¢)
Ly LD . n ot .
use T(u) Ty.q to update UK—1 » U g

It is clear that this algorithm is exectly equivalent in this case to the key flux-
splitting idea of Engquist & Osher (1880), in which .Uj is updated using .
A_f; + A+f3. On the other hand, the derived fluxes £, £¥  are not introduced and
the algorithm has the form of those due to Roe (1981), in which the total flux
difference A_Fj between each pair of intervals is in turn broken up into contribu-
tions to update U in these (and possibly neighbouring) intervals. We shall see that
this feature of sharing the properties of these two finite difference schemes occurs
naturally in all our ECG schemes. Note that if f(u) has several sonic points then
the contribution from each which is correctly given by the Engguist-Osher scheme is
picked up by the ECG scheme (2.3) only if the correct physical waves are used in the

-~

recovery process rather than piecewise linears for wu.

Suppose now that we have a shock at (k-3i)h, that is that a" . > a”. Then the

characteristics drawn from points just to the left and just to tEe1right of (k-3lh
overlap,and the mapping (2.5) gives a multivalued y(x]) and hence a multivalued
ulx,t+At). However, (2.3) can still be properly defined and we have purposely delayed
the derivation of this formula untii we came to this case. We suppose that we have
recovered from U"(x) a continuous function Dn(x], such as that used in obtaining

(2.7), which is determined by the projection relation
<u" - U, ¢j>= 0 Vi. (2.15)
Then y(x) = x + a(u"(x))At defines a continuous (x,y) path which gives a possibly.

multivalued mapping y + x. We define gl span{¢J} by

<U"+1.¢J>= rbn(x(ynq» (y)dy, (2.16)

- J

the integral being defined along the (x,y) path. Then, introducing o™ (x) by (2.4),

J
UMY : r
!¢J >L

<

woe have

“n v
u 0O db| ¢, (z)dz])
x 9

) y o
u—fn d [u™(x)] [ ¢J(z)dz no=AL Iw NN (x)ax,
- 00 x =03 x J



~into eight parts, but each is non-negative: the two outermost terms

n

n+l _ N . el P
i.0, | u ,¢J> + At <8xf(u ), QJ

> = 0, (2.17)

This is now the gencral formula with which we shall work. For the cese of a shock

at (k-1)h with plecewlse constant elements, it is cleor thot wherae fx ¥ 0 we have

dy < 0 and the calculation is the samo as for the rarefaction case but with 62_1
and u" interchanged. The net effect is to yleld the same algorithm as given in

K
(2.14) which is now shown to cover all possible cases.

1]

2.3 Piecewisec linear basis functilons

For continuous piecewise linear functions no recovery is necessary and (2.3)
may be used directly even in the presence of shocks, though there may be considerable
loss of accuracy then,which we shall discuss below in 2.4. It is convenient again
to arrange the algorithm to deal in turn with the contributions from axf(Un] arising
from each interval. For x E[xk—1'xk]' we have ¢k—1(X) * ¢ (x) =1 and if we

assume the CFL condition holds locally then
o" n n n - ‘ .
3 k(XD 0 ) e () + 0 (x] =1 for x elx, X, ] {2.18)

with only the first three non-zero if a(x) >.0 and the last three if a(x) < 0.
Thus the total contribution to updating up to four nodal values of Un(x) is again
A_f:. In general the integrals will need to be approximated by quadrature rules
but always this property should be retained. Also, of course, as in (2.8), a tri-
diagonal system has to be solved for the nodal values once all contributions to the
updating have been accumulated. '

For shock modelling, van Leer (1978) has suggested that discontinuous piecewise
linear approximations should be used and has developed in his MUSCL code an approxi-
mate Riemann sclver for them. Usually, basis functions consisting of piecewise
constants.and of linear functions varying from -1 to +1 over an interval have
been used for such schemes. However, for an ECG scheme it is more convenient to

use the two parts of the continuous linear basis functions, .namely ¢J+(XJ.

which varies from 1 at xJ to 0 at xj+1. and ¢j_(x], which varies from
1 at xJ to 0 at xj_1. Then we can write
n n n
U'(x) = [u (x) + U, (x) (2.19)
Ly TU5 450 j- ¢3-00
with the Jump.at xJ equal to Ug+ = Ug_. The sum of test functions in (2.18) splits

n
¢K—2“ and

0:+1* can be discarded and for each particular x only four terms are non-zero.
Thus contributions from axf(Un) for x c(xk_1,xk] are distributed at worst to

six nodal values of Un, and usually only to four. As in the continuous case above,
these contributions need to be approximated:by quadrature rules.

