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Abstract

The Moving Finite Element method is reviewed and broken down into a
number of steps. The central step is a semi-discrete procedure which is
exact for class of one-dimensional scalar nonlinear PDE’s, the resulting
ODE system approximating the equations of characteristics. For more
general PDE’s the procedure is preceded by a projection step which is
element-by-element; for higher dimensions it is followed by a projection
step which is node-by-node .

The semi-discrete procedure is shown to be a Legendre
transformation from the data to the nodal velocities, which has a useful
geometrical interpretation based on an envelope construction. With
projection included it becomes an approximate Legendre transformation of
general applicability. The tranformation may also be used to construct
a dual PDE which may be easier to solve numerically.

The structure is used to analyse nodal movement and to give new

recipes for time-stepping and the avoidance of singularities.
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1. Introduction

In recent years there has been much interest in the quality of the
computational grids needed to resolve the numerical solution of
differential equations . Many workers are now using irregular grids and
the construction (and reconstruction) of these grids together with the
quality of the solutions obtained on them has become a major
consideration. Whilst the original motivation for irregular grids was
economy of gridpoints, particularly in the regions where the solutions
are smooth, it is now clear that for some problems sufficient resolution
may be unobtainable practically in any other way in regions where the
solution varies rapidly . At the same time considerable care is
required in the design of grid variations to ensure that the solution is
enhanced and not degraded by the character of the grid.

The Moving Finite Element (MFE) method of Miller ([22]-[25],[7])
belongs to the class of adaptive grid methods in which the mesh is
evolved simultaneously with the solution. In the MFE method the
evolution of the mesh and the solution are generated from the governing
differential equation in the manner described below. The method has
been used by many authors [22]-[25].[23].[16].[27].[28].[33].[4].

[157, [19] to solve problems in which sharp features need to be resolved
and tracked.

In this report we discuss the connection between the MFE approach
and the Method of Characteristics. The moving grid framework provides a
setting which the Legendre transformation may be used to good effect.
The associated envelope construction also yields a nice geometrical
characterisation of the MFE approximation.

The form of the report is as follows. In the latter part of this

introduction we summarize the MFE approach. In section 2 we discuss an



idea originally developed in [1] for finding semi-discrete exact moving
finite element solutions in one dimension. This is used as a framework
in which to study projections of general operators in sections 3 and 5.
Section 4 is devoted to the Legendre transformation and the different
descriptions of the PDE and its discretisation. The framework is used
in section 6 to discuss PDE’s in higher dimensions. The advantage of
the transformed variable is brought out and this is also exploited in
section 7 on time-stepping strategies. In section 8 we discuss how
general Legendre transformations can be approximated in this way and in
section 9 draw some conclusions. This section also contains some
practical points on dealing with singularities.

We recall the Lagrangian framework and approach to the derivation
of MFE given by Mueller and Carey in ref. [28]. Consider the partial
differential equation

& - (1.1)
where u = u(x,t) and ¢ is an operator containing all derivatives in
the space variable x . Define a coordinate transformation (assumed

non-singular) between x,t and new independent variables §,T by
x =x(E.7) . t=7;: ulE.T) = ulx.t) (1.2)

for which the partial derivatives satisfy

Qu_ou, Bugf _du_Qudx Ou_oxdu
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(1.3)



Then (1.1) becomes, in a Lagrangian frame,

”~

du du 6;
Ir " Fxar - (1.4)

. . .1
which, using the notation

. du . Jx du

u =g, x-a. U, = 5o (1.5)
may be written as

u-ux-%u=0. (1.6)

To determine both u and x from (1.6) requires a further equation.
If u and x are restricted to functions U and X , belonging
to sets of admissible trial functions, (1.6) becomes a residual,

gu 48U 8X ~ [auax] (1.7)

S =2y = Rle—= ==

or Ox Ot R aT'or
say, no longer zero in general. There are however special situations
where R will be zero and these are considered in detail in the next
section. It turns out that there is enough generality in these cases to
provide a useful framework for comparison with more general situations.

When R # O the problem of determining the time derivatives of U

and X may be cast as a least squares variational problem by minimising

1Here and in what follows u isa notation for GE/XE (see (1.3)).



the L, mnorm of R over il and 7= . This gives the weak forms
2 ar oT
<R,y >=0 < R.uxx >=0 (1.8)

for all admissible test functions V(= 6&) and x(= 6&) ;

where <R,S>= sz RS wdE (1.9)
§

1

(w being a weight function)
and ||R||§ =<R,R> (1.10)

is the L2 norm of R with weight w defined over a suitable range
(§1.§2) of £ . Thus (1.8) gives two equations to determine U and
A .

Introducing finite element basis functions aj(f) in the § space

(see fig 1.1) we can write U and X in the forms

<>

j(m)ay (8) (1.11)
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Fig. 1.1



where the Uj(T) are time—-dependent coefficients, and the T time

derivatives are

where

Then

which can

L]
over U,
i

0=)0.a, X=)Xa,
E JaJ z JaJ
J J
~ - au X
jad, - e, % =51
or or J or J or

xX i Vi
[4)

be seen to be equivalent to minimising

|16 - 0% - wll,

and ii , i.e. Miller’s method [22],[23]. Constraints,

(1.12)

(1.13)

(1.14)

(1.15)

for

example a lower bound on the Jacobian of the transformation or upper

bounds on the relative nodal velocities, may be introduced through the

use of penalty functions (see [22],[23].[28].[17].[20]).

Substitution of (1.11), (1.12) into (1.14) yields a nonlinear

system of

ordinary differential equations of the form

Ay = gy)

(1.16)

where A(y) is an extended mass matrix and y 1is a vector of the nodal



o

and coordinate unknowns ﬁj and Xj . The ODE system (1.16) may be
integrated from specified initial data to obtain ﬁj and ij at a
later time. This is a method of lines [15] and, with piecewise linear
elements, is identical to Miller's method [227,[23].

The matrix A(y) in (1.16) consists of blocks of inner products of

basis functions of the form
J a.a, wdx |, J aa, U wdx , (1.17)
i7j i) x

where w 1is the weight function used in the definitions of the L2
norm. In Miller’s original method [22],[23] w was taken to be 1 but
in more recent work Miller [25], [7] uses a gradient weighting
w = (1+U;)_% , producing the Gradient Weighted MFE method (GWMFE).

