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Abstract

The optimal control problem in a tidal power generation scheme with two controls
(sluices and turbines operating independently) is formulated and the optimal controllers
are derived analytically. It is shown that the optimal controller for sluice operation is
bang-bang in all circumstances, whereas the optimal controller for turbine operation is
dependent on the form of the prescribed power function. For a linear power function a
bang-bang solution results. For a non-linear power function, however, the solution is no
longer bang-bang but takes interior values. To obtain the precise form of the solution,
an extensive numerical investigation is carried out. Several gradient based optimisation
algorithms are employed in the investigation and the behaviour of the algorithms is ex-
amined in detail. The results obtained confirm the analytical work and are in support of
the findings made in a previous investigation where only one control was used.
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1 Introduction

In a previous paper [1], we reported the results of an investigation into the form of an opti-
mal controller in a tidal power generation scheme. There were two aspects to the investigation:
analytical and numerical. The main emphasis was on the numerical solution procedure, espe-
cially on how various optimisation algorithms function under different circumstances. Three
gradient based optimisation algorithms were used. They are the conditional gradient algorithm
(CGA), the projected gradient algorithm (PGA) and the revised conditional gradient algorithm
(NCGA) respectively. It was established basically by the investigation that the behaviour of
the algorithms varies with the form of the power function. For linear models, the conditional
gradient algorithm is the most effective both in terms of rate of convergence and smoothness
of the optimal control function obtained. In contrast, for the non-linear model, the projected
gradient algorithm is the most effective. As regards the revised conditional gradient algo-
rithm, a quadratic step length rule is used which is supposed to maximise the functional in the
step direction at each new iteration. Unfortunately this was not supported by the investigation.

The investigation carried out in [1] was extensive and systematic, with different choices of
the coefficients in the power function and different forms of constraint on the turbine flux.
However, the scope of the investigation was limited in the sense that only one control was
employed, i.e. the control may be used for sluice operation as well as for turbine operation.
As shown in [1], some numerical difficulty was encountered in the ebb generation only scheme,
when the sluices are required to open the moment the turbines are shut down. Whether this
switch point can be predicted was found to be very much affected by the initial guess of the
optimal control function. In reality, it is quite unlikely that only one control is employed in a
practical tidal power project, as the range of the operation would be too limited.

With this view in mind, we seek to extend our investigation to the tidal power generation
scheme with two independent controls for turbines and sluices. As in [1}, the estuary is treated
as a flat basin. Firstly the optimal control problem for a tidal power generation scheme with two
controls is formulated and the form of the optimal controllers is derived. Then the numerical
solution of the problems is sought, using two optimisation algorithms, viz. the conditional and
the projected gradient algorithm. In the process the behaviour of the algorithms is compared.



2 The Mathematical Model

2.1 The Equation of Flow

As in [1], the estuary is treated as a flat basin and hence the flow across the tidal barrage can
be described by an ordinary differential equation (ODE). The exact form of the equation is

i = s Xs(h) + ar Xr(b) (1)

where

n(t) is the water surface elevation above the datum in the estuary,

h =n — f(t) is the head difference across the tidal barrage,

f(t) is the tidal elevation above the datum,

A = A(n) is the flat basin surface area at elevation 7,

as and a7 are the sluice control and the turbine control respectively. They satisfy the
inequalities

0 S Qg S 1 (2)

0<ar<l (3)

and Xg, X are used to denote the fluxes through sluices and turbines respectively. They are
further defined as

[ —Qsu(h) iR <O
Xs(h) _{ Qz;(h) otherwise

_ [ ~Qn(k) ih<0
Xr(h) -{ Q;z(h) otherwise

where

®@s1(h) is the maximum sluice flow into the estuary for head h,
Rs2(h) is the maximum sluice flow out of the estuary for head h,
@11(h) is the maximum turbine flow into the estuary for head h,
Q@r2(h) is the maximum turbine flow out of the estuary for head h.

Over short intervals of time the tides are approximately periodic, hence f(t + 1) = f(¢),
where T is the tidal period. This requires that 7 is also periodic satisfying

n(0) = n(T) (4)



2.2 The Optimal Control Problem

The optimal control problem for a tidal power generation scheme with two controls is to deter-
mine a sluice control function ag and a turbine control function e which maximise the power
functional

E= / " e(Xo(h)ar, b)dt (5)

subject to the constraints expressed by Eqns.(1)-(4).

