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Abstract

Numerical methods are described for
conditioned, solutions to the problem of
The solutions obtained are such that the
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the optimal conditioning that may be expected for a particular system with a

given set of closed loop poles, and hence the suitability of the given poles

for assignment.
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1.0 INTRODUCTION

The state feedback pole assignment problem in control system design
is essentially an inverse eigenvalue problem. The solution is, in
general, under-determined, with many degrees of freedom. A desirable
property of any system design is that the poles should be insensitive to
perturbations in the coefficient matrices of the system equations. This
criterion may be used to restrict the degrees of freedom in the assignment

problem, and to produce a well conditioned or robust solution to the

inverse eigenproblem.

A number of constructive methods for pole assignment by state feedback
are described in the literature [1], (41 -1(61, [13]-[181, [20] -(22], [27/],
[291, but many of these are computaticnally.unstable (see [8]1]). A few
numerically reliable techniques are available [17], [18], [27], and in the
single input case, where at most one solution to the pole assignment problem
exists, these methods accurately compute the required feedback. In the
multi-input case, however, where the feedback is under-determined, these
methods do not generally lead to robust solutions to the problem.

In this paper we describe four algorithms for computing robust
solutions to the multi-input state-feedback pole assignment problem.
Two of the methods are complementary. In all cases the feedback matrix
is obtained by assigning linearly independent eigenvectors corresponding
to the required eigenvalues (or poles), such that the matrix of eigenvectors
is as well-conditioned as possible [28]. The assigned poles are then as
insensitive to perturbations as possible and the resulting feedback matrix
is as reasonably bounded as may be expected, given the original system.

In the next section the pole assignment problem is defined in detail,
and theoretical considerations are discussed. In section 3 we describe the
numerical algorithms. Applications and numerical results are presented in

section 4, and concluding remarks follow in section 5.



2.0 ROBUST POLE ASSIGNMENT

2.1 The Raobust State Feedback Problem

We consider the time-invariant, linear, multivariable system with
dynamic state equation

D x = Ax + Bu , (1)

where x, u are n- and m- dimensional vectors, respectively, and

A, B are real, constant matrices of compatible orders. Here D denotes
the differential operator d/dt for continuous time systems, or the delay
operator for discrete time systems. Matrix B is assumed (without loss of
generality) to be of full rank. The behaviour of system (1) is

governed by the poles of the system, that is, by the eigenvalues of

matrix A. It is often desirable to modify the poles of the system in
order to obtain certain properties, such as stability. This may be

achieved by using a state-feedback control

u-="Fx + v,

where F, the feedback or gain matrix, is chosen such that the modified

dynamic system

D x = (A+BF) x + Bv , (2)

now with input v, has the desired poles.

The state-feedback pole assignment problem for system (1) is
formulated precisely as follows.

Problem 1. Given real matrices (A,B), of orders (nxn, nxm)
respectively, and a set of n complex numbers, L = {A1,A2,..An}, closed
under complex conjugation, find a real mxn matrix F such that the
eigenvalues of A + BF are Aj, J=1,2,..n.

Conditions for the existence of solutions to Problem 1 are well-

known and the following theorem.is well-established [28].



Theorem 1. A solution F to Problem 1 exists for every set £ of
self-conjugate complex numbers if and only if the pair (A,B) is

completely controllable, that is, if and only if:

{STA & uST and ETB =0} <=> ST =0 .

) T
Indeed, if (A,B) 1is not controllable, i.e. there exists 5 0 such

that s'A = ps' and s'B =0, then s' (A+BF) = us' for all F

Thus u is an eigenvalue of A+BF for all F and it cannot be modified
by any feedback control. The pole u 1is said to be uncontrollable and
must belong to any set £ of poles to be assigned, if a solution to

Problem 1 is to exist. More specifically, the following theorem can be

shown to hold (see [29]):

Theorem 2. If (A,B) 1is not completely controllable, then a
solution F to Problem 1 exists if and only if the set £ = {Eu, £C},

contains £u, the set of all uncontrollable modes of (A,B).

In the single input case (m=1), the solution to Problem 1, when it
exists, can be shown to be unique [16]. In the case 1 < m < n, various
solutions to Problem 1 may exist, and, to determine a specific solution,
additional conditions must be supplied in order to eliminate the extra
degrees of freedom. In the case m = n, the pair (A,B) 1is always
completely controllable, and any given closed loop system matrix can
always be achieved by feedback.

Our aim here is to develop methods for finding a feedback F, solving
Problem 1, such that the closed loop system is robust, in the sense that
its poles are as insensitive to perturbations as possible. We let Xx.

J
and vy., J =1,2,...n, be the right and left eigenvectars of the

closed loop system matrix M = A+BF, corresponding to eigenvalue

Aj € £, that is

(3)



If M 1is non-defective, that is, M has n 1linearly independent

eigenvectors, then M 1is diagonalizable and it can be shown [28] that
the sensitivity of the eigenvalue Aj to perturbations in the
components of A, B and F depends upon the magnitude of the

condition number cj, where

1A%
N

oy = /s, = Lyl Ix;l. 7 |l§ %5

In the case of multiple eigenvalues, a particular choice of eigenvectors
is assumed. - (For real Aj, the sensitivity Sj is just the cosine of
the angle between the right and left eigenvectors corresponding to Aj.]
More precisely, if a perturbation 0(e¢) 1is made in the coefficients of
the matrix M, then the corresponding first order perturbation in the
eigenvalue A, of M 1is of the order of encj. If M 1s defective,
then the corresponding perturbation in some eigenvalue is at least an
order of magnitude worse in €, and therefore, system matrices which
are defective are necessarily less robust than those which are non-
defective.

We observe that a bound on the sensitivities of the eigenvalues is

given by [28] max c, € k, (X) = qu2||X_1|
J

J

l. >

where «,(X) 1is the condition number of the matrix X = [x,.x% ""ﬁﬂ] of

eigenvectors. Furthermore, the condition numbers take minimum value

Cj =1, forall j=1,2,...n, 1if and only if M is a normal matrix,
that is M*M = MM*. In this case the eigenvectors of M may be scaled
to give an orthonormal basis for m“, and then matrix X is perfectly
conditioned with «k,(X) = 1.

We may now formulate the robust pole assignment problem as

follows:

(4]

(5]



Problem 2. Given (A,B) and £ (as in Problem 1), find real

matrix F and non-singular matrix X satisfying

(A+BFJIX = XA , (6)

where A = diag{xq,xz,..xn}, such that some measure v of the
conditioning, or robustness, of the eigenproblem is optimized.
We remark that the measure v could, for example, be chosen to be

v, = ” c " , where CT = [e,,c,,..c_1 1is the vector of condition
1 — o0 1 2 n

numbers corresponding to the selected matrix X of eigenvectors.
Alternatively, we could take as a measure of robustness v, = KZ(X], the
condition number of matrix X. The measure v, then gives an upper
bound on the measure v, and both measures attain their (common)
minimum value simultaneously. Other measures are discussed in §2.5.

The degrees of freedom available in the choice of the feedback F
are reflected precisely by the degrees of freedom available in the
selection of the matrix X of eigenvectors. In the case m =1, 1if F
exists, X dis uniquely determimed (up to scaling), and the condition
numbers c. cannot be controlled. In the case m =n, X may always be
chosen to be orthogonal, (X = I suffices), and hence to be such that
cj =1, Vj' For a general multi-input system (1 < m < n) we may control
the sensitivities of the assigned poles to a restricted extent by an
appropriate choice of the eigenvectors comprising X.