The contributions from the jump in (U™ ot X, can be calculated however
os for the piccowise constant case. There is o little more dependenco on the form

Y

el



_used to resolve the discontinulty but wo noto thot

CRLLI O R S o g, 00 =1 for |x=x, | ¢ (2.20)

for sufficiently small ¢ so that only these four corresponding nodal values can be
affected.  The only uncertainty in the caiculation results from the fact that each
term in (2,20) may be discontinuous at X becausc of the discontinuity in at™:
the simplest resolution of the uncertainty is to define ¢J(xk) as the mean of the
limits from above and below. Then, dropping unncecessary superscripts, the qllocation

of Updﬁtes corresponding to (2.14) can be set out as follows:

1 1
a , : i Rl —
k-* Bs 2 0 [fk+ fk_J¢k+[xk] to §Uk+ + BUK+1~ ' )
(2.21a)
. 0 2 1
D Tr-d0q- O I00 gl 3l
a, ,a _.<0: [f -f 16 (x) to —u + Ly
k-’ “k+ ~ k+ k=" k- "k 6 k-1+ 3 k-
] ] (2.21b)
L fi- I, Ogdte - U, * g
. . . ro 1 g 1
a8 . <0 [fk+ f(u)]®k+(xkl to Uy, * FYi1-
= 1 1. .
[fk+ F(u]]¢k+1_(xk] to Y * 3Y%e1-
Lflu)-F, Jo, _(x) to sV 4. * 3%
o 1 1
N o —l
L+(u) 30 4 (XD to -1+ * 5K-

Choosing the basis functions ¢j+ to be non-negative, ‘and therefore ensuring that
the corresponding Qj:. have the same property, makes it very much easier to introduce
approximations to the latter to be used in these formulae and in the quadrature over
each open interval (xk_1,xk]. The penalty for not having an orthogonal basis is

very minor: for each interval is independent of the others and the two nodal para-

meters at its ends, Uj+ and Uj+1— say, are given by a simple pair of equations.

2.4 Shock recovery

It was shown by Cullen & Morton (1880) with the shallow water equations how for.
smooth flows the accuracy of a purely Galerkin procedure could be greatly improved on
by a two stage procedure for approximating the pon-linear terms u-Vu: from a piece-
wise linear approximation to u they formed a best least squares fit to v u by
piecewise linears before doing the same for the product u-V u. This can be regarded
as a simplified recovery procedure: for in one dimension the first step corresponds
to forming a quadratic spline approximation to u. More gencral use of recovery
procedures was cnvisaged by Barrett & Morton (1980) for diffusion-convection
problems and a number of results in one dimension are collected topether by Barrett,
Moora & Morton (1902), ' '



S & In the contoxt of modelling consorvotion laws rocovory of u  from a bost fit in

- ony integrol norm is clearly very importont baforo ovaluoting tho flux F(u). When o

plecewliso constont approximation 1s used, peaks arc cut off ond need to bo restored
where possible: and for a continuous plecewise lineor approximation, overshoots
occur which need to be smoothed out. 1In fhc former case we have alrecady seen, in

the course of interpreting the basic ECG scheme -(2.3), that recovery by piecewise
linears to give (2.17) can restore some of the information lost by false diffusion.
There is a similarity here with the philozopﬁy of SHASTA codes (Boris & Book, 1973)
and an appropriate algorithm for the choi:c:: of the parameter 6 1in (2.7) would seem
to put this scheme into the more general 458 of flux:-corrected transport algorithms
described by Zalesak (1979). For the con® inuous piecewise linears, we have also
already given the spline-derived recovery formula (1.5) which can be used very simply
to improve accuracy in smooth parts of the flow.

But it is in the neighbourhood of shocks that enhancement of accuracy is most
important. Loss of information clearly results primarily from the use of a fixed
-set of mesh points if discontinuous approximations are used: even for continuous
linear elements, fixed nodes together with the resulting fixed spacing is the prime
cause of inaccuracy. Thus for each approximation U, we define a recovery function
u which has discontinuities Just where we deduce that the exact solution u has
shocks. There are two steps involved:

(i) recognition of the presence and position of the shock;

(ii) estimation of the shock parameters.