The integrand in Eqn.(5) is the instantaneous power function, depending upon turbine flow
and head difference across the barrage. As will be shown below, the form of the optimal
controller is to a great extent determined by whether it contains non-linear terms or not.

3 The Form of the Optimal Controllers

3.1 Theorem

In order to solve the optimal control problem (1)-(5), we apply Pontryagin’s Maximum Principle
[2]. It states that a necessary condition for an admissible control vector (as, ar) and its response
n(t) to be optimal is the existence of an adjoint A(?) satisfying

0H

A= ~ B (6)
A(0) = X(T) (7)

and such that
H = e(Xz(h)ag, h) — %[aSXS(h) + ap Xp(h)] (8)

is maximised with respect to the controls (as, ar). H is known as the Hamiltonian.

In what follows, the form of the optimal controllers is determined analytically for various
choices of the power function e(.,.). It is shown that the optimal control for sluices is bang-bang
under any circumstances, while the optimal control for turbines is dependent on whether the
power function contains non-linear terms or not. For the sake of clarity the ebb generation only
scheme is dealt with. However it is not difficult to incorporate two-way generation schemes in
a similar fashion.

3.2 A Linear Power Function

Here the power function is assumed to take the following simple form:



0 if h <0
{ ®

Qr2(h)arh otherwise.

The Hamiltonian associated with this problem can then be written as

4(asQs1 + arQr1) ifh<0
aha (10)
Qr2arh — %(aSQsz + ar@r2) otherwise
and hence the adjoint equation 1s
| —iles@s + arQr — & (asQs1 + arQr1)] if A <0
&= (11)
—ar(Qrz2 + Qrok) + %lasQs, + orQr — 4 (esQs1 + arQr1)] otherwise
and
A0) = A(T). (12)
This equation can be simplied by introducing another adjoint function u = %. In terms of

this new variable the adjoint equation becomes

—u(asQs, + arQry) ifh<0
A = { (13)
—Qrior + pasQs, — ar(h — p)Qq, otherwise
and
4(0) = u(T). (14)
By the Maximum Principle, the Hamiltonian is maximised with respect to as and ar by the
optimal controller (%, af) where

1 if VEg>0

ah = (15)
0 f VEs<O
1 f VEr >0

ap = { (16)
0 if VEr <0.

Here VEs and VE7 are the functional gradients with respect to as and a7, and can be
calculated as follows

VEs = —

aCL’S B

pQsy ifh <0
BH__{ )

uQse2 otherwise
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VEr=-—=

OH pQT1 ifh<0
aaT -

Q@12(h — p) otherwise.

3.3 A Non-linear Power Function

Here the power function is assumed to take the following form:

0 if h<0
e(Xr(h)ar,h) = {

Qrzar(h — cQ%,0%) otherwise

where ¢ is some constant.

The Hamiltonian associated with this problem can then be written as
{ 2(asQs1 + arQri) ifh<0
H=

Qrzar(h — cQ%,0%) — %(angz + ar@r2) otherwise

and hence the adjoint equation, in terms of g = A/A is

—/"(aSQ:S'I + aTQ;I'l) ifh<0
A(n)p =

—Qraor + pasQs, — arQra(h — p — 3cakQ%,) otherwise

and

u(0) = W(T).

(18)

(19)

(21)

(22)

By the Maximum Principle, the Hamiltonian is maximised with respect to as and ar by

the optimal controller (o, af) where

ag =

{1 if VEg >0

0 if VEs <0
if h < 0,u(t) >0

p—

0 if h<0,u(t)<0

0 if0<h<u)

[

[529]" it h - (o) < 308,

1 if h — u(t) > 3cQ%,.

9

(24)



Clearly the optimal solution for the turbine control is no longer bang-bang. Instead it con-
tains an internal non-extreme optimal control as part of the solution.

The functional gradients VEgs and VEr can be calculated as:

pQs1 if A <0
VEgs = (25)

pQs2 otherwise

pQT1 ifh<0
VEr = (26)

Qr2(h — p) — 3cakQ%, otherwise.

10



4 Numerical Solution Procedures

The problems as formulated in the preceding sections are state constrained optimal control
problems. To solve these optimal control problems, a numerical solution procedure is used. It
determines the optimal admissible controls as(t) and ar(t) with corresponding response n(t)
and u(t) satisfying the state and adjoint equations. The procedure consists of a constrained
optimisation algorithm for iteratively determining the optimal control functions, together with
a finite difference scheme for solving the state and adjoint equations.