We observe that in the robust pole placement problem (Problem 2)

the choice of eigenvectors which may be assigned is restricted such

that the resulting system matrix A+BF 1is non-defective. This

restriction implies certain simple conditions on the multiplicity of the
poles which may be assigned. In the next section (§2.2) we discuss

assignment of the entire eigenstructure of the closed loop system, and !

in the following section we show that minimizing the conditioning of the
eigenproblem (6) leads to other desirable properties in the closed loop

control system. Results on the minimal conditioning that can be achieved




for a given set of poles £ = {A,,)\,,.. An} to be assigned are given in
§2.4, and various robustness measures v, to be used in practice, are

discussed in §2.5. Such measures relate to different numerical

methods for determining the feedback matrix, presented in §3.



2.2 Robust Eigenstructure Assignment

Given real matrix pair (A,B) and eigenvalue set £, our

objective is to choose eigenvectors, given by X, satisfying (6) and

such that the conditioning of the eigenproblem is minimized. No restriction

on the controllability of (A,B) -is made, and we remark that although the
uncontrollable modes of the system cannot be affected by the feedback F,
the corresponding eigenvectors may be modified and the conditioning of
uncontrollable modes may be improved by an appropriate choice of X.

It is reasonable now to ask under what conditions a given non-
singular matrix X can be assigned to the problem. The following

theorem is easily demonstrated.

Theorem 3. Given A = diag{k1,kz,...kn} and X non-singular, then

there exists F, a solution to (5) if and only if

UI(AX ~XA) = O

where
B = [U,,U,1] 2],
0 1[0]

with U = [UD'U1] orthogonal and Z non-singular. Then F 1s given

explicitly by

77 ug (XAX ™

T oM.

-n
n

Proof: The assumption that B is of full rank implies the existence of

decomposition (8). From (B8), F must satisfy

BE = XAX | - A,

and pre-multiplication by UT then gives the two equations

1

ZF = U. (XAX = - A) ,

xax”!

o
L]

U

.
0
.
1 - A

from which (7) and (8) follow directly, since X is invertible.

(7]

(8]

(9)

(10)

(11)



We remark that (10) implies that F exists if and only if

1

R{XAX ' - A} « R(B} = R{Ug} . (12)

where R{:} denotes range; that is, R{XAX_1

- Al 1is orthogonal to
N{B} = R{U1}, where N{:} denotes null space, and (7) holds.

We observe also that the decomposition (8) of B can be taken, for
example, as the singular value (SVD) decomposition, in which case

7z = ZVT, where g = diag{01,6 .oé} is a positive matrix and V 1is

o
orthogonal. Alternatively the QR decomposition could be used, in

which case Z 1s an upper triangular matrix.

An immediate consequence of Theorem 2 is the following:

Corollary 1. The eigenvector 55 of A+BF corresponding to the

assigned eigenvalue Aj € £ must belong to the space

S, = N{UT[A -2 D)) . (13)
J 1 J

The dimension of Sj is given by

dim[Sj) = m + KA. s (14)
J
where

k, = dim{N{I[B|A - AjI]T}). (15)

Proof: From (7) we have directly that

UltAx, - A,x.) =0, Vi, (16)
1 =] J=3
and, therefore, 5j € Sj‘ j=1,2,...n, is necessary. We have also,
from (15), that
Nk, @ rank ([B|A - ij]), (17)



and from (7) and (8), using the definition U = [UO’U1]’ we obtain

T

u' [BlA - A,I] = Z ' US[A - A1)
) J (18)
T
] ’ U, (A - Xx.I)
1 J
But, matrix Z is square (mxm} and invertible, and, therefore,
T
n-m-k = rank(U,(A - A.1)) , (191
AL 1 J
J
from which (14) readily follows. o

The robust pole assignment problem (Problem 2} now reduces to the

problem of selecting independent vectors x. € Sj' j=12,...n, such
that eigenproblem (B6) is as well conditioned as possible.

From the corollary we may now deduce certain conditions which must
be satisfied if the robust Problem 2 is to have a solution. In the

case (A,B) is completely controllable, the dimension k defined by (15),

A‘
is zero for all A. It follows then that the multiplicity of the

eigenvalues Aj € £ to be assigned must be of multiplicity less than or

equal to m, since the maximum number of independent eigenvectors which

can be choesen to correspond to Aj is equal to dim[Sj] = m.
In the case (A,B) is not completely controllable, but
L = {LU,£C} includes the uncontrollable modes, then a similar result

holds. Now if Aj € £U is uncontrollable, then Kx > 0 and there

J
exist at least Kl independent (left) eigenvectors vy., i = 1,2,...K
J J
of the closed loop system matrix M = A + BF for any choice of F.
The eigenvalue Aj must, therefore, be assigned with multiplicity at

least KA , and for the closed loop system matrix to be non-defective,
J
the eigenvalue Aj can be assigned with multiplicity at most

A

m + k = dim(S.).
3 J
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Even when these conditions are satisfied, it is still possible that
a solution to Problem 2 does not exist. Indeed, if u 1is an

uncontrollable mode of the pair (A,B) with ku > 0, and there exists

a vector s # 0 such that s (A - yI)B = 0, s (A - yI)? = 0, and
ET(A - ul) = EI z 0, then EI is a left eigenvector of M = A + BF,
corresponding to u, for any F. If also ETB = 0, then
T T
s (A+BF - uI) =s (A-ul) 20, (20)

s'(A + BF - uD)? = 5" ((A - uI)?

+

(A - uI)BF + BF(A + BF - uIl) = O,

and, therefore, ET is always a left principal vector of M, and the
system matrix A + BF 1is defective for any feedback F. We have thus

proved the Following theorem.

Theorem 4. A necessary condition for the existence of a non-defective
solution to the pole assignment problem (Problem 1) is that for every u
and s the following holds:

s'B =0, s (A-ul)B =0, s (A-u2 =0 =5 (A-yD)=0. (21)

(w]

We note that condition (21) is satisfied trivially for all controllable

modes p of (A,B).



1M

2.3 Properties of the Robust Closed Loop System

The objective of the robust pole placement problem is, in essence, to choose a
non-defective system of eigenvectors, given by X, satisfying Theorem 3,
such that X 4dis as well conditioned as possible. We show now that
minimizing the conditioning of X leads to other desirable properties

of the closed loop system.

From Theorem 3 we derive bounds on the components of the feedback
matrix F and the transient response x(t) (or x(k)] of the closed loop system (2)
in terms of the condition number «,(X) and the given data of the
problem. We have

Theorem 5. The gain matrix F and the transient response  x(t), or

x(k), of the clesed-loop continucus, or discrete, time system (2],

where x(0) = x. and v = 0, satisfy the inequalities

20

Iel, < (fal, + mgx{lle} -k, (X)) /o (B}, (22)
J

where om{B} denotes the m-th (smallest) singular value of B, and

Ix(0) ], s )« maxt|e*s®1y - [xg L (23a)
J
or
Ixtk3 1, = e, 00 maxt 2513 I xg L (23b)
j = |
Proof: From (9) we obtain
-1 T -1
1Fl = Iz Ll I CEx I xT 0l « DA, ), (24)

and from the singular value decomposition of B we have ||Z_1"2= "V"20;1{B}.