With piecewise linear basis functions aj , any w depending only
on Ux is piecewise constant and may be taken through the integral sign

in (1.17). In particular, the decomposition of A(y) demonstrated by

Wathen & Baines [34],[3],
T
A(y) =MCM (1.18)

remains valid. Here C 1is a square block diagonal matrix, each block
being the corresponding elementwise mass matrix, and M is an assembly
matrix, also block diagonal (and square in one dimension) depending only
on the constants Ux

As a result of (1.18) the method is a local method in the sense
that ﬁj.kj depends only on values of Uj'xj at neighbouring nodes, as

shown by Baines [2]. This is consistent with the connection with the
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method of characteristics (see §82). However the result is also true,

less naturally, for diffusion operators.

In solving

Mony = g(y) (1.19)

Baines and Wathen [3] write the method as a two step scheme

|o*

CW = (1.20)

My = W (1.21)

with MTQ = g(y) ., the first step being a local elementwise projection
and the second step being a transfer of element information to the

nodes.
In higher dimensions and in certain approaches to systems

[3].[4]1.[12].[13] the local character of the approximations is preserved

if the procedure

min ||y || (1.22)
Y

which produces (1.19) is replaced by

min | |C(ug-W) || (1.23)
y

where CD is the diagonal of C . Then (1.19) is replaced by

M'C My = W = He S (1.24)
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which is again local. The latter procedure may be shown [3] to be
equivalent to a Petrov-Galerkin approach or, as shown by K. Miller,
simply to the use of a different norm for R (see ref. [26]). We
shall refer to (1.19) as the global method and to (1.24) as the local
method, although (if penalty functions are absent) they are
indistinguishable for one-dimensional scalar problems.

If nodes are collinear or coplanar in the initial data (or
subsequently), the matrix A(y) 1is singular as a result of M becoming
singular. In that case (1.16) is not solvable (unless the rank of g(y)
is reduced correspondingly). Wathen & Baines [33] suggest a
modification to MFE in which the velocity of the offending node is
overwritten with a velocity averaged over neighbouring nodes, but other
authors combat the situation with penalty terms in the minimisation of
[IR{] .

Similarly, if nodes overtake (perhaps as the result of inaccurate
time integration) the matrix C of (1.20) becomes singular. For
problems involving diffusion, Johnson, Wathen & Baines [19] (who use
explicit time integration) consciously limit the time step so as to
avoid node overtaking, but other authors again rely on regularistion
procedures.

Time integration of (1.16) is usually carried out with finite
differences, typically forward or backward Euler or a stiff solver.
Johnson, Wathen & Baines [19] use explicit Euler which fits in well with
controlling node overtaking, but other authors,e.g. [22]-[25],.[7].[16].
[17].[27].[28].[15] use implicit methods in association with
regularisation of the underlying minimisation. The former approach is
faster per time step whereas the latter is more robust: in practice the

time step is generally restricted by either node overtaking or
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convergence criteria.

The original MFE papers of Miller [22],[23] contained
regularisation penalty terms aimed at combatting the singularities
mentioned above. Other authors, notably Mueller and Carey [28], have
used the same approach and various strategies have been used to
construct such penalty terms [5],[20]. Generally the minimisation of

|IR|| (see (1.15)) is replaced by minimising

[IRI |2 + €2[]|P][? . (1.25)

where P 1is the penalty and e a suitable constant (chosen by Miller
to be of the order of the truncation error). The link with the method
of characteristics in section 2 is lost when this tactic is used, but
the technique is very effective in practice.

In this report we discuss the connection between the MFE approach
to solving PDEs and the Method of Characteristics. We also show that by
using the Legendre transformation and an envelope construction we can

clarify the structure of the approximation.

2. Semidiscrete Exact Solutions in One Dimension

Writing (1.7) in the form

U-UX-9U=R (2.1)
we first investigate those forms of %U for which there exist ﬁ.i ;
belonging to the space Sh of piecewise linear continuous functions,

for which R vanishes identically.
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Since Ux is piecewise constant (= UE/XE) the Lagrangian
derivative U - Uki lies in the space of piecewise linear discontinuous
functions, Dh say. Thus, from (2.1), if U e Dh we can find
U0.X e Sh such that R vanishes. We shall first demonstrate how this

may be done for the equation

u + H(u ) = u - ux + H(u) =0 (2.2)

in which case (2.1) with R = O becomes

0-UX+HU) =0 (2.3)
U U -
3 3 - > E
X X 1
; 3 - €
Fig. 2.1. Fig. 2.2.

In (2.3) the first term e Sh and the other terms e Dh . To

extract the nodal values ij'ﬁj consider the jumps in each term across
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a node j (see Fig. 2.1.). Using the square bracket notation

such jumps we have from (2.3)

0 - [U]; Xj + [H]; =0

since U and X are continuous at each node. Provided that

we find that

X = [H1,/[U, ],

[]. for

(2.4)

[Ud; #0

(2.5)

Dividing (2.3) by Ux and considering the jumps in each term of the

resulting equation across node j gives

-1 =« -1
Uj.uU,-0+1(U ., =0
[v,1;" 0, [v, Hl;

from which

- -1 -1
0, = -[U, HI/IU]

(2.6)

(2.7)

Now, considering jumps in Ux' U and X across an element k

(see Fig. 2.2), using the bracket notation { }k for such jumps, we

have using (2.3)

0, = &y 00,] = [0 - vty

= - {H}/{X}, = O

(2.8)

(2.9)
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since H(Ux) is constant across an element.
Taking the limit of (2.5) as [Uk]j -0 with Xj fixed, and the

limit of (2.9) as {X}, - 0 with (U fixed, leads to the equations
k x’k

. dH .
p- A o =-_y (2.10)

(2.11)

Equations (2.10)-(2.11) are the characteristic ODE’s for the PDE (2.2)
(see [10]).

