MOVING FINITE ELEMENT MODELLING OF THE

2-D SHALLOW WATER EQUATIONS.

R.D. Alstead

Dept. of Mathematics
University of Reading

Numerical Analysis Report No. 5/87

This work forms part of the research programme of the Institute for
Computational Fluid Dynamics at the Universities of Oxford and Reading

and was funded by the CERL under contract no. RK:4258/VC321



Abstract

A mathematical model of tidal flow requires the solution of the
system of shallow water equations in two dimensions.

Numerical methods are presented based on moving finite elements
which are easy to implement and which dispense with some of the boundary
conditions needed for an earlier scheme by allowing the grid to move.

Results show that an additional element of regularisation is

likely to be needed to prevent element collapse.
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1. Introduction

Power stations on coastal sites extract water from the sea for
cooling purposes. When the water is returned to the sea it is heated
and spreads out to form a plume. It is of economic and environmental
interest to the CEGB to construct an accurate model of coastal flows in
order to determine the effects of the discharge.

Detailed analysis of such flows is already possible using a finite
difference model, but problems encountered with that model have motivated
the desire to use schemes that can incorporate moving boundaries.

In this work we look to solve the governing equations, presented
in section 2, using numerical techniques based on the Moving Finite
Element method of Miller [ref. 1]. These methods are presented in
section 3 and their adaptation to the model problem is discussed in
section 4.

Results are presented in section 5 and conclusions given in

section 6.



The Model Problem

2.1 The Model Equations

In this work, we wish to solve the shallow water equations in

the form
FU\/U2+V2

U =-UUu -VU - g2 - + Qv

= ® y 7 h + 2

FVI/U2+V2

V. =-UV - VW gz - - QU

t ® y ? h + 2
z2 =0t + 2 - h + 2 - (h+ 2 +

e (x X) v(y y) ( ) (Ux vy)

where

Z = elevation above some specified datum (M)

h = bed depth below datum (M)

U = easterly velocity component (M/S)
V = northerly velocity component (M/S)
g = acceleration due to gravity (M/S?)

*)) (/s)

Q = Coriolis parameter (O(10

friction factor (O(IOfs)).

and F

(2.1)

(2.2)

(2.3)



2.2 The 'Moving Bag' Problem

Assume an idealised geometry in which there is a straight

coastline and consider a rectangular region oriented as in

fig. 2.1.
P4 (XW,YN) P3(XE,YN)
N
,f
"‘
fig. 2.1
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Pl(XW,YS) P2(XE,YS) S
P1P4 - coastline
P1P2, P2P3, P3P4 - open boundaries.

Existing numerical models of the shallow water equations use
finite difference methods to produce a solution on a fixed grid.
It has been found that the reliability of such schemes depend
strongly on the inflow and outflow conditions applied at the

open boundaries. In this work, however, we view P1P2P3P4 as

enclosing a body of water which we track through time using a
numerical scheme which allows the region to move. This approach

enables the treatment of the open boundaries to be incorporated



into the scheme in a natural way {(see section 4). We restrict
the motion of all points con P1P4 to the y direction in order
that we follow a region that moves up or down the straight coast-

line.

Numerical Methods

For the problem under consideration, we desire to employ both
the local Moving Finite Element (MFE) and Mobile Element Method
(MEM) methods ([3]1,[4)) for the solution of a system of hyperbolic
equations in 2D. It may be useful, however, to begin this sectiorn
with a brief introduction to the global MFE method for the
solution of evolutionary problems in 1-D, as described by Miller

[1].

3.1 Global MFE in 1-D

We wish to solve the equation
u = L(w (3.1)

where L. is some non-linear differential operator in one space
dimension.
An approximate piecewise linear MFE solution to (3.1)

takes the form

N
U= ) U o (x,5(8)) (3.2)
3=1



where the parameters Uj are the nodal amplitudes and the aj
essentially have the same form as the standard piecewise linear
finite element basis functions (fig. 3.1), with the significant
difference of being dependent on nodal positions which vary with

time.