Then the result (22) follows from the orthogonality of V and
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U= [UU’U1]' The transient response of system (2) is easily seen to
satisfy
_ (A+BF)t_  At_-1
x(t) = e Xg = Xe' X Xg s (25a)
or x(k) = (A+BF)®x = xaRx 7Tk (25b)
£ Yy Zg ¢
and the inequalities (23) follow directly upon taking norms. 0

This theorem demonstrates that given (A,B) and eigenvalue set ( ,
minimizing the conditioning K2(X] of the assigned eigensystem also
minimizes a bound on the feedback gains and a bound on the transient
response of the closed loop system, for any given initial condition.

Also of interest is the maximum disturbance which can be made to the

closed loop system such that stability is retained. We have the following.

Theorem 6 If the state feedback matrix F assigns the set L of stable
eigenvalues Aj, then the perturbed closed loop system matrix. A+BF+A
remains stable for all disturbances A which satisfy, in the continuous

time case,
la], < min o {sI - (A+BF)} = 8(F) , (26)
s=iw

where a lower bound on &(F) is given by

§(F) 2z min Re(-Aj]/KZ(X] o (27)
J

In the discrete time case, the closed loop system remains stable for
disturbances A which satisfy

lal,< min o {sI - (A+BF)} = 8(F) ,

1w
s=e

where

§(F) z min (1 - |A.|)/K2(X)
3 J
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Proof: The first part follows directly from a standard argument. The n x n

matrix M+A = M(I+M_1A] is non-singular, assuming M 1is non-singular,

provided

-1 -1
£ (28)
I sl < Bt 0 sl <1
that is, provided [al < [n' 71 <o ()

Hence, the matrix sI - (A+BF+A) can become singular along the imaginary
axis, where s = iw, only if |A|] 2z §(F). By continuity of the

2
eigenvalues, the matrix A+BF+A is, therefore, stable provided (26) holds.

From (6), it easily follows that

§(F) = min o {sI - XAX '}
s=iw il
> g {X}o {X_1} min o {sI - A}
n n . n
S=1w
2 min Re(-20/ | x| Ix] . (29)
. J 2 2

J

which gives the lower bound (27]}. For the discrete time case the result

is obtained analogously. o
From Theorem 6 we can deduce a lower bound on the stability margin
of the closed loop system. The result is given by
Theorem 7 The return difference I+G(s)}+A(s)G(s), of the disturbed closed
loop system, where G(s) = -F(sI - A)_1B, remains non-singular at s=iw
for disturbances A(s) which satisfy "A[iw]” < 8(F), where &(F) 1is bounded
2
below by
S(F) 2 G(FJ/||B”2|lFH2 ) (30)

{Taking s=e" gives the corresponding result for the discrete time system.)
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Proof: It is easily shown that

det{sI - (A+BF+A)) = det(sI - Addet(I+(I+A(s))G(s)) (31)
if A= BK(S]F. (See [1], for example.) Hence, I+G[s]+£(5]G(s) is

non-singular at s=iw provided

- A (32)
!|A“2 = ||B|h ||A(1w)"2 ||F[h < 8(F)

and (30) follows.

From Theorems 5-7 it can be seen that if the conditioning «,(X) of
the assigned eigensystem is minimized, then a lower bound on the stability
margin of the closed loop system is maximized over all feedback matrices F
which assign the given (stable) eigenvalues.

Minimizing the sensitivities of the assigned poles of the closed loop
system thus ensures other desirable properties of the system. For given
data, the minimal conditioning that can be achieved is limited, however,
and in the next section we derive a lower bound on Kk, (X, In §2.5 we
examine other measures of the conditioning of the eigenproblem (6] which

are directly related to K, (X).



2.4 Optimal Robustness

In this section we derive a general result on the conditioning of
a matrix with columns selected from given subspaces. A lower bound on
the condition number «,(X) is found, where X 1is an n x n matrix of

the form

X = [X1,X2,...XK] , (33)

with n x rj submatrices Xj which are selected from given subspaces

Sj’ j =1,2,..k, which together span the whole space H where
H-®" or H=c", thatis, X, <S; and
S1 + 32 + e+ SK =H . (34)

We let Sj be an n x mj matrix with orthonormal columns spanning the

space Sj of dimension mj, and we write
X, = S,D, , (35)

where D, 1is a mj X rj matrix, which is of rank rj if the columns of

Xj are linearly independent. Matrix X may be written

,..0 } sD . (36)

2 Kk

X =1s,,8

/l

2,...Sk]-d1ag{D1,D

OQur aim now is to estimate the minimal condition number «,(X) over all

possible selections Di in (36). We first require the following.

Lemma 1. If S and D are n x s and s x n matrices, respectively,

of rank n , (n £ s), then

1%

lotso ™, = [s* [, . (37)
Here + denotes the Moore-Penrose inverse, given by

s =VI U , (38)

where

A%
s=u{z,o}[v,v} TR (39)
S S S S 5 § 8§
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is the singular value decomposition of S.

Proof: If (SD) dis not invertible, then the result is trivial, since

s* s bounded. Otherwise we write the SVD decomposition of D as

-~ * *
= b = 0
D [Ud,Ud] d Vd UdZdVd g (40}
0
and then
] ! wr) 41
D(SD) "= [U,,U 1] Z (stsUd d = (41)
0
Taking norms we have
loso ™, = | [z, Jzvuz )™ =104z vu} (42)
2 “ [ d } s sdd n ssd’
0 2

where

zgvmdz [zsxﬂ v; Eﬁ,&ﬂ[l} EG[I} s (43)
0 0

It can now be shown (see [25], Theorem 1) that

o, G[:é } < o {G} , (44)

and, since we have here on{G} S on{zs}, it follows readily that

1
|

loso) ', 2 1/6 {2} = | s, . o
n S

Using this lemma we now establish the following theorem.

Theorem 8. If X,S,0 are defined as in (33} and (36), then

() = [ sl [s" [, s /I+Tk-TIcos6_ — + «, (X) 5 /K k, (X) , (45)
where 6.,  1s the minimum angle between any two subspaces Si and Sj'
defined by

*
cos® . = max [S.S. [, £1 . (486)
min !

izj
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Proof: Since the columns of matrices Sj' j =1,2,..k are orthonormal

by definition, wWe have

Isof, = maxllstjﬂz = max HDjﬂz ={ol, . (47)
j j

and, therefaore,

e (s0) = Jsol,lesm™ Lz ol lesm ™| (48)

.
Then by the multiplicative property of the norm and by Lemma 1
k, (X) = k,(SD) 2 losoy™ ),z [s*, . (49)

Now, if we let x be any vector of unit norm, partitioned conformably

T T T T

with S, such that x = (x,,X,,...% ), then
l|Sx||2 E E % fo S.X
=2 =g g TH I
K k
JUIEAIRS A i FA N EY R
jei
-k k
I { DA PN N I EE
<1+ §{.§ uédﬂz]z - 1% cos6 ;. - (50)

j=1

But, by the Cauchy-Schwarz inequality we have

K B K R
[T 1] s k[ 2 1es 1] - (51)
j=1 J=1
and it follows that for any x with “ﬁﬂz =1,
||Sx|ﬁ <1 + (k-1) cosé (52)
= min
Thus
Isl., = /T+ (k-1 cosbpiy

and from (49) we obtain



._']8_

<, (X) VT + (k-Tcose 2 8" [, [s ], = «.(8) . (53)

The second inequality in (45) then follows directly from (48). o

Since Theorem 8 holds for all matrices X of form (33), the inequality
(45) gives a lower bound on the minimal conditioning of X, and we must

have

min «, (X) 2 , (S)/VK . (54)

We remark that this result is guite general and holds over all choices

of {rj}: such that

k
r. <s, , Z r. =n . (55)

For a particular choice of {rj}i (for example rj = 1,Vj] the lower
bound given by (54) is not necessarily realizable, however. In
particular, if any submatrix of S, composed of p < k of the

submatrices S, with j € J ,has rank less than q= ) r,, then a non-

J P J€7 J

p

singular matrix X cannot be selected: if this submatrix of S has
numerical rank less than g, or in other words, if the ratio of its first
and g-th (non-zero) singular values, oq/oq, is large, then the solution
X must of necessity, be badly conditioned, even though the condition
number «, (S) may be of reasonable size.