Now consider the equation
u, + H(x.ux) Su-ux+ H(x,ux) =0 (2.12)
with H linear in x . Equation (2.3) becomes
U - UXX + H(X.UX) =0 (2.13)

and since H(X,Ux) is linear in X there is an exact solution for

U, X in Sh ;

By the same argument as before

ij = [H];/[U, ;. 0x = - {H},/{X}, (2.14)
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. -1 =]
and L P (2.15)

with limits as [U]j-a o, {X}ka 0

- _&H - _ _8H
X = Bu_ Y T 7 B @ 15
X
and
Nz s e (2.17)

Equations (2.16)-(2.17) are the characteristic ODE’s for the PDE (2.12)
and equations (2.14)-(2.15) are approximations to these equations.
Similarly for the equation

u, + H(x.u,ux) =u - ux + H(x,u,ux) =0 (2.18)

with H(X,U.Ux) linear in X and/or U (but not bilinear), equation

(2.14) and (2.15) still hold, but the limits are

+ OH . 6H dH

*=a, T Ta 'k (2.19)
) 6H
u=-H+u 53; (2.20)

which are the characteristic ODE's for (2.18).

The solutions of (2.14)-(2.15) therefore approximate the properties
of the solution of (2.2), (2.12) or (2.18) by characteristics [10],[13],

although the domain of dependence is spread either side of the
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characteristic.

In classical PDE theory [10], if u is absent from H(x.u,ux) in
(2.12), equations (2.16) form a Hamiltonian system, decoupled from
(2.17), for the independent calculation of x and u G the function u
may ultimately be calculated from (2.17). Similarly, in the discrete
case (2.13), with U.X e Sh ’ ﬁxe Dh , the functions X and ﬁx can be
calculated independently and the function | may ultimately be
constructed from (2.8).

These results hold for semidiscrete solutions of equation (2.12)

(or (2.18)) with H linear in x (and/or u).

Some examples are

(i) u, - u; =0 (2.21)
for which
X 5= W)= Uy (t’Jx)k =0 (2.22)
t’Jj = - (U (U ) (2.23)

where L,R refer to elements to the left and to the right of node j .

(ii) u +u =0 (2.24)
for which
[ J _ LJ _ 2
XJ = Uj (Ux)k = Ux (2.25)
U.=0 (2.26)
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An example which is not of the given form is

(iii) u + f(u)x =0 (2.27)

the standard conservation law. By solving instead

w, + £(w) =0 (2.28)

(which is of the given form) for w and putting u = W, We can obtain
the solution of (2.24) indirectly. For this equation the X,0 and U
are given by (2.5), (2.7) and (2.9) with u, H replaced by w, f .

Hence

R = [£1,/1U]; 0 =0 (2.29)

in line with (2.22), (2.23) when f(u) = % u® (although U here is
piecewise constant).

Note that the jump condition at a shock for the conservation law
(2.24) is the first of (2.29) with kj interpreted as the shock speed.
Shocks may be modelled by enforcing a simple discontinuity in u(= wx) ,
corresponding to constraining (ﬁx)k = 0 when a segment of the solution
becomes vertical (and allowing ﬁk to go free) (ref. [2]). Moreover,
the link with characteristics ensures that a geometrical entropy

condition is approximately respected [29].

3. Local Projections

If 2U ¢ Dh the above results are not valid since (2.13) can no



- 19 -

longer be satisfied with U, Xe Sh . However we may project %U into
Dh and then proceed as before. Since Dh is the space of piecewise
linear discontinuous functions the projection may be carried out in each

element separately.

%100 T e o(95)
1
1
K " K ’
Fig. 3.1
For example, in the L2 case the normal equations are
< W1¢1 + W2¢2 -4U,¢>=0 (3.1)

where ¢ 1s one of two possible linear basis functions in a single
element (Fig. 3.1) and the W's are coefficients which already appeared
in (1.20). By combining the ¢'s to form &i and - Ukai (c.f.
Figures (1.1),(3.1)) and using (1.21), we see that (3.1) is equivalent

to minimising
[IR[ly = 110 - U X - ], (3.2)

over ﬁi and ii , i.e. Miller’'s method [22],[23]. However we
emphasize that (3.1) is a local elementwise projection involving only
the solution of a 2 x 2 system (see ref. [3]).

Consider now the equation

u + H(x.u,ux) Su-ux+ H(x,u,ux) =0 (3.3)
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where H 1is a general function. Let the result of a set of local
projections of H(X.U(X).Ux) into Dh be ﬁ(X.Ux) where H is linear
in X 1in each element. (Note that H will not contain the function U
within the element in question although it will contain values of U
(and X) at the end points of the element). Then, by the argument in

section 2,for the projected function i

<
1

= [f] /10,1, (0.), = - {Hy, /{X} (3.4)
J-x] x’k Kk k

Cle
]

~[u; " ] j/[U;l]j (3.5)

as in section 2. We recall that if u 1is absent from (3.3), equations
(3.4) form a decoupled Hamiltonian-type system.

For example, for the conservation law
u, + f(u)x =0 (3.6)

we take the local projection of f(u)x which in the L2 case is given
by, say

f(U)x = - W1¢1 - W2 ¢2 (3.7)
where ¢1.¢2 are local elementwise basis functions (see fig. 3.1) and

WI.W2 are coefficients satisfying

2
W $
C[w;] - -J £(U), L;] dx (3.8)
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over each element, where C = {Cke} - Cke = < ¢k,¢e > . The

T

eigenvectors of C are (1 1)T and (-1 1)° with eigenvalues %-{X}

and é-{X} respectively. So

2
= (X} (W, #W,) = -I £(U), dx = - {£(V)} (3.9)
1
and
2 2
Ly = -J’ £(U)_ {¢} dx = - [f(U) + £(U), - 2| £(U) dx] (3.10)
6 X 2 1 {X} )
1 1
from which, in particular
U, = - {EOMX} = (N/{X) (3.11)
2
- iz[f(U)z + £(U), - % J £(U) dx] . (3.12)
x) )

Now consider the set of local elementwise projections of
H(X,U(X), Ux) into Th . the set of piecewise constant functions on
the mesh. Denote this weaker projection by ﬁ(Ux) . Then by the

argument in section 2, for the weaker projected function H

e
1}

[ﬁ]j/[ux]j (ﬂx)k =0 (3.13)

Cle
i}

- o ﬁ]j/[u;ljj . (3.14)
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For this weaker projection, therefore, the slopes Ux do not alter
with T . (The projection is of Petrov-Galerkin type (see ref. [3].)
In the above example, take (3.7) with W1 = W2 =W . From (3.9),

(3.13),

W= - {f(U)}/{X} (3.15)
[{£(U)}/{X}], (3.16)
X, = —
h U]

The use of penalty functions in the projection will generally
destroy its local character. Other constraints, such as demanding that

the nodes be fixed, will do the same.