The aj are given by

X - s,
-1

S, < x < s,
-1 =" =73

s, - S'—l

a, = { J . (3.3)
J

S, - X

j+ s. <x < s,
j— - j#l

Sj+1 7 %5

and so a typical aj looks like

fig. 3.1

3-1 3 Sy+1

Differentiating (3.2) with respect to time yields



where the Bj

are given by

j 30,
Jj+1 Oi
B. = ) U
J o J pe
i=j-1 3

It can readily be shown [ref

imply that the Bj satisfy

-m 0 , S .
jJ 3-1
B‘ =
J
- , a s, <
J+1 3 J
where
U, - U,
3 ge il
N = r
mj
S - S.
j j-1

i.c. m 1is the slope in element
J

(3.4)

are thought of as second basis functions and

(3.5)

. 2] that (3.3) and (3.5)

j of the MFE

(3.6)

(3.7)

approximation.



as in
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3.2 and an

mj+1

as in figq.

solution U
would look like

U
fig. 3.2
For an MFE
fig. 3.1, B,
B:
fig. 3.3



It is immediately apparent that the Bj are, in general,

discontinuous at the nodes.

To obtain a system of ordinary differential equations for

U. and Sj we demand that the residual R = Ut - L(0)

perpendicular to the space spanned by the o and B Dbasis

functions. This is equivalent to the requirement that the

L,

norm of the residual be minimised with respect to variations

of the U, and é,.
J J
Now,
2
Ir | = <r,R> = <U_,U> = 2<U,L(U)> + <L(V),L(V)>
L

2

where <.,.> denotes the usual L, inner product.

Substituting (3.4) into (3.8) yields

2 .. ..
I r IIL2 =) (<ocj,cxk>UjUk + 2<aj,8k>ujsk
3,k

+ <Bj,8k>sjsk)

-2 Y (<a,,L(U)>0, + <B_,L(U)>S,) + <L(U),L(U)>
;03 3 3 3

Differentiating (3.9) with respect to ﬁi and

S,
i

the 2N ordinary differential equations for Uj and sj

gives

(3.8)

(3.9)
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Y <a,,0>0, + ) <a,,B.>5, = <o ,L(U)>
i J 3 i3] 3] i

j=1 Jj=1
N N
Y <B,,a>0. + ) <B,,B,>S, = <B.,L(U)>

i i3 i

:|=1 j:]_

i=1, ..., N
In matrix form, if we write

= (0, ,5,,0,,5 0,57
X 1721777 2I""ININ [

then equations (3.10a) and (3.10b) imply the system

where

and A is block tridiagonal, i.e.

(3.10a)

(3.10b)

(3.11)

(3.12)

(3.13)



<a.,,0.> <d,,B.>
i1 i*mi

<B.,a.> <B,,B.>
i'7i i'7i

<8i

.
B
A By
A B
C2 By B
\\ \\
N
A = \\
7
Where
r
A, =
Ry
< >
%37%41
B =3
i
< >
\ Bir%i4
r(
i . >
alr(]l_l
c. =
Al

. >
ldl_l

<O‘i’Bi+1>

i=1, ..., N-1
<Bi'Bi+1>
<d-il Bi_1>

i=2, ..., N
<ByrBig”

(3.14)

(3.14a)

(3.14b)

(3.14c)



It can be seen that Ci = Bf—l and so, from (3.14), it follows
that the MFE matrix A is symmetric. Consequently,
simplifications may be made when solving the system by some
iterative technique.

However, we now consider an elementwise, or local, formulation

of the MFE method which results in a decoupling of equations

(3.10 a,b) and obviates the need for a numerical matrix solver.

3.2 Local MFE in 1-D

Consider an element k, with nodal positions Sy 1 and
Sy o and nodal amplitudes Ukl and Uk2' Introduce the element
basis functions ¢k1 and ¢k2 (fig. 3.4).
fig. 3.4 1 1

The ¢ (v=1,2 : X =1, ..., K = no. of elements) span

kv
the space of all piecewise linear discontinuous functions on
the finite element grid. In one dimension, this is equivalent

to the space spanned by the aj and Bj basis functions

(3 =1, ..., N). Consequently, in this exceptional case, it is



trivially true from (3.4) that we may write Ut in the form

K 2

U= )L W, o (3.15)
k=1 v=1

(where K N here).

We now insist that the square of the L2 norm of the

residual be minimised with respect to variations of the W's.