As Rusanov has pointed out (see Rusanov (1981) and references therein) every difference
scheme has its own limiting shock profile, and these can be used to deal with (i).
Generally speaking this will mean scanning for a local maximum in -A_Uj. that is

checking a criterion such as

62A_UJ > tol. ©(2.22)

and this was what was used in the work reported in (Morton, 1980). However, it is
more natural with ECG schemes to monitor the crossing of characteristics in each

interval and to use a criterion (with v a free parameter) like

a(u ) - a(u,) > (x,-

At o2
§-1 j j xJ_q)/v (2.23)

to detect a shock. This can in Tact be used for either pilecewise constants or
plecewise linear elements: note that the criterion does not have to be completely
foolproof since our schemes are valid even in the presence of a shock and we are
merely seeking to enhance their accuracy. The estimation of the shock parameters
will however be depcndent on thé approximation used.

For the pilccewiso constant approximation, the simplest configuration of a steady

shock betwoon xk_! and x linking two constant stotes clearly leads to a

k+d
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projection with ono intermedioto voluo Uk' If tho shock 19 strong onough this
situotion will be recognisod by (2.23) boling sotisfied for the two isolotod volues
3 = Kk, kt1: olternotively i1t may bo dosirable to replece the left-hond side of
(2.23) by a(U

31

from the three nodal values involved we can recover

. o(UJ+1) which would be recognised for J = k. In elther case

v = U ., a.=U

L™ Ygeqr Ug = Ugeqr M= AU/

F Ay (2.24)

with *S = (1-n)x

k-1 + nxk+% giving thg shock position. In-contrast to sho;k

fitting, the idea is now not to attempt to follow the shock movement but to incorporate:
this recovered information into the general ECG scheme (2.17): there is an indepen-
dent choice as to whether (2.7) with 6 > 0 should be used for recovery between

the shocks that have been identified. Taking 6 = 0 for simplicity, the effect of
introducing the recovered shock defined by (2.24) into the ECG formula (2.17) is just

to change the allocation of contributions to the updating process arising from

n n . . n n .
A+{k and A_fk. The shock jumps from UE_1 ton Uk+1 so compared with (2614)
the allocation process is applied to A_fk + A+fk and is dependent on LI

and aE+1. The other difference from (2.14) is the dependence on the shock position

. . n n ’ . A ~n n

. & & - = > =)
XS' if for instance ak~1' 8 g = 0 and n 1is sufflclent}y sma}i then ¢K+1(XS]‘U
and an allocation as in (2.14a) takes place; but for larger n, ¢K+1(xg) # 0 and

a contribution to U results. hus the general formulae will be 1like (2.21)

n
k+1 o
for the piecewise linear discontinuous case: as there, ¢j is generally discontinuous

at xg and needs to be defined as an average of limits from the left and right.

To sum up we give the formula for the simplest case, dropping the superscripts:

a ,a >20: [f

i 2B -f 1o (x) o u

K+1 K

(2.25)

[f £ .10 +1[xS] to u

k+1 k=17 K K+t
This is sufficient to show that in this case, in the situation envisaged in the
derivation of (2.24) and for small time steps, the recovered shock moves with the

correct speed as given by the Rankine-Hugoniot condition

n+1 n f = f
s T *s - Ufijhififiil : (2.26)
At k+1 k-1
The superscripts to f and U have been omitted here as U are not changed in

. k1
this simple case. If the CFL condition is satisfied with this shock speed one can

show that the monotonicity of U 1is preserved.

We conclude this section with a cuse in.which shock recovery is clearly nccessary,
the continuous piecewlse linear approximation on a uniform mesh., It is relatively
casy to recognise shocks which are at least four mesh widths spart by cither (2.22)

or (2.23): 1in contrast to tho plecewise constont case, o shock botween  x and

k=1

L g e Y O



,Xk typically loods to an ovorshoot of UK—1 ond on undorshoot of UK to thet
(2.23) will bo sotisfied jJjust for J = K. One may thon obtaln the shock poromotors
as part of a global recovery procoss as given by (1.6) with U consisting of shocks
Joined by cubic splines with knots at the original nodes, and this works well.
However, an alternative is to usc a simple explicit local recovery formula of the
form '

GL = <U; ¢k_2 + 4)K"1>/2h' C)R = <U, ¢K + ¢k41>/2h (2.27a)

.