4. Legendre Transformations and the Envelope Construction

We now introduce the Legendre transformation which plays a central
role in describing the structure and its approximation.
It is well known that the relationship between a function u and

its slope m ,

m= 3= (4.1)

generates a Legendre transformation between x and m (ref.[30]).

Inversion of (4.1) determines another function v(m) such that

X = a; (4'2)
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where v takes the values of

mx - u . (4.3)
Here u and v are Legendre dual functions satisfying

u-mx +v=0. (4.4)
The symmetry implies that x is the slope of the v(m) function.

Note that if u(x) is a straight line, v(m) is constant, while

if u(x) 1is only piecewise linear in x , each piece generates a point
value of v(m).

Similarly the relationship (first of (2.10))

X = = (4.5)

from the theory of characteristics for the PDE (2.3) generates a

Legendre transformation between u, and x which has the inversion
u =% (4.6)
dx
where G(i) is the Legendre dual function H(ux) satisfying
H-ux>'<+c=o. (4.7)

From (2.2) we identify G as ﬁ(i) . In dynamics G and H are the

Lagrangian and Hamiltonian functions.
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When H contains x as well as u . as in (2.12), (4.5) is
replaced by the first of (2.16) and x acts as a passive variable in
the theory. The same is true if H contains x, u, and u , as in

(2.18), when both x and u act as passive variables.

In what follows the notation m will be used for u and M for

It is useful to obtain the equation corresponding to (2.2), (2.12)
or (2.18) in terms of Vv , using (4.4). Differentiating (4.4) with
respect to T we have

U-mk -mk +v =0 (4.8)

from which, using (4.1) and (4.2), equations (2.2), (2.12) or (2.18)

become
x’r—vmﬁu-H=o. (4.9)

From the second of (2.16) or (2.19) there exists a Legendre

transformation between m and x (see (4.2)) which has the inversion

v =-= (4.10)

The dual function E satisfies
H+vm+E=0 (4.11)
where, from (4.9), we deduce that

E=-v (4.12)



The Legendre transformation has an envelope construction which will
be useful in characterising approximations ([30],[31]). We describe
this construction in relation to equation (4.5). For each point P of
initial data (see Fig. 4.1) we may evaluate u  and H(ux) and plot
them as a point L in ux.H space (Fig. 4.2). Moreover, for each
value of ux,H . (2.2) is the equation of a line, denoted by £ ,
in x,u space (Fig. 4.3). As P varies along the curve of inital data
in Fig.4.1, the point L in Fig.4.2 traces out a curve and the line ¢&
in Fig.4.3 traces out a pencil of lines (envelope). Fig.4.2 is the
point-line dual of Fig.4.3 (ref. [30]). The construction exhibits the

Legendre Transformation between the dual functions H(ux) and ﬁ(i)

geometrically.
u
./
s
—--1/
» X
Fig.4.1
H‘
L
L
/ -1
—u %

Fig. 4.2 Fig. 4.3
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In the discrete case discussed in section 2, Ux =M is piecewise
constant and therefore takes only discrete values, one for each cell, as
does H(M) (see Fig. 4.4). The data is therefore represented in m , H
space as a series of points Lk , each of which determines a line ek
in the dual x,u space (fig. 4.5). (If the discrete points in m, H
space are simply sampled values taken from the continuous data curve
H(m), then they are the vertices of a chordal polygon connecting points

on the data curve.)

H U -
¢ kat
£y
4 L
/—: k=t
> U ' > X
X Xj
Fig. 4.4 Fig. 4.5

From equation (2.5) the velocity kj of node j is given by the

slope of the line joining two of the points, Lk and Lk_1 say, on
the H(m) curve. By the duality of the Legendre transformation it
follows that kj is at the point of intersection of the two
corresponding tangents ek and ek_l to the envelope in X, U space
(see Figs 4.1, 4.2). Moreover ﬁj must also be at this intersection
since it satisfies (2.3).

Since X and U are linear in § (and therefore in each other)
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within each element, they are given by intermediate points along each
tangent, corresponding in the dual diagram (Fig. 4.4) to sets of lines
through each discrete point on the H(m) curve.

In generalising to H(X,U,M) with H linear in X and/or U the
same construction holds with X and/or U as passive variables, the
relationship (2.14)-(2.15) still holding. For more general H the
projection of section 3 is needed to produce H in the right space to

enforce the properties X, U e Sh , Me Th i
Finally, in this section we return to equation (4.9) for the

variable v dual to u . Let H(x,m) be linear in x of the form
H(x,m) = Ho(m) + le(m) . (4.13)
Then (4.9) becomes
v - xm - H (m) - xH (m) =0 . (4.14)

There is an exact solution for the discrete approximations

VMeT ,Xe Sh with

Mk = - H (M) \'/k = H (1) . (4.15)

The first of these reproduces the second of (2.14) and is a set of

decoupled ODE’s for the Mk . Once these have been calculated the

second of (4.15) enables Vk to be found.

The inversion of the Legendre transformation, from M, V to X, U,

is effected by applying the same argument used in section 2 to the



discrete form of (4.4)

U-MX+V=0 (4.16)

yielding (c.f. (2.14) and (2.15))
-1 -1
Xj = [v]j/[M]j Uj = - [M V]j/[M ]j . (4.17)

This is an example of a Legendre transformation with distributed and
accumulated singularities (ref. [31], p.112).
In the case of more general H the projection of section 3 onto i

must be done first, converting (4.15) to

W o= - ﬁl(Mk) \'/k = ﬁo(Mk) . (4.18)

Note that ﬁo and ﬁl depend on the current configuration of the
elements.

We return to this aspect in section 7 on time-stepping.

5. Second Order Equations in 1-D

For piecewise linear approximation the second order operator L
exists only in the sense of delta functions but L2 projection into the

space Dh is possible. For example if we write

o = W

k.1 %1 * W2 %2 (5.1)

(c.f. (3.7)) for the L2 projection of ¢u into Dh ,

Miller’'s mollification procedure [23] or the Hermite cubic recovery

then using
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W

method [19] in (1.20), the W k.2

k.1 ° of (5.1) are

(M, *+ 3 - 2 )
(Mg - M + M)

(5.2)

xP‘l'-‘ ;J‘“"“

where Mk denotes Ux in element k and hk = {X}k = Xk = Xk—l is
the length of the element.