We have

K
4 2
lzi(wpl¢91 + Wb - L |

= q(<¢p1,¢q1>wp1wql + 20 09 W W, <¢p2¢q2>wp2wq2)
r

p

2 g (<o L (O)>W )+ <Pp LU ) + <L(U),L (U)>

= 2 2
g (<Oq b PWE )+ 2<0, 10 W W 4 < o005 W)

- 2 (<¢p_1,L(U)>wp1 + <¢p2,L(U)>Wp2) + <L (U),L(U)> (3.16)

p



since < > =20
¢pv’¢qn

Differentiating

yields the 2 x 2 system

[ =
where
b1 %1”
c, =
Oy Px2”
- T
W = Wy W)
and
<¢k1,L(U)>
Ek-

L <o L(U)>

Assume now that node Jj 1lies between elements

k. We have

(3.16)

except when

b1 9%0”

b2t 0%2”

with respect to W

and W

k2
(3.17)
(3.17a)
(3.17b)
(3.17c)
k-1 and



and so

%(Ujaj + 5.8, = E{Uj Sm g 500y ot (0 - m B0 (3.18)

From (3.4), (3.15) and (3.18) we obtain, for interior nodes,

Y (L) [ )
- m
! P Wie1,2
= (3.19)
= m &
b k L% Wt |
Provided that mk—l # mk, the system (3.19) may be solved
to give
MWy T MW
U, = (3.20)
j
P 7 Mxq
and
W12 7 Mg
s, = (3.21)
j
|

The local MFE procedure is to solve the system (3.17)



in each element and then to transfer the solution back on to

the nodes via (3.20) and (3.21).

It can be shown that (3.17a) implies

1
/5 1/,
Ck = Ask (3.22)
1/6 1/3
where Ask = Sy, T Sy 1S the length of the element k. Therefore
4 -2
1
Ek = Ek' (3.23)
Ask
-2 4

We see from (3.23), (3.20) and (3.21) that there are only
two types of singularity that occur in the method and that these
occur when the area of an element becomes zero, or when the

gradients in neighbouring elements are equal (parallelism).

3.3 Local MFE in 2-D

The elementwise formulation of the MFE method can be extended
to higher dimensions. In 2-D, consider a triangular element k

) and (X Y. )

s k3" k3

with nodal positions (Xkl'Ykl k2" Yk2

17 U and U _. Define the element

and nodal amplitudes K2 K3

Y%



- 18 -

basis functions ¢ (v =1,2,3) to be the linear functions

kv

which take a value 1 at node Vv and zero at the other two

nodes of the element (e.g. fig. 3.5)

Fig. 3.5 P

As before, we seek to minimise

|53 |2
W 9, = L(U)
Sl Rk L,

over the W's. This gives the system

where

;
11> Oxp > Oy rtys®

Cx = | “Pk1r%x2” Pordyn> <Oppridys®

O r0x3” Opprdy3>  <Opgrdy s>

(3.24)

(3.25)

(3.25a)



and
[
<¢k1, L(U)>
b, = <¢k2’ L(U)>

<¢k3, L(U)>

We now need to link the W N

In the 2-D global formulation, U is expressed in the

form

U . U ¥

U =) (0, =2=% -
J

where aj is the linear function that takes a value

j x %3 dy 3

to the nodal velocities.

)

t

3

U

j and O at all neighbouring nodes, and —— ,

in each element.

oU oU
Let e mk and By

Then
R . a b . ; .
U —aUx.—ﬂY.}a _ [U.—mX.-n
j o9x 3 9y "3) 3 N J k k™ j
k=k
1
where kl' R k2 are the elements which contain node

vk is the local number of the node in element k which

= N

k

9x

in element k.

are constant

(3.25b)

(3.25c)

(3.26)

(3.27)
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corresponds to node j.

Therefore the relation

k 3
AU U -
Y (O, -2=%X. - =—Y)a, = ) ) W _ ¢ (3.28)
) 3 Ix j 3y 33 i kv kv
is satisfied if
W =0U,-mX -n¥V, (3.29)

where j is the global number of the node corresponding to
node V.

Since, in general, there are more than 3 elements
surrounding node Jj, equations (3.29) define a rectangular system

of the form

M. y. =W, (3.30)
345 7 55
where
g 1 = '1
- -n
k k
1 1
1 -m -n
k, k2
M, = ’ . ’ (3.30a)
:] - - -
~In .
1 X nk
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£ (3.30b)

W
I

(. X. Y))
J 1 3

and
y T (3.30c)

A least squares minimisation is used to produce a solution

to the overdetermined system (3.30). This takes the form

5 ; Tr w, (3.31)

where

[
A O
1
A = (3.31a)
J
O a
le )|
(A, = area of element k) is introduced to ensure conservation

(see Edwards and Baines [3]). We now have a 3 x 3 system to

solve in order to transfer the elementwise solution of (3.25)

back on to the nodes.