Two main optimisation algorithms are used in the current work and are known as the con-
ditional gradient algorithm (CGA) and the projected gradient algorithm (PGA). The structure
of the two algorithms is illustrated in the flow charts given in Fig.l and Fig.2 respectively.
These two algorithms have been described in detail in (1] for the optimal control problem with
only one control. In a two control situation, some modifications of the basic form of the al-
gorithms are necessary. This is particularly true as far as the projected gradient algorithm is
concerned. The main modification carried out for this algorithm is the normalisation of the
functional gradients with regard to the search directions. As shown in the flow chart for this
algorithm, the normalisation takes the form of dividing each functional gradient by a so-called
normalisation factor, which is calculated as the square root of the sum of the squares of the
functional gradients. It is worth pointing out that this normalisation factor at each time step
depends directly on the individual gradients and hence is also a function of time. This differs
from an other normalisation scheme which employs only a single fixed value for each iteration.
It is believed the former scheme has the advantage over the latter in that, firstly local condi-
tions can be taken into account and secondly the search direction is not critically affected by
the accuracy of the functional gradients. Both algorithms employ a simple but efficient step
length rule which halves the current step length if the current control functions fail to improve
the functional value over the previous iteration. The iteration is terminated when the measure
M (oK) is less than a given tolerance, where M(g) is given by

M(a) = max <VE(a),&d —a> (27)

where U is the set of admissible controls. In the conditional gradient algorithm & is used as a
new control along the search direction. In the projected gradient algorithm, however, it is used
solely for calculating the first variation for the convergence criterion.

The numerical solution to the state and adjoint equations is achieved by a finite difference
scheme, with the state equation being integrated forward in time from the initial condition 7(0)
and the adjoint equation then being integrated backward in time from the final condition u(7T').
Details of the finite difference schemes are given in Appendix L.

11



5 Results and Discussion

5.1 Test Case

The data used in the current study, including the tidal period and the estuary geometry, cor-
respond to the Severn estuary and are listed as follows:

T =432 x 10% s
A =3.33 x 103 m?

It is further assumed that the forcing function imposed on the seaward side of the barrage
is given by f(t) = cos2nt over a complete tidal period [0, T, and that the sluice flow functions
Qs1, @s2 and the turbine flow functions @11, Q72 take the following simple form

—-QRs1=Qs2="h
—QTl . QTz = h.

In the non-linear power function the constant c is taken as unity. The purpose of this choice
is that a high degree of non-linearity can be introduced into the problems so that the algorithms
can be vigorously tested. It should be noted that throughout the whole computation 500 time
steps are used.

Both ebb and two-way generation schemes are computed, with particular emphasis on ebb
generation with a non-linear power function. This is because numerical difficulties were expe-
rienced in a similar situation with one control (see [1]). In order to test the integrity of the
numerical algorithms, the computation is carried out for a wide range of initial choices of sluice
and turbine controls. Table.l illustrates the computational results for the ebb scheme with the
non-linear power function. The results for the ebb scheme with the linear power function and
those for the two-way generation scheme are given in Tables 2-4. Some typical results are also
shown graphically in Figs.3-12. All these results are obtained with a 1.0% tolerance.

A thorough examination of the results shows the following:

As far as the linear power function is concerned, the two algorithms perform well and a
fast rate of convergence is achieved. By comparison, however, CGA yet again proves to be the
most efficient both in terms of convergence rate and quality of the optimal control functions
computed. This is an expected result from the work in [1]. With PGA the optimal control
functions are not very satisfactory. Therefore it is obvious that CGA is recommended for this
type of optimal control problem.

In the case where the power function is non-linear, it can be seen that PGA has a very

12



fast rate of convergence, and typically only 14 iterations are needed to achieve convergence for
1.0% tolerance. The convergence is achieved for all initial values of turbine and sluice controls.
With this tolerance the optimal control functions obtained are in general quite satisfactory with
very smooth curves, although some oscillations are observed in the turbine control function for
certain initial values of turbine and sluice control. Nevertheless it must be pointed out that
the oscillation can easily be dealt with, as it is caused by too large a convergence tolerance.
If a smaller tolerance, say 0.1% is employed, the oscillation disappears, as shown in Fig.21.
More importantly, there is no substantial increase in the number of iterations when this smaller
tolerance is used. By comparison CGA has a poor performance, with an extremely slow rate of
convergence and low quality optimal control functions. For this reason the results for CGA are
obtained only for two initial values 1.0 and 0.1. Consequently, for a non-linear power function,
PGA is highly recommended.