This gives from (3.4)

(- M) X = %k( My M 2 ) - t (M- M+ ¥y o)
(5.3)

and

hifly, = 3(M,, - 2M, + M) - (5.4)

The latter is evidently the difference form of a linear heat equation,
although we should note that hk varies with T . The former is a

difference form of

-—hjijj mj+%— 4% (5.5)
'—.dﬂ -4 . .
where m' = Ix and hj =% (hkf hk—l)' taking upwind forms of the

derivatives on the right hand side.

Clearly from (5.3) there is no finite solution for Xj when

Mk = Mk—l . Moreover in this case Xj+1 satisfies

Oy~ ) Xy = § (Mgt - 2) - 22 - ) (56)
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1 (Mpot3¥ -20)

: 2
X = — = . 5.7
PR TR T W, &0
Adding a multiple of Mk— Mk—l gives
g .2 __1 (Myyot3M 3 ) . (5.8)
# by By Mer1 Mg
_ 2 m ' '(6) 5.9
By b1 () (5.9)

by the Mean Value Theorem, where 6, ¢ € (Xk’xk+1) . It follows that if
hhy ; <2 min Im* (¢) |/max|m' ‘' (8)] (5.10)
¢ 0

then kj+1 > 0 and node j+1 moves away from the singular point j .
By a similar argument node j-1 also moves away from node j , which
therefore has the character of an anti-cluster singular point.

It is interesting to note that the leading term in the Taylor

expansion of the right hand side of (5.3) is
~ 2hm"" (5.11)
whereas that of (5.5) is

hom'' (5.12)
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the difference arising from the subtraction of the approximations to m'
on the right hand side of (5.3). The implication is that if m' were
better approximated (perhaps by higher order finite elements) then the
sign of Xj would be reversed and a singular node j for which

Mk = Mk_1 (near zero curvature) would become a cluster point,
completely at variance with how nodes might be expected to move. This
is not so surprising since, in order to approximate ﬁx = 0 (see (2.10))
(which is evidently unnatural in a diffusion process), nodes would have
to move immediately to points of maximum slope where the curvature is
zero. In practice, linear finite element approximation fortuitously
reverses this tendency, leaving however a question mark over higher
order approximations.

A consequence of the anti-cluster property of the singular points,
as pointed out by A.Wathen [36], is that nodes do not pass through zero
curvature points and are confined to regions between then.

Now suppose generally that one of the slopes, say Mk , becomes

very large. Then from (5.3), we have approximately

. M 3. (5.13)

Moreover, if the large slope is associated with small hk (when nodes
become very close but function values stay apart) we have the

approximations

Do

(5.14)

o

3
J h, j+1
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indicating from the signs a natural springing effect, first noticed by
P. Jimack [18].

We end this section by looking at the form of Vk in (4.15).
Splitting the U of (5.1), the negative of H , into its constant and

linear parts gives

H = Ho + Hlx = —(Wk.1+ Wk'2) - (wk,2— Wk,l)x (5.15)
which leads via (5.2), consistently with (4.15), to (5.4). The
corresponding equation for Vk is

e 1

Vk = - (Wk'1+ Wk’z) = E;{Mk+1 - Mk—l) . (5.16)

Once Mk is found from (5.4), V, can be found from (5.16). Then

k
(4.17) may be used to recover Xj and Uj .
We observe that the right hand side of (5.16) is the projection of

u into the space Th .

6. Higher Dimensions

The argument in this section is given for two dimensions only but
generalises to any number of dimensions.
The PDE corresponding to (2.2) in two dimensions, using an

extension of the argument in section 1, is

u + H(ux,uy) Su-ux- uyy + H(ux,uy) = @ (6.1)

and, corresponding to (2.1), (2.3) we have

R=0-UX-U¥+HU.U) (6.2)



=~ BBl =

where ﬁ.k.? € Sh' H(Ux’Uy) e T, , these spaces being respectively the
space of piecewise linear continuous functions and piecewise linear
constant functions on a triangular partition of the (§,n) plane (where
n is the second reference variable).

In one dimension it was possible to find U.X such that R =0
but in higher dimensions this is no longer true. The reason is that
U - UxX - UyY belongs to a particular subset Eh of Dh , the space of
piecewise linear discontinuous functions on the triangulation. The
subset Eh , which depends on Ux'Uy , does not necessarily contain
H(U ,U ) , which e T, . Moreover, if H is H(x,y, u_,u ) where H

X'y h X'y

is linear in x and y , then H(X.Y.Ux.Uy) e D, but again H e Eh

h
in general, so that we cannot find ﬁ.i.? such that R

0 .

The difficulty can be resolved by a projection of H into Eh ;
reminiscent of the projections H >H and H - H discussed earlier.
The projection into Eh is however a minor projection in comparison
with the earlier ones, which were from infinite spaces to finite ones.
(see ref. [3]).

Thus in the case of a general H we would first project
H - H locally in each element, obtaining He Dh . Then a second
projection of H from Dh to Eh would be carried out, enabling
U.X.Y to be chosen such that R=0 .

To make the necessity for this second projection clearer consider a
node j and let the suffix k range over its surrounding elements.
After the projection H e'ﬁ(X.Y.Ug.Uy) in which H is a linear

function of X and Y, for R to be zero we require

ﬁj = (U, ), ij = (U ?j + ﬁ(xj.yj. (U (Uy)) =0 (6.3)
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for all kX . In a standard triangulation k runs from 1 to 6, but

there are only three unknowns ﬁj'ij and ?j . Hence the need for a

further projection. If we use L2 projection with area weighting we

have the least squares equations

(ZAk)ﬁj - (EMkAk)ij B (szAk)?j + ImH =0
(AT - (BEADK + (MNAIT; - MAH, =0 (6:£)

—(szAk)t‘J . (szNkAk)i( g * (ENiAk)?j = szAkﬁk =

where ﬁj’kj'?j are now averaged values, Ak is the area of an
adjacent triangular element and we have used the notation Mk . Nk for
(Ux)k, (Uy)k . This reproduces (1.23) and (1.24). The same projection
with a different weighting (the square root of the element mass matrix -
see (1.22)), leads to the standard MFE method. The two projections
H->H and the finite L2 projection above are combined into a single

L2 projection into the space Eh .