3.4 Extension to a system of 3 equations

Suppose we now have a system of evolutionary partial

differential equations in 2-D



(u , u , u ) +» p=1,2,3 (3.32)

If we choose tc solve this system on a common grid, then
the essential stages of the method are as before, but with
superscripts over relevant quantities.

We minimise

i (p) {p) 2
i 2 E W . - L (U) l| , p=1,2,3 (3.33)
k=1 v=1 kv kv L2

(1) (2) U(3)}T

[U = (U , U , ] over the W's, giving 3 systems of
the form
(p) _ . (p) _
¥ =k p=1,2,3 (3.34)

where Ck is given by (3.25a) and

(p) _ (p) (p) (p)
W =g Wo Mg e+ Sia)
(p)
<G 0 LT (U
(p) _ (p)
Ek = <¢k2' L (U)> (3.34Db)
(p)
<¢k3’ L (u)> |
For the Wﬁs) in terms of the nodal velocities, we now
have the relation
WP _g® @ )y (3.35)

Kv 3 kK 357 k'3



S g =

This gives the system

My, = W. (3.36)
JXJ -]
where
1 0 0 —mélj —nil) T
1 i
(1) (1)
1 0 0 —mk —nk
2 4
0 i 0 —mé2) e (20
1 1
M., = : : : : ’ (3.36a)
Jj . & ] . .
. (2) (2)
0 i 0 m -n,
i 9
I 0 0 1 —méB) —né3)
1 1
0 0 1 —m;3) ;3}
2 7
)
g.= @B, g B 5, 9T (3. 36b)
=3 j 3 3 |

e W W oo W W ews W )
; k# k k, k,v k,v
1 k1 kl 1 k1 $ ki 1 k1

1) (1) (2) (2) (3) L3
A

The least squares minimisation now takes the form
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MEA M.y, =M AW, (3.37)
3 353 3373

where
A, = diag {A_ , ..., B_,A , ..., A LA , ...,A 1} (3.37a)
] ) K5 % ko % ky

This produces the system

d \ f 1
da 0 0 a1 b1 r1
0 4 0 a2 b2 r2
0 0 a a, b, y, & r (3.38)
a a3y a by Ty
Dy Py I Ts
)
where
ke
a=)y A (3.38a)
k=k,
K
TS
a = -y m A p=1,2,3 (3. 38b)
P kK x
K=k
1
2
b = -3  nPoa p=1,2,3 (3.38¢)
p k k
K=k,
W (0)?
a, = Y m P a (3.384d)



and
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k
_ 22 § (p)_ (P),
Kek p¥1 k k k
1
k
L 2
k=k, p=1
1
;2 (p)
W A p=1,2,3
Kk kv k
1
k
L 3
2 E (p). (pP)
= - W A
k:kl p¥1 mk kv k
k
L
z ) (p),(pP)
= - , W A .
K=k, p=1 k kvk k

3.5 Local MEM in 2-D

In the Mobile Element Method, we seek instead to minimise

L
the 5

in order to obtain a grid velocity with the best possible

norm using the mobile operator

_ 9du . ou . cu

stability (see Edwards and Baines [3]).

(3.38e)

(3.381f)

(3.38qg)

(3.38h)

(3.381)

(3.39)
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So, given the equation
u = L(uw (3.40)

we minimise

“ ou

. = B
(k== + 9 55 2 L(u)llL (3.41)

2

Using the global MFE discretisation, (3.41) can be written as

I8, + Y.y - Lo | : (3.42)
333 5373 L,

In the global approach to MEM, the square of (3.42) would be
minimised over the i, and Qj' In the local formulation, we

J

write

k
YX B, + Y.y, = ) i W, ¢ (3.43)
534 533 k=1 ov=1 kv kv
where the ka satisfy
= - (MX. +nY). 3.44
ka ( ka ij) ( )

As in section 3.3, we minimise over the W's to give

CW =05D (3.45)



= po -

whexre C W and Ek are given by (3.25a), (3.25b) and

k" =k
(3.25c) respectively. Equations (3.44) define the rectangular

system

M.X, = W, (3.46)