-1 . 4~ 3~ ~ ~ e
n = [h <, ¢K—1 + ¢k> U EUR]/[UL - uR]. (2.27b)

To incorporate the recovered shock into (2.17) one can either make use of the
results obtained with the discontinuous linear elements or, more straightforwardly,
introduce two extra nodes gt XS + ie, e<<h, and give u & linear variation_be?ween
them. Then unless recovery is used in the smooth flow, which is hardly necessary,
the formula (2.17) is little changed from the standard treatment of continuous

piecewise linears: one has only to note that, in the definition of %j for

instance, a has extra nodes compared with ¢j'

2.5 Extensions to two dimensions, systems, etc.

It is a simple matter in principle to extend (2.3) and (2.17) into more dimensians

with ¢j defined as in (2.4) by an upwind average of the basis function ¢j:

1 A¥akt
N (x) = ——m f ¢, (ylde | (2.28)

I e Jx

For continuous linear elements on triangles the details éogether with a practical
approximate scheme are given in (Morton, 1982). The derivation of formulae for
piecewise constants corresponding to (2.14) is perhaps more interesting. From a
flux vector f one obtains contributions from V.f just along the edges of each

- triangle and clearly it is only anfn' the normal derivétivé of the normal.component
of {, which plays a role. Just as in one dimension, one can spread the discontinuity
in u and f across a thin strip either side of the edge and take limits as the
strip shrinks to zero. However, the more complicated geometry now means that several
¢j may be: non-zero along the edge and correspondingly several U be affected in |

J

the update. A typical situation is shown in Fig. 3, and the update formuloe take
more the form of those in (2.21) and (2.25). A typical contribution to Ug+1 N Ug
will be

-1
J

n

-AtV
J

(fde f% [@n(5+) + ¢, (x_1]de, (2.29)

(2} J

where V, is the area of element J, [fn]c- is the Jump in fn across the edpe

3

and tho integral of " along either side 'of tho edge, using corresponding charac-

b

teristic speods g? and 92. con be calculated as indicatod in Fig. 3: a trapezium



.49 cdnstructud along the odgoe using tho vector gwht ond the length of tho odgo 19
ollocoted tg cach element in proportion to tha oraa of tho trapczlum lying in each
olement. Recalling thot, in one dimension ond for convex f, (2.14) 1s ddentical
with the Engquist-0sher algordithm, it iz dnteresting to compare the\formulae
resulting from (2.29) with those obtained from thedr scheme in two dimensions:
thus in Osher (1981) only the edge lengths are used rather than the trapezie
which reduce to them when At - 0; and also the normal component a of a rather
than ng is used and zeros in this lead to a splitting of the flux difference as
in (2.14c). |

Extensions of the ECG schemes to systems of equatibns is of course both more
important and more difficult. From the derivetion leading to (2.17), one sees that -
in effect one is constructing the exact solution at time level n + 1 corresponding
to the approximate solution at level n using the characteristic relation (2.5)
and then projecting it. Thus for piecewise constants the correct generalisation is
provided by the method of Godunov (1953) in which the Riemann problem is solved for
each discontinuity in Eh and the result projected back onto the piecewise constants:
or, alternatively and more in line with the use of (2.5), one could say that the
Engquist-Osher algorithm, which resolves each discontinuity by using the full set
of rarefaction and compression waves for the system on the overturned manifolds created
by the crossing characteristics, is the most appropriate generaliéation. Furthermore,
work is in progress on developing these approaches to piecewise linear discontinuous
elements.

However, early experiments indicate that more direct generalisations of (2.17)
could form practical and effective alternatives to these established approaches.

From considering the characteristic normal form for the system, it is clear that
¢j[liJ must in principle be constructed for each characteristic speed'xi: these
then form a diagonal matrix so that transforming back to the original variables

suggests approximation schemes of the form

|
o

<g?+1 - y?.¢j> + At<axfpg"). g§> _ (2.30a)

-1

where S 258 = diag. {¢ 2

(Ai]}. S 'AS

3 diag. {xi} (2.30b)

and A 1is the Jacobian matrix of the system. 7o calculate this exacltly is clearly
.expensive: but recall that in (2.14) with piecewise constants only the signs of

Xi are important and that we have ensured that all the ¢j are necessarily positive,

Thus there is considerable scope for effective approximation, Jjust as the Engquist-

Oshor and the Roe schemes owe much of their success to approximate solution of the

/

Riemann problem,

‘n 4

Finally, it should be mentioned that though Culer time-stepping 19 perfectly

odequote for the scolor problem (2.1) because the characteristics aro strotght, for
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pyutema it -may bo dosirable to uso other timo-ostopping olgorithma: for in (2.30b) not

only arc the Ai changing but so is the matrix 8. Thus unlike (2.3), (2.30) is only

an approximotion to avolution over one timg step followd by projoction, both because
of the x-voriation of S ond the t-variation of both S ond Ai' Soma of this might
be dmproved by alternative time-stepping and 1t is not difficult to calculate what

ttie corresponding @ should be for some of the common schemes.