A notable exception to the necessity for projection is the equation
+ + Su-ux-uy+ - = ]
u, + auu buuy u - ux uyy auu_ buuy 0 (6.5)

where a,b are constants, for which

R=U-UX-UY+alU + bUU (6.6)
X y X y

vanishes identically with

Cle
1}
(@]
e
Il
&
o
il

BU . (6.7)
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On the other hand the same example with au, bu replaced by nonlinear
functions a(u)., b(u) certainly requires projection.

Rather than consider other examples at this stage we prefer to
invoke the procedure of section 4 using a Legendre transformation. In

two dimensions we have

Q
[~
Q
[=

inverted to give

v dv

X = 3= Yy =55 (6.9)
where

u-mx -ny +v=0. (6.10)
Since

U-mx-ny =~ (v-xm- yn) (6.11)
(6.1) becomes

v - xm - yn - H(m,n) = 0 (6.12)

and correspondingly
R=V-XM-YN-HMN) . (6.13)

This time, since V,M,N.H e Tk there is no difficulty in writing down



solutions for V,ﬂ,ﬁ, which make R =

]
o
pde
=}
lac]
o
Q
ct

v, = HOL.N) . Mk =0; K =0. (6.14)

Generalising to H(x,y.,m,n) with H a linear function of x

and y , so that
H(X,Y.M.N) = HO(M.N) + X Hl(M.N) + Y H2(M.N) (6.15)

we have in a similar manner

Vv, = H (M .N), o= - H(.N) . N, = -Hy (M N (6.16)

As in the case of (4.15), Mk and Nk can be found by solving the
second and third of (6.16) simultaneously: when this is done the first
of (6.16) can be solved for Vk . Having found values of Mk and N

and Vk for each element - effectively the gradient and negative

k

intercept (on the U axis) of each plane - it remains to convert this
information back into nodal positions and values. The mechanism for

this is contained in (6.10) but in the discrete case

R=U-M-NY +V (6.17)

there is now no guarantee that functions U,X,Y e Sh can be extracted.

The situation is exactly the same as for (6.2) where U0.X.Y were to be

recovered from R = 0 .

® o o

To obtain U,X,Y we therefore need to project, for example as for
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(6.2) yielding (6.4) without the dots and with ﬁk replaced by Vk ;

In the notation of section 1 ((1.16)-(1.24)), this is identical with

ey = - We T (6.18)
where V is a vector containing the Vk (repeated twice for each
element). Alternatively, we many replace CD in (6.18) by the element
mass matrix C obtaining the standard MFE matrix (1.18).

Geometrically the effect of the projection required to make R =0
in (6.2) or (6.17) is to convert the trace on the (f.m) plane of the
intersections of a set of planes into a triangulation. The projection
is needed to complete the cycle of "triangulation — projection into Dh
- solution for M,N,V - projection into Eh - new triangulation"”
sequence. It therefore modifies the tangent plane construction, the
two-dimensional equivalent of Fig. (4.5).

Since equations (6.16) are pointwise ODE’'s the strategy of the
method of characteristics in converting the PDE into a set of ODE’s has
been carried out, and so (6.16) have within them approximately the same

information possessed by characteristic equations.

In the case of the second order operator
$u = v?u (6.19)
the projection into the space Dh can be carried out using

mollification or recovery with the result that equations (6.16) become

of the form

\"k = H_ (M .N, .M,.N,) (6.20)
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= - H (4.8, . Mp.Ny)

k=" H2(Mk'Nk’M£’Ne)

=

(6.21)

Ze
]

where & ranges over the elements with a side common to the element

k . Quantities depending on the configuration are also present and the
solution for V,M,N is more difficult to obtain. The principle of
obtaining M,N, then V and finally U,X,Y 1is still illuminating

however.

7. Time—-Stepping

As with many time dependent finite element algorithms time-stepping
in the standard MFE method is carried out by finite differences. Having
generated the coupled system of nonlinear ODE's (1.16) (or an extended
version of the same form) most authors then apply an implicit stiff
solver to the system on the grounds that it is expected to be stiff due
to the abundance of degrees of freedom. Only one approach [3],[19] uses
an explicit solver (the simplest Euler one step method) with however
sufficient success as to cast doubt on the need for an expensive stiff
solver. (In view of the relationship of the ODE's with Hamilton's
equations it is clear that time-stepping for symplectic systems may also
have an important part to play [14].)

Within the present framework we can in one dimension use the
decoupled equations (4.18) to do the time-stepping. Consider (2.12)

with H(X.Ux) of the form

H(X.M) = H_(M) + X H (M) (7.1)
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in each element k . For this function the time derivatives in the

transformed variables are given by (4.15). The first of these

i, = - H (M) (7.2)

may be time-stepped independently for each k using any standard ODE

solver for a single equation. The second,

%:HJ%) (7.3)

gives then a simple integration for Vk using quadrature. Inversion of
the transformed variables is accomplished by (4.17).

For equations of the form (3.3) we first perform a projection into

the space Dh giving
ﬁo(M) + X ﬁl(M) (7.4)

in each element k . The procedure above may still be followed for the
ODE’s involving Mk and Vk (with tildas on Ho'Hl) , but it should be
realised that the projected functions depend on values of U,X at end
nodes of the element k and these must be frozen in the integration if
iteration is to be avoided.

Now consider the example (2.24) for which

o= - M2 : (7.5)

This has the exact solution (dropping the suffix k )

M(O

N = o)t

(7.6)



- 40 -

where M = M(0) at t =0 . Clearly M decreases with t , leading to
steepening negative gradients and the formation of a shock. The
discrete form of (7.5) which yields the approximate solution of (7.5)

closest to (7.8) is

(7.7)

giving

Il

n+1 _ M
1+M7A t

(7.8)

where At 1is the time step and n, n+l refer to time levels t and
t + At .
Defining

no=M (7.9)

equation (7.5) and its exact solution become

T e
I
ury

and here Euler explicit time-stepping on p is obviously sufficient.