[ bl
-m -n
5 ky
- ~11
mkz 2
M, = . : 3.46
j . . ( a)
—mk - '1k
L ' 2
. - = T
X. = (X, .Y)) (3.46b)
J J j

and Ej is given by (3.36c¢c).
The system (3.46) is solved in the form

M A M. X, =M Aj W, (3.47)
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where A, 1is given by (3.31a). This gives a 2 x 2 system for
J
the nodal velocities kj and Qj'
It remains to find the rate of change of nodal amplitude

U.. We return to the residual of the full equation

IS o, - %, & _¢ 2, I,

5 3 j ox jdy "3 5
=I5 %W e - nw |
E 55 kv kv L2

where kj and Qj are known from (3.47) and

The norm on the right hand side of (3.48) is minimised

* *

over the W , and so the W correspond to the W

kv kv kv

of (3.45).
We now minimise the norm

.+ N.Y )}
= 1

over the ﬁﬁ, where Ej is a vector of 1's with length equal

to the number of elements surrounding node J, Ej is given by

(3.36¢) and Mj and Nj are the columns of M.
- . J

(3.48)

(3.49)

(3.50)
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This process of finding 6j is equivalent to substituting

the values of ij and éj from (3.47) into the equation for

ﬁj arising from the local MFE system (3.31) for node j.

3.6 Local MEM for 2-D Systems

As in the MFE case, the stages in the formulation are the
same as for a single PDE, but with superscripts over appropriate

quantities.

For a system of 3 PDE's, we loock to minimise the L norms

using the mobile operatocrs

(p) (p) (p) (p)
Du _ ou + ou - du _
Dt "ot TXa ¥y p=123 S0

This demands the solution of the systems

(p) _ . (p) -
c, w" =D p=1,2,3 (3.52)

where C E‘p) and Eip) are given by (3.25a), (3.34a) and

k' =k
(3.34b) respectively.

(p)

The ka satisfy
(p) _ _ (p): (p)g
ka - {mk Xj + 0 Yj) (3.53)

yielding the system
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MX, =W, (3.54)
J=3 -]
where
(D - (1
1 1
—I 1) _n(l)
% k%
(2 )
1 kl
M, = (3.54a)
]
e (2
% )
(3 )
1 kl
(3 (3
g ky o

and gj and @j are given by (3.46b) and (3.36¢)
respectively.

The system (3.54) is solved in a least squares manner in

the form

MTA M, X, = Mg Ay W, (3.55)



._31_

where A, 1is given by (3.37a). This gives the system
J

N
=

(]
=

1

(=N
wn
()

wn

where ayr b4 and b5 are given by (3.38d), (3.38e) and (3.38f)

respectively.

- (p)

The process for finding the Uj is equivalent to

5@

substituting the solution of (3.56) into the ﬁ;l), 3

and 653)
J

equations of the local MFE system (3.38).
Consequently, to produce an MEM solution at node j we

must solve the system

r d 0 0 a b f r |
1 1 1
0 d 0 a, b2 r,
0 0 a a, b3 l] = r,
0 0 0 &% b4 r,
0 0 0 b4 b5 re

where zj is given by (3.36b) and all other quantities are as

defined in section 3.4.

3.7 Treatment of the Inner Products

We take a typical element k (fig 3.6)

(3.56)

(3.57)
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Fig. 3.6
k1

—k2

§k3

and map onto a reference element R in (£,n) space

Fig. 3.7
n
d\
(0,1) 2
R
3 i —
(0,0) (1,0) > &

thus enabling integrals to be calculated on a standard region.

The transformation is

X =B, v X, t o8- ) x4

and the basis functions Ei and element R are

With this transformation, we have the result

(3.58)

(3.58a)
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[

[f  fy) axdy = [ Fo(g,n) 5 @& dn (3.59)
R

k

lyry

where
f (x,y) = F (§,n)
9x
and EE’ is the Jacobian, Jk, of the transformation
from k to R, given by
x %
13 an
= det .60
Jk e (3.60)
3y dy
ok an
Using (3.58), we have
J = (Xkl = Xk3) (Yk2 = Yk3) = (Xk2 - Xk3) (Y,kl - YkB) (3.61)

and so Jk is constant in each element. Therefore, (3.59)

implies that

[f €x,y) axay = 3, [f F(g,n) dE dn (3.62)
K R
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This result enables us to evaluate the inner products in
the matrix Ck analytically via the ¢ basis fuctions. We

obtain the matrix

-

2 1 1
J
k
Ck = 24 1 2 1
1 1 2
By setting F(x,y) = F(£,n) = 1 we obtain the result
A -k
k 2°

The integrals in Ek cannot generally be expressed in

closed form. We therefore employ 7 point Gauss Quadrature on

(3.63)

(3.64)

the region R and then transorm to global variables using (3.62).