J

2.6 Numerical tests

Each of the schemes has been tested with the inviscld Burger's equation and tests
continuc'with the Sod (1978) problem., Fig. 4 shows initial déta and its exact evolution
for the Burger test: the cos?inwx data forms a shock at t = 2/1) the ramp tests resolution
of a rarefaction shock. Fig. 5 shows that for piecewise constants simple shock recovery
is extremely effective in improving accuracy. For continuous linears it works well
(Fig. 6) but the shock recognition test used needs improving: Fig. 7 shows that recovery

is essential with discontinuous linears to control the overshoots and get useful results.

-

3.  MBVING FINITE ELEMENT SCHEMES

Having explored in the previous section to what extent one can carry forward
‘the best L2 fit to the true solution on a fixed mesh, and having found it helpful
to introduce extra nodes, it is a natural next step to include the.node positions inh
the 7L2 fitting. This is the starting point for the development of moving finite
element methods such as that of Gelinas, Doss & Miller (1881). With continuous
piecewise linear elements and using their notation, one seeks approximate solutions

in the form

vix,t) = Iy a (6] alagt)), (3.1)

where aj are the usual hat-shaped linear basis functions but based on the set of

nodes denoted by the vector s One then has

atv = X(j)[ ajaj[x’§) + S.Bj(x:a:ii)]' (3‘2]

where the Bj are discontinuous basis functions depending on the amplitudes a
as well as the node positions s. Unlike U" in (2.2), v in (3.1) lies not in a
linear but in a non-linear manifold determined by the parameters a and s, while

atv lies in its linear tangent space. Equations for a and s are obtained by

-~ -~

taking an L? best fit for atv in this tangent space: thus for the conservation

law (2.1) oné obtains

<atv *afv), Se Q= <atv * A f(v),B >. ' (3.3) .

J

This gives a sot of ordinary differential equations for a and s to be integroted

~

“

by an appropriate ODC solver.



In the scolor case this lost tousk is pgroatly simplifiod by the obsorvotion thaot
£ tho flux function is quadratic thon the nodos oxoctly follow tha charoctoristics
go that & = 0  and g = const, Thus pven Culer'’s method is oxact for any time step
in this case and quite good enough for many problems.

To deal with shocks, Gelinas ot al. introduced spring functions into the
objective fungtion, rather than just the L2 norm, so as to prevent node overtaking.
However with moving nodes 1t does seem naturel to coplture shocks explicitly. This
has been done by Wathen (1982) in work on oil recovery problems. A shock is recognised
by neighbouring nodes overtaking one another: and when this ‘happens, two coincident
nodes with differing amplitudes are followed by sétisfying the Rankine-Hugoniot
conditions. Results for a standard model problem using the Buckley-lLeverett equations
in which f(v) = v?/[v% + $(1-v)?] are given in Fig. 8a.

For a system of equations, corresponding to more than two phases in the oil
recovery problem, only one set of nodes is used so that clearly some compromise has
to be struck as to which characteristics are followed most closely and so as to be able
to recognise shocks by the phenomenon of node-crossing. Such a compromise is intro-
duced by using a matrix weighting function W in the L norm for atx, Preliminary

2
results obtained by Wathen for a three phase problem are shown in Fig. 8b.

I am greatly indebted to Stanley Osher, Phil Roe and Bram van Leer for lengthy
discussions on the latest developments in finite difference methods for shock modelling,
and for stimulating our application of ECG methods to these problems. Thanks are

due to Alan Stokes for the calculations in Section 2 and to Andy Wathen for those in

Section 3,
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Fig. 1 Upwind averaged
test functions
for p =0, ¢, 3§,
i, 1.
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Fig. 2 Linear advection by ECG through
0, 20, 40 time steps with Fig. 3 Allocation of flux differences
p = 0.8. - in 2D.
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(a) without rccovery (b) with shock recovery

Fig. 5 Piccewlse constant ECG approximation to model problem



L. exect

(a) without recovery . (b) with shock recovery

Fig. 6 Continuous piecewise linear ECG approximation to model problem.

(a} without recovery (b) with shock recovery

Fig. 7 Discontinuous piecewise linear ECG approximation to model problem.

(a) two phase - ) (b)  three phase

Fig., 80 Moving finite clement approximation to model oll recovery problems,