We observe also that the result (54) holds for any scaling of the
matrix X, and the minimum may not be realizable if a particular
scaling is imposed. For example, if the blocks Xj' Jj=1,2,..k, are
constrained to have orthonormal columns, then we may take the matrix
S = X with gj = nj and apply Themrem 6 with S replaced by 3. The

unconstrained matrix X derived from S, with minimal conditioning

OJ
then satisfies vk Kz[XOJ z k, (X), by (47). This suggests



that the optimal "block”-scaling cannot give much better conditioning
than a scaling in which the columns of the blocks Xj are chosen to be
orthonormal.

In the next section we examine other measures of robustness and
demonstrate their mathematical relations to the measure «,(X) of the

conditioning of the eigenpraoblem (6.



2.5 Measures of Robustness

We now investigate relations between the condition numbers Cj (or
sensitivities) of the closed loop poles, defined by (4), and various
measures v of the robustness of the eigenproblem (B6). We have seen
already (§2.1) that v, = KZ(X], the condition number of the matrix X
of eigenvectors, provides an upper bound on the measure
v, = lLE'L, = méx{o.}. We here derive other measures v of robustness
which can be boanded in terms of KZ[X] and which take their minimal
values simultaneously when the eigenproblem (6) is perfectly conditioned,

that is, when the assigned poles are as insensitive as is possible.

We assume that the right eigenvectors x,. of the closed loop system

matrix are normalized such that "5d "2 = 1, and write

T -1
v! o= [11,;/_2,..%] =X a (56)

Then the condition numbers are given by

cy ~ “!% ”2 z 1; (57)
and we have
1 3
_ 3 -1 = T - 2
X1, = n, Ix o= YT I [gcj] , (56)
where "'”F is the Frobenius norm. If we define the measure Vg by
aER IV
vy = n 7, (59)
_1
then Vg =N 2|‘E”2 and Vg takes its minimal value, unity, if and
. -1 -1 -1
only if cj =1, Vj' Furthermore, \Z ||X[|F [ x "F Zn KF[X],
and by the equivalence of norms [28] we obtain
1sv, v, £v, £nv,. (60)
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The measures Vv sV55Vg are, thus, mathematically equivalent, and the
three measures take their minimal values simultaneously when the
eigensystem is perfectly conditioned and X is unitary. We note that

if v, = KZ(X] is close to unity, that is, (v2 - 1) = ¢, € << 1, then

the measures v, and vy are also close to unity, that is (vq - 1) £ ¢

and [v3 - 1) £ e, Furthermore, if any of the three measures is close

to unity, then the sum of the squares of the condition numbers, “gl@ ,

is near to optimal, that is: (v1 - 1) £ ¢, [v2 - 1) £e, or

[v3 - 1) £ e implies (n_%|LE|E - 1) = e,

If a real diagonal scaling D = diag{dq,dz,...dn}, with dj >0 Vj,

is applied to the matrix YT of left eigenvectors, we find

07" = |07 = [zdfr, Iox”" = [ov" . - [zdgc§r, (61)
J J
and we may define a weighted measure
vy(D) = | ox ™" HF/ I D HF. (62)
Then v, (D) = Ipel, /o HF , from (61), and we have also

vS[D] = KF[XD_1]/KF[D]. The measure va[D) clearly takes its mipimal

value, unity, if and only if Cj = 1, Vj’ or, equivalently, X is

unitary; shus, vB(D) attains its minimum simultaneously with the other

measures. By norm equivalences, we have also

(1/K2(D))v3 < v, (D) = KZ[D)VB, (63)

V3

where KZ(D] = max dj/min d., and vB[D] is equivalent to the measures
J J
V4sVyVge
The square of the measure vB(D] is proportional to a weighted sum

of the squares of the condition numbers. By choosing appropriate weights
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P

the relative conditioning of each eigenvalue can be controlled.

Different weightings correspond to different scalings of the eigenvectors.
Taking dj =1, Vj’ corresponds to taking the eigenvectors to have

unit length. In this case n%vB(I] = n%v3 = "9_”2, so that Vg is
directly proporticnal to the Qz—norm of the vector ¢ of condiliun

numbers. With dj =c.”, J=12,...n, we find

)

-1 5
ke(DIvg (D) = k(XD ') = Zc (64)

J

c=lel,.

and the 21-n0rm of the vector of condition numbers is obtained. This

choice of weights corresponds to the optimal scaling of the eigenvectors,
with respect to the Frobenius norm [241]. We note that the weights dj here
are dependent on the condition numbers Cj' More generally, we observe

that with a suitable scaling, dependent on c , any weighted zp-norm

of € can be achieved. 1In particular, if T = diag{y1,Y2,...Yn} and we

DCD—Z

.. , J=1,2,..n, then
J ]

choose d§ =y

el = Jafer = w2om™h /72 = D)2 w2, (65)

| re [P
P ]

We remark that it is not easy in practice to implement scalings which are

dependent on the condition numbers, and constant weights dj’ j=12,..n,

independent of Cj’ Vj, are primarily used.

The conditioning v, = KZ[XJ of the eigenproblem (6) is optimal
(v2 = 1) 1if and only if the matrix X of normalized right eigenvectors
fj' j=12,...n, 1s unitary, as we have already ocbserved (§2.1). In

essence, the aim of the robust pole placement problem is, therefare, to

select eigenvectors Ej € Sj’ such that "fj "2= 1 and the vectors 5;

are as "orthogonal” as possible to each other. We now consider as a

measure of "orthogonality" the distance between the matrix X of eigenvectors

A ~

and some unitary matrix X. The unitary matrix X is taken to be such that each
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column of X is the (normalized) orthogonal projection of the

~

X,
x, of -X into the space Sj' (The distance between X and X

column

~

is then the minimal distance between X and any matrix of normalized
eigenvectors belonging to the required subspaces.) Without loss of
generality we may assume that fj is scaled so that égéj is real and

positive, eand then we have
x*x, = ||Sfx.‘| = V1 - ¢2 = cose, £ 1, {66)
—3=J =3 "2 3 N

-~

where ej is the angle between x, and X. (its projection into Sj],
¢j = sinej, and the columns of matrix Sj form an orthonormal basis for

the space S.. As a fourth measure of the conditioning of the eigenproblem,

we may then take

Ni=

-1 G 1 M
v, =n 2()¢2)% = n ?()sin%e.)*. (67)
4 N : J
J J
Clearly, 0O = 7 £ 1, and Vg = 0 if and only if the set of eigenvectors
{ﬁj} is orthonormal and the condition numbers Cj =1, Vj.
The sguare of the measure Vg is proportional to the sum of the

squares of the sines of the angles between the eigenvectors zd and a
("closest”) orthonormal set of vectors. A weighted sum may also be used

as a measure, We define

1 1
v, (D) = ()d2¢2)%/ ()d%)3, (68)
4 VAN a
J J
where D = diag{dq,dz,...dn}, as before. Here O £ v4[DJ £ 1, and v4[D)
is minimal if and only if the eigenvectors are orthonormal. We note that
Vg = v4(I].