3.8 Element Gradients

Again these are evaluated using the reference element

R. For a function U, taking the values Ukl' Uk2 and Uk3

the nodes of element k, the transformation is

We have the chain rule

(3.65)
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Using the identity

[ ) f
x ax 98 3t
13 an 9x 3y
= :[2
9y 9y on on
3t an \ ox dy
we have
[ b -1
9& 3% 9x 9 9y
ox Yy & an an
_ _ 1
Iy
an 2n by 2y -3y
x oy o0& on g
| \ ) \

Substituting in (3.66) gives

u_ 1,3
9x Jk d

&
Sl
|
15

5

2t
>
Y

Using (3.58) and (3.65), and denoting %g— in the

as my s we have

1

(3.66)
(3.67)
-3x
an
(3.68)
3x
o0&
J
(3.69)

th
k element

.

my =7 | Uy - U, ) Yy, - ¥0) - (U, - u ) (Y, - Yk3)J . (3.70)

k
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It can similarly be shown that, in element Kk,

oU 1
y "7 T - = = = - . (3.
3y n Jk (Uk1 Uk3)(xk2 Xk3) (Uk2 Uk3)(xk1 Xk3) (3.71)

3.7 Element Folding and Parallelism

Clearly, the local MFE (or MEM) process for the
solution of a system of 3 equations in 2-D will break down if
the matrix Ck becomes singular for any element k ox if the
5 x 5 matrix in the system to determine the speeds for node j

becomes singular for any J.

It can be shown that

18 -6 -6
ct- L -6 18 -6 | . (3.72)
xk ©3F
X
-6 -6 18

Consequently, Ck will only become singular if the
element Jacobian becomes zero and, from (3.64), we see that

this corresponds to the element k having zero area.

We have, at time level n + 1



n+1 n *n
= +
xkv ka GE ka
=1,2,3 |
n+1 n -7
ka = ka+ At ka

Substituting (3.73) into (3.61) gives an expression for J2+1

which is quadratic in At. Evaluation of the roots of this

, +
quadratic gives the timestep At for which Jn 1 would

FOLD

equal zero. In order to avoid the singularity of Ck, we must

take a timestep

At = 8 AtFOLD

where 0<6<1 (typically, we take a value 6 = 0.5).

The local MFE system (3.38) may be written as

—
=
—

D p U, R
_j _ _..1
T
P X, R
\ : — =2
where
[ |
d 0 0
D = 0 d 0

(3.73)

(3.74)

(3.75)

(3.75a)
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\
5 Py |
P = a2 b2 4
| 3 ®3 J
’
a4 b4
Q =
b, b,
g, = @) gl@ gyt
=3 j 3
X. =  (x,v)"
=5
— T
= by 5Ty
and
T
By= gz

With this partitioning, we have

and

Substitution of (3.76) into (3.77) gives

T -1 T -1
- P e - P .
(Q D P))_(j R, D 'R,

Any possible singularity of the matrix D is prevented by the

restriction (3.74) which ensures that element areas are non-—zero.

(3.

(3r

(3.

. 75b)

75¢)

754d)

.75e)

.75f)

.75g)

76)

L77)

.78)
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Therefore, the 5x5 system will always have a solution unless

T_
the 2x2 matrix (@ - P D 1P) is singular.

Now
f 3 3 3
1 2 1
& L3 by-g LapP;
l=1 l=1
T -1
(g - PD D) = (3.79)
3 3
1 1 2
by 73 .Eaibl L .Ebi
i=1 i=1
h)
ql q2
= = Q*, say.
9y 93

In the MFE program, we test for singularity by checking if the

eigenvalues A, ,A

1 of ©* are widely spaced in modulus.

2

It is easily shown that

A 1+ V1 - 4c I

1
— = (3.80)
A2 1 -V 1 - 4o
where
det Q*
0 = ————— (3.81)

2
(q1 + q3)
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Consequently, we check to see whether the quantity {o is small.

(In the event that q, * a5 = 0, we test the magnitude of det (Q*)).