The equation for V 1is the second of (4.15) which, using (3.9), is

\'/k = M (U, 1+ Uy o) (7.11)
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A possible time-stepping for V is

VLS v e 28l ™) (@« ) (7.12)
using explicit values for U,, U, . With Mn+1, Vn+1 known Un+1, Xn+1

1° "2
can be constructed. [Of course in this example ﬁj = 0 which in
practice circumvents the use of the V equation.]
For the general scalar conservation law it can be shown from (3.9)

and (3.12) that

. £'7(Uy) . :
i =—~m-}9— V=2 %({%l}— (7.13)

where U9 lies in the interval (Ul' U2) . Time-stepping along the
lines suggested above (Euler explicit for p and trapezium integration
for V) can still be done with end values of U and X frozen. Then
Un+1 . Xn+1 can be recovered as before. The general idea behind this
approach is that it works exactly for H's of the form (7.1) and is an
approximation only to the extent that H departs from (7.1).

For the second order operator u.. we have seen that the

corresponding equations for M and V are
2 Vo= 1 _
6" My Vi = hk(Mk+1 M) (7.14)

(see (5.4) and (5.16)). As remarked earlier, the first of these

resembles a semi—discrete approximation of the linear heat equation



for m (see refs. [3],[11]) . The ideal time-stepping for this
equation is the one step fully implicit algorithm, since this maintains
the inherent maximum principle contained in the equation (even with hi
variable). Once Mk is known at the new time level Vk may be found
by the trapezium rule. With M,V found we can recover X.,U .

Similarly, in two dimensions, with

H(X,Y.M.N) = H (M,N) + X H (QLN) + Y Hy(M,N)

the ODE’s for M,N and V are the semi-discrete equations (6.16). The
procedure of solving for M,N (now coupled) and subsequently for V

can again be followed. For more general H, projection into Dh is
needed first. Time-stepping of the M,N system is more delicate here,
since the system could be stiff, but at least it is only 2 x 2 . As in

section 6, a further projection is needed to recover X,Y and U .

The two-dimensional examples

2 2 - 5 _ 2 » 2 2 _
u +u o+ U Su-ux =y +u + s = 0 (7.15)
u t+axu  + byuy Su-ux- uyy +oaxu + byuy =0 (7.16)

which become in their discrete M,N,V forms

R=V-XM-YN-M-N2=0 (7.17)

R=V-XH-YN-aXM-b'N=0 (7.18)
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giving respectively

=0 N, =0 V, = M34N2 (7.19)
B = - aM f, = - BN V=0 (7.20)

are exceptional in that M,N do not interact: more general equations
will always involve this interaction (see (6.16)). Time-stepping in
these examples is rather obvious.

The two dimensional analogue of (7.14), corresponding to the
operator v?u , yields ODE's for M and N that are rather

complicated, but the equation for V 1is simply

V = S(M A+ N )e (7.21)
S

wvhere s runs over the sides of the element k and AS. v, are
direction cosines of the outward normal to side s . Time-stepping in
this case is therefore concentrated on how to solve the ﬂ,ﬁ equations
for M and N .

Note that, compared with time-stepping strategies used hitherto,
the use of the ODE's for M,N,V ensures the greatest compactness of the
stencil and enables implicitness to be introduced in a selective and

well-understood way.

8. Approximation of the Legendre Transformation

In some applications of numerical methods it is necessary to be

able to construct an approximate Legendre transformation (see e.g. ref.
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[9]). The reason is exactly the same as for the method described in
this report, namely, that the evolution of the transformed variable is
much easier to follow than that of the original variables. In the work
of Chynoweth et.al. [9] there is the added advantage of being able to
characterise the evolution of meteorological fronts in the transformed
variable more easily than in the original variable. The same may be
true for nonlinear first order PDEs in the formation of shocks.

The basic construction involves numerical approximation of
(4.1)-(4.4) or (6.8)-(6.10). We have already described a method of
carrying out this transformation approximately when U, X or U.X.,Y e Sh
and V,M or V,M,Ne Th . This transformation is unsymmetrical in the
sense that the two sets of functions belong to different spaces, of
piecewise linear continuous and piecewise constant functions,
respectively, but this seems not unnatural in view of the point/line
duality of the transformation (see [30],[8]).

We illustrate the approximate Legendre transformation in a neutral
notation [30],[6]. Let X,Y be functions of single variables x.,y ,
respectively, and let the exact Legendre transformation be described by

the equations

b

I

=
R5

X+Y-xy=0 (81)

Suppose now that X, x e Sh and Y, y e Th and that in terms of

~

piecewise linear basis functions aj

X =§ xj ;. X = z Xj &j (8.2)
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(c.f. (1.11)). Then in one dimension we have from (2.5) that the

approximate transformation is given by

-1 -1
.= [Y].7[y], X, = - Y],/ . 8.3
xy = [Y1,/Ly], j by YDy "1 (8.3)
together with the third of (8.1). This corresponds to the tangent

construction described in section 4.

In higher dimensions let X,Y be functions of X,y . respectively,
where X = {xi} ., Y= {yi} , (1=1,2, ... d) , d 1is the number of

dimensions, and let the exact transformation be given by

X Sgy Y; © 5 X+Y-xy=0 (8.4)

~

Using the corresponding spaces Sh, Th and basis functions aj we

cannot now satisfy the third of (8.4) everywhere, except in an averaged
sense (see section 6). Choosing an L2 average with area (Ak)
weighting in adjacent elements k gives equations corresponding to

(6.4), namely

T o
e -y ] [%)]
N (8.5)

Shye Shay | L% ] | et

» X

3" =4, -

form (1.24) and gives the solution in Sh closest in the L2 norm to

ij' gj being the averaged values of X Equation (8.5) is of the

the tangent construction of section 4.
In [952the approximations to the dual variables are a little

different, being polygonal intersections of planes (in two dimensions)
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in one of the variables and point values in the other. However, the
only difference between the procedure described there and that described
here is in the projection used above, which converts the polygonal
approximation into a triangulation. Although there is an additional
degree of approximation involved, computations carried out on the

plecewise linear representation on triangles are much easier.

9 Conclusion

In this report we have sought first of all to bring out the
correspendence between the Moving Finite Element method and the method
of characteristics for first order PDE's by stressing the similarities

as strongly as possible. This has meant relying on a model equation,

u, + ﬁ(x.u.ux) =0 (9.1)
with H linear in x and/or u , in one dimension and showing that the
MFE equations closely resemble the characteristic equations in this
instance. The connection is traced to the commonality of a Legendre
transformation between the data and the characteristics/nodal
trajectories when the approximating spaces are Sh and Th . For more
general equations a finite element type projection may be used to carry
H into the H of (9.1).