To establish a relationship between the measure v4[D) and the other
measures of conditioning we first show that v4(D] is equivalent to

| o1 - X*XJlIF. Denoting the elements of A = I - X*X by 6Kj' we find
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A

that since "fj “2 =1 and X '1s unitary, then
.. e g . ;
[ x X, H2 1=1 + Eldkjl 2855 (69)

where ij =1 - 5ﬁ§j is real and positive. From (66) we have also

§.. £1 and
JJ
1+6,,2-28,, =1 - ¢2, (70)
JJ JJ J
and, therefore,
26, = ¢2 + 62, 5 92 + &, .. (71)
JJ ¢J JJ ¢J JJ

We conclude then that 6jj < ¢§ , and fraom (69) we obtain

2228, =7 |8, .]1% = 2¢42. (72)
¢J JJ E | le ¢J
It follows that
min d2 - 2
e = . (73}
— Zd§¢§ <) Zdilakj|2 = HDA”; <2 K Yd2¢2
max d? j ik min d? j 4
and, therefore,
(1/K2(DJ)"D"FV4[D] < HDAHF < /EkZ[DJMDHFv4[DJ ; (74)

We now observe that in the special case D = I,

/]

2 —1 _’lh -
nfvg =[x . = Ix7'x le = Ta-n |, (75)
and if Ao < 1, then
-1 ok L .
ba-7" e = Izl - ;HAIIF snf e fafesa-falo. (76)

From (74)-(78) we thus obtain

18 v, s 1+ /§b4/(1 - /5394), (77)



1
provided vy < (2n) *. If v, 1s small, that is, v <

close to unity, that is, (v - 1) < v2e + 0(e?), and [c !

)
optimal.
In the case D =z I, then the measures v3[D] and v
compared. We obtain now
_ -1 _ 10 B AT
[2levgm = [ox "I = fox x|. = |pez-a)
-1 -1,-1 . . . -1
and then D(I-A) (I-DAD ') 'D implies that, if |D IIFIIDAIIF< 1,

-1
[pez-a3"" |

From (74) and (78), it then follows that

1< v.(D) £1/(1 - /EKZ(D)KF(DJv4(D)),

3

provided v4(D) < 1//§k2[D]KF(DL The measure vs[D) thus attains its
minimum simultaneously with v4[D] , and if v4(D] is small, then

v3(D] is close to unity and the weighted &_-norm of the vector of

2

condition numbers is near optimal.

In summary, we have defined four measures of the conditioning of the

eigenproblem (6):

v, = el .
v, = KZ(X] ,

-1 5 3
vg =[x e/m = e,

1o
e (Zsinzejlz/n2 ,

4
J
where ¢ = [01,02,...Cn] is the vector of condition numbers,
X = [X,,%X,5,...X_] 1is the matrix of eigenvectors and 6
—1"=2 - J

angles between eigenvectors fj and certain corresponding orthonormal

vectors x,, Jj = 1,2,...n. These measures all attain their minimal

values simultaneously when the eigenproblem (6) is perfectly conditioned

and the assigned eigenvalues are as insensitive as possible.

il2

-1
s [ol/st- ol Imaloy .

(78)

(79)

(80)
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any of the measures is minimized, then an upper bound on the sum of the
squares of the condition numbers is minimized.

Two weighted measures of conditioning are also defined:

1

L

| Dx~

1]

v, (D) I/ 1o (%d?c?)i/(gd?i .

N 1 N 1
2 1+ 2 2 242
v, (D) (Zdjsm 6] /(Zdj) .

J

These measures are minimal when the eigenproblem is perfectly conditioned,
and minimizing these measures minimizes an upper bound on a weighted sum
of the squares of the condition numbers. A suitable set of weights is
given by d31 = Re(—lj] in the continuous time case, or d;q = (1 - |Ale
in the discrete time case. Then minimizing v3[D], ar v4[D),
corresponds to maximizing a lower bound on the stability margin of the
closed loop system, as given by Theorems 6 and 7 of §2.4, with an
appropriate scaling of the eigenvectors. For this choice of weights
eigenvalues close to the imaginary axis, which are most likely to become
unstable, are required to have much better conditioning, and hence to be
less sensitive to disturbances, than those which lie far away from the
axis.

In the next section we describe numerical methods for iteratively
constructing a well-conditioned set of eigenvectors from the required

subspaces. The procedures all aim, at each step of the iteration, to

reduce the value of one of the measures discussed here.
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3.0 NUMERICAL ALGORITHMS FOR ROBUST POLE ASSIGNMENT

3.1 Basic Steps

We now consider the practical implementation of the theoretical results
discussed in section 2. We describe four numerical methods for obtaining
solutions to the robust pole placement problem (Problem 2). Two of the methods

are complementary. The procedures all consist of three basic steps:

Step A: Compute the decomposition of matrix B, given by (8), to determine

0’ l.J,1 and Z; construct orthonormal bases, comprised by the columns of

matrices Sj and Sj for the space Sj = N{UI[A—AJIJ} and its complement,

U

S, for A, €L, j=1,2,..n.
J J

Step X: Select vectors x, = S.w, €S, with [x. |, =1, j=1,2,..n,
= =J 3=3 J =] 2

such that X = [x,,x.,..x_ 1 1is well-conditioned.
—17=2"""n

Step F: Find the matrix M = A + BF by solving MX = XA and compute F

explicitly from F = 2_1 US[M-A].

Standard library software for obtaining QR and SVD (singular value)
decompositions of matrices and for solving systems of linear equations [3]
are used to accomplish these steps. The first and third steps, Step A and
Step F are identical for all the methods. The key step is Step X. Here
the vectors x., Jj = 1,2,..n are chosen by an iterative process to minimize
one of the measures of conditioning described in §2.5. These measures are

all equivalent in a certain sense, and when they are close to unity, the

sensitivities Cj of the assigned eigenvalues Aj are all close to minimal.

We first discuss the two basic steps common to all four methads.
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3.1 Step A

The required decomposition of B 1is found in Step A by either the SVD
or @R method, as discussed in §2.2. We note that the QR decomposition
is computationally less expensive, but that the ©SVD decomposition gives

useful information on the singular values of B.

Construction of the bases for Sj and Sj is also achieved by

QR (Case 1) or SVD (Case 2) decompositions as follows.

Case 1 (QR) We determine the QR decomposition of (U:[A-Ajl))T partitiaoned

as

(Whea-x. )7 = 1s,,8.1 [R.]
12074 37750 g3

Then Sj,Sj are the reguired matrices.

Case 2 (SVD) We determine the singular value decomposition of UI[A—AjI]

in the partitioned form

UT[A—A.I] & T.[F.,U][S.,S.]T.
1 J JJ J°d

where T, 1s the diagonal matrix of singular values. Then the columns of

A

Sj’Sj give the required orthonormal bases.

We note that the decompositions can be carried out most efficiently
if the matrix [B|A]l is first reduced to staircase form (see [26]).
This requires less than n2 (3n+m) operations. The number of operations
needed to find each subspace is then wm(n-m)(2n-m), or a total of

0(n3®m) operations.
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3.2 Step F.
The matrix "M = XAX_1 is constructed in Step F by solving the equation
T.T _ T T . . .
XM = (XA) for M using a direct L-U decomposition (or Gaussian
elimination) method. This process is stable for a well-conditioned matrix X.
The computation of F is then achieved by straightforward matrix multiplication
in the case Z 1is given by the SVD process, or by using back substitution

to solve the equations ZF = Ug[M—AJ in the case Z 1is given by the @R

process.