It was mentioned briefly in the last section that various normalisation schemes are possible
with the projected gradient algorithm. Apart from the one adopted above, it was proposed in
a previous investigation by Birkett that normalisation factors should be taken as the maximum
functional gradients for sluice and turbine controls respectively at each optimisation iteration.
To be more specific, the two controls at the new iteration are computed from the following:

okt =X 4 SVSEK/mf?,x |VsEX(n)]

oft = off + SVTEK/m3x|VTEK(n)|

where n is time step number and
n=0,1,..,.N-1

It is clear that the normalisation factors as defined above are single values at each optimi-
sation iteration and have the advantage of being simple to implement. However this scheme
fails to take into account the local conditions at each time step and hence slow convergence is
expected. This has been confirmed by the results obtained by this scheme, which are given in
Tables 1-4 under the heading NPGA and in Figs.20-21. It can be seen that apart from the slow
convergence associated with this algorithm, the predicted optimal control control functions are
not satisfactory either. Consequently this scheme is not pursued any further.

In the process of testing the PGA algorithm for the ebb-generation scheme with a non-linear
power function, a new algorithm is developed. In view of the extensive work carried out here
and in [1], it can be said with confidence that CGA is best suited for bang-bang type control
problems while PGA is best suited for those containing interior values. Therefore it is reason-
able to believe that an ideal algorithm for the type of problem under consideration is one which
combines CGA for sluice control and PGA for turbine control. This algorithm is named CPGA
and some tests are carried out. Good results are obtained for a wide range of initial controls, as
shown in Tables 1-4 and Figs. 30-40. In comparison with PGA, this algorithm does not show
strong dependence on the initial controls and the optimal controls obtained are generally better.

13



Even though only limited tests have been conducted on CPGA so far, the initial results have
shown that it has a great potential in solving optimal control problems where one control is
bang-bang and the other contains interior points. Further numerical tests using more practical
data are currently under way.

Perhaps one of the most important discoveries from the present work is the overlapping of
two controls, when sluices and turbines operate simultaneously. As shown in the various figures,
this phenomenon is observed in both ebb and two-way schemes, but has to be interpreted
differently. For an ebb scheme it happens in the sluicing stage of the cycle and indicates
that the turbines are actually used for sluice operation. Thus the overall sluicing capacity is
increased, contributing to more power output. At this point it should be noted that in the
figures the turbine controls are assigned negative values when sluicing. The aim is simply to
differentiate sluicing and generating operations for turbines. However it should be borne in
mind that the turbine control can only vary in [0,1]. In the case of a two-way scheme, the
overlapping occurs as soon as the head difference drops to a certain level. At such moment the
sluices are switched on while the turbines are still generating. It is believed that this helps to
let the water out of basin quickly. In the ebb scheme typically 8% more power can be generated
by using turbines for sluicing operation when they are not generating. However this figure
should be treated with caution, as it is obtained on the assumption that turbines have same
flow characteristics whether they are used for generating or sluicing.

5.2 A Practical Example

It is assumed in the test case that both sluice and turbine fluxes are directly proportional to
the head difference across the tidal barrage. However, in practical situations they often take
more complex non-linear forms. For this reason the algorithms need to be tested with more
realistic data.

Numerical results are obtained for a problem which approximates the Severn estuary, where
the non-linearities model both the effects of drying sand banks and the variation of turbine
efficiency with head difference. The relevant data and functions for this problem are taken
from [4] and can be described as follows:

A(n) =4.6 x 108 +2.6 x 107y

290 x 140(1 — tanh(10(h + 1.7)) for two-way scheme
Qr =
216 x 140/—2gh for ebb scheme

Qr2 = 290 x 140(1 + tanh(10(k — 1.7))

Qs1 = 216 x 160/—2gk

14



Qs2 = 216 x 160+/2gh

T = 4.46 x 10*

f(t) = Fycos(27t/T)

e = EX00,(1) . Xp(h) - h- ef(h)
where ef(h) is turbine efficiency and

ef(h) = 0.14 + 0.68tanh(0.7(|h| — 1.7))

As the power function is in linear form, bang-bang type optimal controls for sluices and
turbines are expected. With this in mind, we only present those results obtained using CGA.
Table 5 shows the power outputs obtained at springs with tidal amplitude F, = 5.2 metres,
and at neaps with tidal amplitude F, = 2.65 metres, using firstly 100% efficient turbines and
then the variable efficiency machines. These results are also illustrated in Figs.20-28. In the
computation 800 time steps are used, with the initial controls taken as o = a7 = 0.1.