3

If this is so then we adopt the values of kj and Qj
that were calculated at the previous timestep and insert these
into (3.76) to determine gj'

For MEM, the test is the same, but now there is no matrix

PT in the partitioning of the system and so Q* = Q.

MFE/MEM Method for The Model Problem

4.1 Discretisation of equations

Denote U, V, Z as U(lj, U{Z}, U(3) respectively (see §7.1)

With this notation, and using the notation in section 3.4, the

right hand sides L(l), L(z), L(3) of equations (2.1), (2.2)

and (2.3) become, in element k,

2 2
(1) J/ (1) (2)
FU U + U
L) o g 2 (D (3) s aw® @
n o+ gt
: 2 7
FU(2) v/U(l) N U(2)
L(2) - U(l)m(2)_U(2)n;2)_gn£3) ~ _ QU(l) (4.2)
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3 2 2
L(3) = —U(l)(h + m( )) —U( )(h + n(3)) (h + U(B))(m )+n( )) (4.3)
k Yy k
These expressions are used in the evaluation of <¢kv'L(l)>
via 7 point Gauss, with function values U(l) given by (3.65)
with the appropriate superscripts and values of & and n that
. . (1) (1) .
give the sample points. The mk and nk are given by (3.70)
and (3.71) with the appropriate superscripts.
It should be noted that for the purposes of this work we
take a constant value for the bed depth h(=20m), and so
hx = hy = 0. The program does, however, allow for the
introduction of a variable h.
4.2 1Initial Conditions
We take as initial data an exact solution of the
system
= -g2 4.4
Ut g X ( )
V, = -g2 .
v "% (4.5)
Z =-h(U + V) (4.6)
t X 0%

which is the

wave equation in 2-D.
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We expect that the problem described in section 2.2 will
be dominated by motion in the y-direction and so we use the

solution given by

U=20 4.7)
Ag 2w y

Ve——sin| — (— -t (4.8)
V gh p V qgh

2m y 1
7 = A sin B (— - t) (4.9)
V gh
where
A = tidal amplitude (1M)

g
I

= tidal period (12.42 hrs)

and Vgh is the gravity wave speed which we take to be a constant

(14M/S) .

4.3 Boundary Conditions/Treatment

We look to impose a constraint on the movement of
boundary nodes in order to ensure that the finite element grid

moves with the flow.
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One possible constraint is to assign a value to the normal

velocity ﬁj of a boundary node Jj, given by

N, = X.cos8, + Y_sin®_ (4.10)
J J J J J

where Gj is the average of the angles that the portions of

boundary on either side of node Jj make with the X-axis.

This constraint can be imposed in the form

= .
1}

Ucosf, + Vsin®,
J J
(4.11)

(1)

U cosej + U(z]

sinb , ,
J

that is the normal velocity of the boundary point J is equal

to the normal velocity of the flow at that point. However, when
this treatment was used in the MFE/MEM program, it was found that
several of the boundary nodes picked up spurious values of ij

(2)

of orders of magnitude many times greater than V (= Uj ). This

was due to spurious velocities being generated in the tangential
directions.
Consequently, a more rigourous constraint is adopted whereby

the nodal velocities éj' Qj of a boundary node are overwritten

2
oV, o
J
on the left hand boundary, in order to preserve the straight

as respectively, and we set kj = 0 for all nodes

I

coastline.

(3)

We also specify the rate of change of elevation ﬁj



for a boundary node j, which is taken to be the value of Zt

given by the solution (4.9).

Results

The methods outlined in sections 3 and 4 have been programmed
in FORTRAN and run on the NORD system at Reading.

The program sets up an initial triangular mesh on the region
(XW,XE) x (YS,¥YN), with NX nodes along (XW,XE) and NY nodes
along (Y¥S,¥YN). 1In all the examples presented here we use values
of XW =0, XE = 10000 M, YS = 0, YN = 50000 M and
NX = 5, NY = 25. This generates a mesh of 113 moving nodes and
168 elements, as in Fig. 5.1. We use initial data given by
(4.7), (4.8) and (4.9). The initial functions for V and 2
are shown in Figs. 5.2 and 5.3.