The computation of M requires 0(n?) operations and the computation
of F needs O(nm?) operations. We remark that the total amount of work
required in Steps A and F 1s comparable to the number of operations needed
for one iteration in Step X, and is not a significant factor in the total

operation count.
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3.3 Step X

We describe four methods for accomplishing the main step, Step X, in the
basic algorithm. The methods are each iterative and each aims to minimize
a different measure of the conditioning of matrix X, although two of the
methods use complementary measures. We discuss the techniques only for
the case where the eigenvectors are required to be real. Detailed
descriptions of the methods, together with modifications for the complex case

and other special cases, are given elsewhere [ 71 [12].

3.3.1 Method O: The objective here is to choose vectors éj € Sj' jJ=1,2,..n

such that each vector is as orthogonal as possible to the space spanned by the

remaining vectors; that is, such that the angle between vector Ej € Sj and

the space Xj =<x,,1#j > 1is maximized Vj. Equivalently, we choose

3

éj E'Sj to minimize the angle between Ej and the normalized vector gj

orthogonal to the space Xj, Vj'

The solution is found by an iteration in which each vector §j is
replaced by a new vector with maximum angle to the current space Xj for
each j = 1,2,..n, 1in turn. The new vector is obtained by the QR method.

The decomposition

><j = [54'52""5j-1’5j+1""5n] = [Qj,gj] R,

is formed, in order to find Xj orthogonal to Xj’ and then the projection

of Xj into Sj’ given by

- B T T~
S R R AL T

is the vector in Sj which has minimum angle to Xj' The iteration is

continued until the reduction in vz = KZ(XJ, after a full sweep of the

process (j = 1,2,..n), 1is less-:than some positive tolerance. Any set of



independent vectors éj € Sj can be taken to give the initial matrix X.

In effect, at each step of the iteration a rank-one up-date to the
matrix X 1is made such as to minimize the sensitivity of the eigenvalue Aj.
The vector QT is just the normalized left eigenvector corresponding to Aj‘
and therefore the condition cj = 1/|§§ £d| is minimized by the choice of
X The conditioning of the remaining eigenvalues Ai, i 2 j 4is disturbed,
however, when the new vector replaces the old vector Ej’ and the overall
conditioning is not necessarily improved at each step. The process does not
necessarily converge to a fixed point, therefore. The method is simple to
implement, however, and gives good solutions in practice. At each step j
of the iteration, the QR decomposition of Xj is obtained by a rank-one
update of the decomposition of Xj_1, which requires 0(n2) operations.

The computation of éj as the projection of gﬂ into Sj requires 0(nm)

operations, and the operation count for one full sweep of the procedure is

thus 0(n%) + 0(n%m).

8L.3%.2 Method 1 As in Method 0, the solution is here found by an iteration
in which a rank-one update is made to matrix X at each step. The objective
of the update is now to select a new vector éj € Sj’ for each j = 1,2,..n,
such as to minimize the measure of conditioning vS(D] = "DX_I| ";/ ||D||F
discussed in §2.5, over all éj € Sj‘ at each step. Thus, at each step,

a non-linearly constrained least square problem must be solved. This can be
accomplished explicitly by QR decompositions. The measure vS[D] represents
a weighted sum of the squares of all the condition numbers Cj' and hence,
the overall conditioning of the solution X 1is improved at each step of

the iteration and the process converges. Any set of independent vectors

x, € Sj may be used to start the procedure. The iterat%pn is stopped when

—J
the reduction in the measure vS(D), after a full sweep (j = 1,2,..n) 1is
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less than a given tolerance.

The technigue for determining the update at step j is described here

for the case D = I. (A complete discussion of the process is given

elsewhere [12].)  The problem is to find ﬁj with "!j | =1 to minimize
“X-1 "F where X5 = Sjﬂj‘ and X = [54’52"'§j—1’5j+1"'§n] is assumed
known. We may write

1y N T TV e T

By QR decomposition we cbtain

&
X, = s ,
N [QJ EJ] al
and then YTX = I dimplies
T 0.
T 0
R, - p.R. Q.S.w.,
J °3 J QJ Jﬂﬂ
where oy = 1/[q§Sjﬂj). Using "E% "2: 1, we find, therefore, that to
minimize ”YT ”F we must minimize
1.7
R. B.5,
24 o2 R Mol |, = I o,
ey ey IRy w ;= | i o s |
m

Here pj is a normalizing factor, dependent upon Ej' which may be eliminated

by making a further orthogonal decomposition. We find unitary matrix ﬁj
such that
T T~T T T T
=0, P, =0,e [P,,p.] =o0o.pP,,
4575 7 %533 T %58m TRy i3

and then 051 =0 pTw

- T . .
DLW, Writi W. = P.w., we obtain
RLRLE riting ﬂg pJ W

J=3
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T T T
= (P,P.,w, + p.p.w.)/(0.p.W.)
E'E'—ﬂ JDJ—ﬂ

W, ~.~.W.
3= s N 3= =S

=0, (P,w, + p.).
J J—] =J

The problem thus reduces to the linear least-square problem

-1.7T ~
min R, 8,5, (P,w, + p.) s
" J QJ J =By "2
I
m
which is solved for Ej by a standard technique using a further QR

decomposition. The required update is then given by

= S.w, = (p.o [

X, J7 s (P.w. + p.)
=j J=3 i3 AR Byl

—J =

where the normalizing constant pj is determined by

In practice, this procedure gives solutions very similar tq those of
Method 0, although it is rather more complicated to implement. The
computation of the @R decompositions of Xj {(by a rank-one update of the
1] and of SESj requires 0(n?) and 0(2m) operations,

respectively, and the solution of the least-sguare problem for Qj uses

decomposition of Xj_

0(nm?) operations. The principal expense at each step of the iteration is

in the computation of R31Q§Sj, (obtained by back-substitutions,) which
requires 0(n®m) operations. A full sweep of the process, therefore, requires
a total of 0(n®m) + 0(n?m?) operations. Method 1 is thus rather more

expensive per sweep than Method 0, but it is guaranteed to converge.

3.3.3 Methods 2/3 The objective of Method 2 is to determine an orthonormal

set of vectors fj’ J =1,2,..n, such that some measure of the distance

between the vectors x, and the subspaces Sj is minimized; then the
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required eigenvectors Ej' j =1,2,..n are taken as the normalized
projections of gj into Sj' The resulting ﬁd are approximately

orthogonal to each other and the conditioning of X 1s expected to be reasonably
close to unity. The complementary objective of Method 3 is to select
orthonormal vectors gj such as to haximize the distance between the vectors

-

and the complementary spaces Sj; and then project gj into Sj'

The measure of distance to be minimized in Method 2 is the weighted
sum of the sguares of the sines of the angles between the vectors and the

subspaces, given by

v = (Je202) /(%)%

3 JI 3 J
where
= on . *
¢J 81nej “SJ §j ”2

is the sine of the angle ej between gd and its projection ﬁj into Sj'
As shown in §2.5, minimizing v4(D) corresponds to minimizing vB[DJ,
1
and if v,(D) is sufficiently small, then |[D cf, = ( d§ 03)2 is also
J

small and the solution X = [54,x 1 is well-conditioned (in a weighted

o
=27

sense]).
The complementary measure to be maximized in Method 3 is given by
3 ) 2 3 2\ 2
v, (D) = (} d cos 8.)*/(L dj) =1 - v, (D),
3 J
where
y -
cos®, = (1-¢2)% = |[S*x,
5 ¥ s x,l,
The solutions obtained by Methods 2 and 3 are identical, but the complementary

measure is computationally more efficient to use when m < n - m.
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The vectors gd are determined iteratively by applying plane rotations to