The benefits of this approach are that the discretised forms of the
characteristic equations are separated from the projection details, that
the goals of the MFE procedure are clarified, and that the distinct
aspects of the procedure may be analysed separately for the purposes of

predicting nodal speeds, time-stepping and, it is anticipated, error
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analysis. This approach is thought to be more fruitful than a combined
approach in which these various aspects are studied together.

For example, an important feature of the MFE method has always been
how to cope with the so-called "parallelism" singularity which occurs
when the matrix A of (1.18) becomes singular as a result of the matrix
M losing rank. This corresponds to collinear nodes or some degree of
local ’'flatness’ of the solution U . It has motivated both the
introduction of pragmatic penalty functions and other procedures which
recognise the impossibility of solving the MFE equations in this event.
However, once we know that the goal of the method is the calculation of
X given by the first of (2.16), the remedy is straightforward, as
follows.

If [Ux]j is very small the first of (3.4) has a very small
denominator, but according to (2.16) the right hand side should be
approximating the derivative 6H/6ux . Thus we expect [ﬁ]j to also be
very small. The ratio of two very small numbers is hard to compute and
usually leads to considerable error. Moreover [ﬁ]J will not
necessarily tend to zero as [Ux]j tends to zero in practice because of
the approximate nature of i depending on the approximation of x and
u . Therefore, for (Ux)k - (Ux)k_1 less than a certain tolerance, we
should, in order to avoid the parallelism "singularity", evaluate ij
as 6H/6ux with the values of X,U taken at the point j . A
similar argument applies to the second of (3.4) . Again the
recommendation is that, for [X]k smaller than a certain tolerance, we
should evaluate (flx)k as - 6H/6ux with X, u,u taken as their

values at, say, ¥%( + xj) . This resolves the parallelism

xj+1

singularity.
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An alternative numerical approach can also be suggested for the
calculation of ij . By taking a weak form of the first of equations

(2.16) directly, namely,

Cagx - gg; S izl c (9.2)
we may replace the second of equations (1.14) and avoid the singularity
of the system (1.16) altogether. Even more directly the strong form of
the first of (2.16) may be used.

Similar arguments hold for the second of (3.4) when {X} =0 and
in two-dimensions when the system of (6.4) becomes singular.

The same problem of 'parallelism” arises in the treatment of the
second order operator L but this time it is not solved so easily.
In line with the approach of this report we observe that the parallelism
singularity is a feature only of the mapping of elementwise information
on to the nodal velocities. It is not present in the local projection
of section 3, nor does it appear in the time-stepping. It arises in the
calculation of the U,X variables from Ux and H , or, in the
transformed variables, after the time-stepping in the inverse
transformation to calculate U and X from V and M.

In the former case we may add a penalty P to the minimisations
(1.22) or (1.23). For example, if P = x?> this leads in the case of

(1.23) to the discrete equation (c.f. [32])

e By by - M 1Py Y;
My - M by o M M By e (B by ) X

= P 1 * P-1¥k-1.2

M W1 M W10 (EES)
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This equation is local about a node but in the case of (1.22) the
equations are global.
Note that when e = O the solution of (9.3) for kj is consistent

with (56.3). If e # O however, we find that

(W 17 W1, 2) (M dbyby g

X, = - (9.4)

! (M- M) by g+ ey )*

o M, 1 Me-1.9) 0.5
LM ey )G )/ ) )
Mk Mk--l hk -1 hk hk—l -1
which approximates
.__ m'.
X = e & (9.6)
m

(c.f. (5.5)). The factor & has the dimensions of M® and, from

(9.5), we see that the speed X,» 0 under any of the three conditions

J
(i) Mk' Mk_la'w . (11) Mk— Mk—la 0, (iii) one of hk' hk—lﬁ 0.

Asymptotically the directions of the node velocities are unaltered but
they are prevented from becoming infinite near the points of zero
curvature. The approximate form (9.5) retains the properties of nodal
speed direction and nodal springing described in section 5.

Similarly there is a discrete form for ﬁk which is singular when

hka 0 . It may however be similarly regularised to give
. Mo W g m'"

(9.7)

Mk ) + e’ - 1+ &
i TR
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where e' 1is a small constant, which can be used to prevent the
potential singularity as hk4 0.

In all the above cases the ultimate accuracy of the method is left
to the appropriate Galerkin equation for ﬁj . In the case of (1.23)

this is obtainable from (S.3) as

(b By )0y =W g Bt Wy o By + Dby + My By TKy (9.8)

which directly approximates (2.11).

Moving on to other aspects of this report, we have observed that
the mapping from the data to the nodal speeds in the case of equation
(9.1) is an example of a Legendre transformation. Where additional
projections are incorporated, as for example in the case of more general
functions H and in the case of higher dimensions to map the speeds
into Sh , the mapping is an approximate Legendre transformation. In
the latter case we extracted the procedure to present a general
approximate Legendre transformation between dual functions in spaces Sh
and Th (section 8).

The Legendre transformation may also be used to convert the PDE to
be solved into another which may be solved more easily. From a
numerical point of view this converts a problem to be solved in a
piecewise linear space to one posed in a piecewise constant space (or
pointwise). In effect the linearity of the representation is
temporarily put aside and finite difference methods take over. This may
be particularly useful in designing a time-stepping scheme. Of course
the transformation has to be inverted, either ultimately or after each

time step, and we can do this using the approximate Legendre
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transformation referred to above.

The accuracy of semi-discrete Galerkin methods is well-known. It
is the time-stepping which destroys this accuracy on fixed grids but in
the present method we expect to preserve this accuracy by the
integration along characteristic trajectories. Also on the subject of
accuracy it 1s anticipated that the structure presented here will
stimulate the development of error analysis for this method. It has
already been shown [21],[33] that, for nodes moved along
characteristics, much higher accuracy is achieved than for fixed nodes
in convection and convection-diffusion equations.

Finally, it should be made clear that very little of the analysis
given in this report goes over to systems of equations. For systems of
conservation laws a possibility is to use a characteristic decomposition
method to furnish the scalar equations required to make use of the
present approach. However it is not clear at present how the main
benefits, namely, high resolution and error control, can be made
consistent with the practical limitations of working with several grids
at once. The compromise of a single moving grid is the most attractive
alternative, which again involves a projection ([27],[4].[13], but more
work needs to be carried out on understanding the averaging process
needed to select the movement before the benefits of such an approach

become clear.
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