Fig. 5.4 shows the breakdown of the MFE method for the system
of shallow water equations. It can be seen that some of the
elements in the mesh have become stretched or compressed and as
a result the timestep (chosen to prevent element folding) has
become truncated to a value less than a specified tolerance
(10_6) and the solution process has ceased. Figs. 5.5, 5.6
and 5.7 display U,V and 2 at the breakdown time. It is
noticeable that the functions V and Z have not deformed much
from their initial shape of elongated sine curves. However, the
elelevation 2 is lower over the whole mesh, which accounts for

the expansion of the region since the amount of water enclosed
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should remain the same. The most striking feature of the graphs
is that the horizontal velocity U, initially zero everywhere,
now resembles V and 2, but is an order of magnitude lower over
the region. Numerical output for this example reveals that large
velocities are generated for some of the internal nodes, thus
causing the folding.

Figs. 5.8 - 5.11 show that the MEM method fares no better
for the same problem. Although it runs for more timesteps (66
as compared to 47), the breakdown time is shorter (114 secs as
compared to 472 secs). Once again, the quantity U seems to
have picked up a sine wave and the nature of the grid distortion
is similar to the MFE case.

In order to assess the accuracy and capabilities of both
methods, the program was used to solve the wave equation given

by the system (4.4), (4.5) and (4.6).

Figs. 5.12 - 5.15 display the MEM solution to this system.
It is apparent from Fig. 5.12 that the grid collapses, after just
11 iterations, in what appears to be a perfectly symmetrical way.
The exact solution indicates that U should be zero everywhere
and Fig. 5.13 shows that the MEM solution gives |U|<1.4 x 1074
at the nodes. Comparison of numerical output for V and Z
with the solutions (4.8) and (4.9) reveals 3 decimal place
accuracy at all the nodes. However, scrutiny of the nodal speeds
reveals that 46 of the 80 internal nodes have a vertical speed

of either 14.0 M/S or 14.1 M/S. This indicates that motion is
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being influenced by gravity waves, which is consistent with the
MEM propery of following dominant waves. Therefore, it is
inevitable that the mesh will collapse, since nodes on the upper
boundary are moving with speed V.

The same problems are encountered when solving the wave
equation using MFE (Figs. 5.16 - 5.19). Fig. 5.16 shows that
the mesh collapses in a similar way, although the method does
run for several more timesteps than MEM and has a longer breakdown
time. The solutions obtained for V and Z are just as accurate
as MEM, but the maximum and minimum values of U have increased
in modulus by an order of magnitude.

The nodes on the boundary, whose velocities are overwritten
into the MFE/MEM system, pick up accurate nodal values of U,V
and Z 1in the above examples of the wave equation. In view of
this it was attempted to produce a solution of the wave equation
with all internal horizontal and vertical nodal speeds prescribed
as the values of U and V at the node. This solution is
presented in Figs. 5.20 - 5.23 and referred to as MEM, although
the systems for MFE and MEM are the same when all the speeds are
specified.

Fig. 5.20 shows that the mesh is not discernably distorted
after 100 timesteps. Indeed, the maximum time step of 60 seconds
has been taken throughout. However, Figs. 5.21 - 5.23 display
instability which is probably caused by the fact that we are forcing
nodes into the wrong positions.

This instability is also apparent in the solution of the



shallow water equations with prescribed speeds (Figs. 5.24 - 5.27).

Conclusions

In this work we have solved the 2-D system of shallow water
equations using the local formulations of the Moving Finite
Element method and the Mobile Element Method.

However, using the schemes presented in section 3, it is
impossible to produce a solution to the system for any significant
amount of time. This was due to the tendency of freely moving
internal nodes to move with speeds much greater than nodes on
or near the boundary, thus causing the grid to collpase.

A solution of the wave equation by these methods indicated
that a probable reason for the high nodal speeds in the y-direction
is that the nodes are following gravity waves.

In future work, a variant of the above methods may be
developed in which the nodes are not mainly influenced by the
speed of the dominant wave. It is also possible that the spurious
velocities arising from other sources may be countered by the
introduction of regularisation terms or implicitness into the

scheme.
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Appendix (A. Priestley)

1f, after solving the
write x =u , y = v, the
However, an improvement is

solving (3.57) so that a,

a o0 O ¥
o 4 o Y
O O a W |

In that case the solution

breaking down.
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system (3.57) in the MEM approach we over-

solution proceeds to about 3,700 seconds.

obtained by putting % =u , y = v before

v, 2 is the solution of

r1 - aiu - blv
= r2 - a2u - b2v (A1)
r3 = a3u - b3v

continues until about 9000 seconds before
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