Generally speaking, the results tabulated above confirm what was reported in [4]. However
one obvious discrepancy between the two is observed concerning variable efficiency turbines.
In [4] the results predicted that for the variable efficiency machines the ebb scheme produces
more power than the two-way scheme, an unexpected conclusion. Our computation contradicts
this result and it can be seen from the table that the two-way scheme is superior to the ebb
scheme in all the cases, with the exception of the variable efficiency machines at springs. This
may have been caused by our currently adopting the sluice discharge coefficient for turbines,
which tends to overestimate the turbine sluicing capacity.

15



6 Conclusions

In this report we examine the optimal control problem for a tidal power generation scheme
with two controls. By Pontryagin’s Maximum Principle, the analytical forms of the optimal
controllers are evaluated for linear and non-linear power functions, and for ebb and two-way
generation schemes. It is shown that with a linear power function both optimal sluice and
turbine controls are bang-bang in nature. On the other hand, with a non-linear power function
the optimal turbine control takes some interior values. These are confirmed by numerical work.

Two iterative optimisation algorithms are used to solve the optimal control problems numer-
ically. The results generally confirm those conclusions made in [1]; that is to say, if the power
function is in linear form, the conditional gradient algorithm is the most efficient in terms of
rate of convergence and smoothness of the control functions obtained; if the power function is
in non-linear form, the projected gradient algorithm is the most efficient.
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Appendix I

The finite difference approximation to the state equation Eqn.(1) is given by

gt = Ot {a’ths(hn) + of Xr(h") | o3t Xs(h™1) + a;HXT(hnH)} (28)
2 A(n™) A(n™+)

n=01,.,N-1

where N is the total number of time steps, At = T'/N is the time step and n the point number
on the finite difference grid. All the quantities with superscript n are evaluated at t = nAt
and those with superscript n+1 are evaluated at t = (n 4+ 1)At. At each time step the non-
linear algebraic equation Eq.(28) is solved for n™*! using a simple iteration procedure. It starts
with an initial guess for 7™t!. Based upon this initial guess, all the quantities on the r.h.s. of
Eq.(28) can be evaluated. Solving Eq.(28), a new n™*! can then be obtained. If it is equal to
the guessed value within a specified tolerance, it is accepted as required n™*! and the iteration
is terminated. If not, then this new ™! is taken as a new initial guess and the iteration is
repeated.

The adjoint equation is similarly approximated by the finite difference scheme

e = Ay {ag"lx’s(h""‘) + o ' X (A" 1) e a3 X5(h") 4+ of X7(h") ﬂn}
2 A(pn1) A(n™)

_A_t{ 1 fe™! il ae"}

YT A, T Ao (29)

n=N,N-1,..,1
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Table 1. EBB SCHEME WITH NON—LINEAR POWER FUNCTION

(A) TURBINES CANNOT BE USED FOR SLUICING

ag a$ Power Output No. of Iterations
CGA | PGA |CPGA [NPGA | CGA | PGA | CPGA | NPGA
10 10 | 010163 | 0.10173 | 0.10177 | 0.10043 | 68(351) | 15(28) | 16(28) [237(731)
0.5 10 0.10178 | 0.10175 21(39) | 14(24)
0.1 10 0.10178 | 0.10178 18(33) | 14(25)
10 0.5 0.10177 | 0.10179 20(37) | 14(25)
10 0.1 0.10179 | 0.10179 21(39) | 14(25)
05 0.5 0.10176 | 0.10173 14(26) | 13(24)
0.1 0.1 | 0.10164 | 0.10178 | 0.10178 | 0.10097 | 79(445)| 15(28) | 19(35) |98(298)

(B) TURBINES CAN BE USED FOR SLUICING

& g & ? Power Output No. of Iterations
CGA | PGA |CPGA [NPGA | CGA | PGA |CPGA |NPGA
10 1.0 0.10937 | 0.10945 | 0.10946 | 0.10834 (58(272)| 14(26) | 16(29) |232(716)
0.5 1.0 0.10947 | 0.10946 14(26) | 15(27)
0.1 10 0.10948 | 0.10950 17(31) | 14(26)
10 0.5 0.10946 | 0.10951 14(26) | 13(23)
10 0.1 0.10950 | 0.10951 18(34) | 13(23)
0.5 0.5 0.10842 | 0.10951 12(23) | 13(25)
0.1 0.1 |0.10935 | 0.10949 | 0.10951 | 0.10885 | 72(393) | 14(26) | 18(34) [100(293)
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