~ ~

the matrix X = [54,22,..gﬂ] such that each rotation reduces (or increases) the

measure v, (D) (or v4(DJ) by an optimal quantity. Initially any
orthogonal matrix, say X = I, may be taken. At each step of the iteration
two indices 1 £ j < k £ n are selected and the two vectors gj' gk of the

current matrix X are updated by a rotation in the plane which maintains their

orthogonality and minimizes

2 2 = 2 || x> |2 20 x> | 2

(or equivalently, maximizes

204 .2 204 42 2 ~ 2 2 ~2
d3(1-05) + de(1-¢) = ] Hs;zjuz +dilszx 150,

k

The required rotation is easy to compute explicitly. (See [7] for details.)
The rotations are applied in a natural order in sweeps through the matrix,
each full sweep comprising 3in(n-1) rotations. (In practice it is generally
more economical to perform only rotations which result in significant
improvements at first.) The sweeps are repeated until the improvement in the
measure is less than a specified tolerance. The projections of the

resulting vectors X. 1into subspaces Sj’ for j =1,2,..n, are then

determined explicitly by

. = 5.5*%./ | s*%.
x5 = 8585/ Is3xl,

The procedure generates the same iterates for Methods 2 and 3 and is
convergent. The computation of each rotation requires 0O(n-m) (or 0O(m})
operations and the update of matrix X takes 0(n) operations. The
operation count for a full sweep of the process is, therefore, 0(n®) + 0(n?m),
making it of the same order of efficiency as Method O. In practice, however,
Methods 2/3 require fewer sweeps than either Methods 0 or T to obtain a

solution, and the procedure 2/3 is, in general the least expensive of the

technigues.
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In cases where a well-conditioned solution is obtainable, the three
methods produce similar results and Methods 2/3 are preferred. In cases
where the pole assignment problem, itself, is poorly posed, that is, where
KZ(S]//H >> 1, then Methads 2/3 do not perform well, since the conditioning
||DEJ2 is only bounded by the measure v4[D] when it is sufficiently small.
Method 1 is then the more reliable technique to use. We note that in such
cases Methods 2/3 can be used to produce a reasonable initial solution for

use with Method 1.

We remark that Klein and Moore {14] have proposed a pole placement
algorithm which uses the plane rotation technique of Methods 2/3 to make
rank-two updates to matrix X with the objective of minimizing the measure

o x|

Fe used in Method 1. In their algorithm the optimal rotation which
minimizes the measure cannot be obtained explicitly, however, and an "inner”
iteration process must be performed to obtain each update. Similar solutions

to those constructed by Method 1 appear to be obtained, and

comparisons for a particular example are presented in §4.2.
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3.4 Implementation

The three steps, Step A, Step X and Step F of the numerical methods

described in §3.1-3.3 have been implemented using the system MATLAB [19].
This system uses standard library routines from the software packages
LINPACK [3] and EISPACK [23]. For experimental purposes we have developed
a set of executive files for use with MATLAB to carry out the various steps
of the pole assignment procedures. These files, together with a number of
test examples, have been incorporated in a small package, which is available
on request from the authors. In the next section of the paper some of the
test examples are presented and the numerical results obtained by the pole

placement procedures for these examples are reported.
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4.0 APPLICATIONS

The four procedures described in Section 3 have been applied to a number
of examples collected from the literature. In some cases, the given control
system is unstable, and a feedback matrix which stabilizes the system is to
be assigned. In other cases, the system is already stable, and the
objective of the pole assignment is to move some of the eigenvalues into new
positions in the left half-plane, and also to improve the conditioning of the
system. To illustrate the behaviour of the methods, we give here the results

obtained for two test problems. Other results are given in [7]1 [11].
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4.1 Example 1 CHEMICAL REACTOR (Munro, [171).

n =4 m = 2
[ 1.380 -0.2077 6.715 -5.676
-0.5814  ~4.290 0 0.6750
A -
1.067 4.273 -6.654 5.893
. 0.0480 4.273 1.343 -2.104
o 5.679 1.136 1.136
-
B =
| o 0 -3.146 o

EIG(A) = 1.991, 8.35110-2, —5.05;, -8.666.

This system is unstable and a feedback matrix is required to stabilize
the system. We therefore move the two positive real modes into the left-half
plane, keeping the original stable modes. We assign the set
£ =1{-0.2, -0.5, -5.0566..., -B8.6659...}. The condition of S is
KZ(S) = 3.761 and a feedback system with good conditioning is expected.

In Table 1(a) various measures of the conditioning of the solutions
obtained after two sweeps of the procedures are shown. (The weights are
taken here as D = I.,) The magnitude of the gain matrix F, given by "FHZ‘
is also given in the Table. In Table 1(b) the same results are shown for
the converged solutions, together with the number of iterations required for
convergence to a tolerance of 10_5. The computed feedback matrices are
given in Appendix 1.

In all cases, well-conditioned solutions, close to the optimal attainable,
are determined after only two sweeps of each procedure. The converged
results, obtained by Methods 1 and 2/3, have slightly better overall
conditioning, measured by KZ(X] or "EJz » (although with Method 2/3, the
maximum cﬁndition number méx Cj = ”Eﬁm is increased slightly, as is

J
the magnitude "F”2 of the gains). Method 1 is very

slow ta converge in comparison with Method 2/3.
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Method 0 is not convergent in this case, and the best result is actuelly

obtained after only one sweep of the procedure.

TABLE 1 Conditioning - Example 1
{a) Solutions after (b) Solutions at
two sweeps convergence
No. of
method | | Dol w00 fel, Tl | lel.  «,o0  lel, IFl,  sweens
0 1.82 3.43 3.28 1.47 N X % * *
1 1.79 3.38 3.27 1.44 1.76 3.32 3.23 1.40 106
2/3 2.36 4.56 3.71 1.16 2.37 4,54 3.68 1.17 6

To demonstrate the robustness of the solutions obtained, the computed

feedback matrix F is rounded to three significant figures and the eigenvalues

of the resulting closed loop system matrix are calculated. Rounding

matrix F corresponds to introducing maximum absolute errors of

-3 max {|B||F|}ij into the system matrix. For robust solutions
ij

perturbations should only cause errors of the same order of magnitude

300

in the poles of the feedback system. For this example, the absolute
percentage errors in each assigned eigenvalue due to the perturbation
closed loop system matrix are given in Table 2. The absolute errors
the expected order of magnitude.

all within J}ess than 3% of the assigned values and most of the errors

considerably smaller.

the gain

such
(x n)

and

of the

are of

The eigenvalues of the perturbed system are

are

It may be observed that, for this example, although the

overall conditioning obtained with Method 2/3 is somewhat worse than that

obtained by Methods O and 1, the effects of the perturbation in F is rather

less, particularly in the case of the smallest eigenvalue.
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TABLE 2 Perturbation Errors - Example 1

Method 0* Method 1 Method 2/3

y Abs. % Pos. % mos. %
-0.2 0.0051 2.5 0.0012 0.60 0.0005 0.25
-0.5 0.0032 0.64 0.0018 0.35 0.0012 0.25
-5.0566... 0.0038 0.08 0.0004 0.01 0.0015 0.03
-8.6659... 0.0067 0.08 0.0003 0.003 0.0022 0.03

* Result after 2 sweeps.

The conditioning of individual eigenvalues can be controlled by the choice
of the weights used in Methods 1 and 2/3. To illustrate the effect of using
the weighted measures vB[D) and v4(D), we give in Table 3 the condition
numbers cj for each assigned eigenvalue Aj obtained after five sweeps of
each procedure with various choices of D = diag{dj}. The overall
conditioning of the solutions obtained with the weighted measures is worse

.

than in the case D = I, as expected, but the conditioning of the smaller

eigenvalues is improved.

TABLE 3 Weighted Conditioning - Example 1

Condition no. Cj Condition no. c.
Method 1 Method 2/3

Weights d, 1 /x| 17]x|? 1 1/, ] 1/|x.|?
—  J _ J J _ 3 —J
Aj = -0.2 1.48 1.28 1.33 2.37 1.58 1.55

-0.5 1.76 1.91 2.20 1.08 1.65 1.70

-5.0566.. 1.45 1.69 5.00 2.36 1.46 1.45

-8.6653.. 1.81 1.96B 4,29 1.07 1.79 1.79
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4,2 Example 2  DISTILLATION COLUMN (Klein and Moore [14]].

n=>5 m =2
= ™
-0.1094 0.0628 0 0 0
1.306 -2.132 0.9807 0 0
A = 0 1.595 -3.149 1.547 )
0 0.0355 2.632 -4 .,257 1.855
0 0.00227 0 0.1636 -0.1625
T 0 0.0638 0.0838 0.1004 0.0063
B =
8 0 -0.1396 -0.206 -0.0128
EIG(A) = -0.07732, -0.01423, -0.8953, -2.841, -5.982.
We assign the eigenvalue set £ = {-0.2, -0.5, -1.0, -1.0 % 1.0i},
which includes a complex conjugate pair. The condition number KZ(S) = 57.78

is large for this choice of poles, and we cannot expect to obtain a very
well-conditioned solution to the feedback problem. In Table 4 the various
measures of the conditioning of the solutions obtained after five sweeps of
Methods 1 and 2/3 are shown, together with the magnitude ”F”2 of the gain
matrix. The computed feedback matrices are given in Appendix 1. The
solution obtained by Method 1 is considerably better conditioned than that
determined by Method 2/3, although neither is very robust, as expected. We
note that the gains are large here, which is anticipated, since ”A”2 = 6.248,
and o {B} = 0.057 and the ratio ”A”Z/om{B} indicates the order of

magnitude of ”F"2'



Method

2/3

TABLE 4

lel,

15.3

30.0
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Conditioning - Example 2

39

66

Ko (X)

4

il

lel,

22.4

44 .1

IF,

311.5

283.1

In Table 5 the errors in the assigned poles due to rounding the computed

feedback matrices derived by Methods 1 and 2/3 are shown.

Corresponding

results for solutions to this test problem constructed by two other algorithms,

given in [B6]1 and [14], are also shown.

The percentage errors due to

perturbations in the closed loop systems obtained by Methods 1 and 2/3 are all

reasonably small and are comparable with the solution derived in [14].

These three procedures all give solutions which are much less sensitive to

general perturbations in the system coefficients than the solution obtained

in [6].

Method 1

TABLE 5

Method 2/3

Method [14]

Percentage Errors - Example 2

Method (6]

73%

85

40

130
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4.3 Summary of Results

For problems where well-conditioned solutions may be expected, that is,
where the conditioning KZ(S] is reasonably close to unity, the four methods
described here all perform well and lead to robust solutions to the pole
assignment problem. The measures of robustness used closely reflect the
actual eigenvalue sensitivities, and the condition KZ(X] of the assigned
eigenvectors, X, determined by all the methods, are near to the optimal
bound KZ(S)//F. The components of the gain matrices F are alsg as
reasonably small as may be expected, given A, B and the choice of the
assigned eigenvalue set (. We note that the upper bound given by (22)
(Theorem 5) considerably over-estimates the computed magnitude "F"2 of the
gain matrix, which is found generally to be of the same order of magnitude
as ”A”Z/om{B}. As expected for these problems, small perturbations in the

gain matrices lead to proportionately small errors in the assigned poles.

In most cases, for problems where KZ(S] is small, good results are

obtained by all three procedures after only two sweeps of the iteration in

Step X. Further iteration gives some improvement in robustness, but often
leads to small increases in the gains (measured by “F"2 ). For the same

initial vectors, Methods 0 and 1 give very similar solutions; Method 0 is
rather less expensive per sweep than Method 1, but cannot be guaranteed to
converge. Method 2/3 is comparatively less expensive than Method 1 and
generally converges more quickly. The solutions constructed by Methods 2/3
are frequently similar to those produced by Methods 0O and 1; the results can,
however, be quite different, whilst being equally robust, as shown here in

Example 1.

For problems where KZ[S] is large, that is, where well-conditioned
solutions cannot be achieved, the methods perform more erratically. In these

cases Methods 0 and 1 generally give more robust solutions than Methods 2/3,
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which is expected, since minimizing v4[D) does not now necessarily

minimize an upper bound on the conditioning "EJZ of the closed loop system,

The methods all produce acceptable solutions, however, within the
limitations of the problem. To obtain more robust solutions in cases where
the conditioning of matrix S is poor, it is advisable to modify the set L
of eigenvalues to be assigned so as to reduce KZ(S], and hence improve the

feasible conditioning of the eigenvector selection problem.
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5. CONCLUSIONS

The problem of pole assignment by state feedback for multivariable control
systems is essentially under-determined. We demonstrate here that the extra
degrees of freedom in the problem may be used to determine a robust, or
well-conditioned, solution such as to minimize the sensitivities of the
closed loop poles to perturbations in the system and gain matrices. For such
robust solutions it is shown that bounds on the (mean square) magnitude of the
closed loop transient response and on the norm of the feedback gain matrix
are also minimized, and that a lower bound on the stability margin is
maximized. A measure of the optimal conditioning that may be expected for a
particular system with a given set of closed loop poles is described and

used to assess the suitability of the given poles for assignment.

Four novel numerical methods are derived for constructing robust,
well-conditioned solutions to the state feedback pole placement problem. The
methods are applied to practical test examples, and numerical results are
presented and discussed. The tests indicate that the methods are stable and
efficient. In cases where well-conditioned solutions may be expected, near
optimal results are obtained. Introducing perturbations in the computed gain
matrices leads only to correspondingly small errors in the assigned poles.

The methods are based on different principles and exhibit different behaviour,
however, and certain of the procedures may be regarded as more reliable than

others.

Generalizations of these methods for degenerate systems and for the output
feedback problem are currently being developed. Certain necessary theoretical
results have already been derived and numerical techniques are now available
fal [101 [2]. Extensions to techniques for modifying the locations of the
assigned claosed loop poles to improve further their insensitivity are also

being examined.
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APPENDIX 1
Example 1
x*
Method O
0.23416
F =
1.1673
Method 1
0.14454
F =
1.1101
Method 2/3
0.10277
F =
0.83615

*Result after two sweeps.

Example 2

Method 1
-47 .630

F =
-22.596

Method 2/3

-159.68
F =

-99.348

Computed Feedback Matrices

-0.11423

-0.28830

-0.051421

-0.033345

-0.63333

0.52704

102.01

30.633

69.844

7.9882

0.31574

0.68632

0.13265

0.784186

-0.11872

-0.25775

-213.70

-48.077

-165.24

-14.,158

-0.26872

-0.24241

-0.12868 ]

-0.23384

0.14632

0.54269

179.86

33.799

125.23

-5.9382

-42.552
2.2776

-45.748

-1.2542



