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SUMMARY

This paper applies the method of backward error analysis

to the numerical solution of the dynamic vibration equation by

the single step algorithms proposed in references [1,2,3] and obtains

some general rules to help with the choice of parameters.



INTRODUCTION

The general idea of backward error analysis applied to the

numerical solution of the scalar dynamic eguation
mx + px + kx = f(t) (1)

is to say that our approximate solution of the equation (1) is the exact

solution of a slightly perturbed form of equation (1):
mx + (P + 8UIX + (k+8k)x = F(t) (2)

for small values of a parameter which is proportional to At, the time step.
We suppose that the mass m stays the same and the forcing function is
represented adequately. Thus we could say that our numerical solution

is the exact solution for a system with slightly different damping and
stiffness. It is more relevant in this context however instead to use

the fact that we know the exact solution of equation (1) represents a

damped oscillation with terms of the form

exp(vt), where v = By w (3)
2m

We suppose here that the damping is less than critical i.e. g = 2v/km,

0 v < 1 where v is the fraction of critical damping. Then,

IA

if cosa = v, we have

v =//E exp [i(r-a)] and w = /Ag-sina (4)
m m
It is thus convenient to assume that our numerical solution represents

exp {[_[_2% + a] + ilw + e]]At} (5)
so that we can regard our numerical solution as having the effect of

{a) increasing the damping by a quantity &

(b) increasing the frequency of the oscillation by éi
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or giving a fractional period increase of (1 + EJ = 1z - (6)

L w)

=)o

for small values of this quantity.

We are applying this method of backward error analysis here to the single
step methods SSp2 described in references [1], [2]. The motivation is
that each of these SSp2 methods is expressed in terms of p parameters

0 ...,ep and we need a strategy to decide how to choose these parameters.

17
This paper 1s investigating what useful information we can get out of the
backward error analysis approach.

The accuracy and stability qualities of these single-step methods
(including also the Generalised Newmark "B-m" methods given in reference [3])
can be studied from the characteristic polynomials of the equivalent p-step
methods which have the form

. : P . P
E a,rd + 2\»/E I % stz Y g.rd =0 (7)
j=0 9 m =0 3=0 Y

Gladwell and Thomas [4] pointed out that for p = 4 these
equivalent 4-step methods are automatically 3rd order accurate and hence
by Dahlguist's theorem [5] have no possibility of unconditional stability.
In this paper we concentrate on the backward error analysis of SS522 and SS32
methods.

Substituting r = exp(vAt) into equation (7) and expanding we have

j=0 j=0 j=0
-~ 2 o~
S A;l e 2“//5 L E jv, o+ St E B
3=0 3=0 j=a ’
~ 3 3
+ @ A§| E J3a + 2v/— A;I Vv E JZ‘Y + E At3v E JB
“ =0 Y m j=0 9 M j=0 9

. =0 (8)



We know that for these SSp2 methods

) ) P
£ § ey By
J= J J »
and
é%‘ E ja, = E Iy © E B, = Ay, say )
¢ j:U J j:O j:O J
Hence putting
R 1 B 1
B, = ) J85,» B, =37 5 ?vy» By = =7 L %
1 50 0 2 2! 520 3 3l
1
SETY E J*B.,
12h 5 j
sV g2
Dy = 31 L3 By
we have

A [:/2 + 2\:/— v o+ -Ii]

2 m m

+ At|B_.v® + 2B.v /5 v: +B
3 2° ym 1

* Atz[ch“ + 2C

.8 Ky
+ At3 {DBV + 2D2\)/EV 1

- i(w-
where v = v + (-8 + ie), v = d@g e (m-a)
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Hence
A. =1, B, =B.=8, ++ B, =1
2 ) 1 2 1 2’ 3
C, =229, +29, +1), C, =6, +~, ©C, == (12)
1 4 2 1 ’ 2 1 5] 3 12
With SS32 it is simpler to work with a,b,c which are such that
_ A - ; . - - il
a1 = 61 > b = 62 61 1/6, ¢ 63 362/2 + z
We then have
_ 1+2a _ (1+6a) . (6a-1) _ (1-2a)
%3 2 ¢ 2 z 1 7 " 0 2
Yo = A(3a+30+42), y. = - ~{a+3b), vy, = ~(-a+3b), y. = ~(3a-3b-2)
3 6 ’ 2 2 ’ 1 2 ’ §] 5]
B. = ——(Ba+6b+4c+3), B, = ~(2a-2b-4c+3)
3 24 ’ 2 8 ’
B, = l[-2a—2b+4c+3] B, = -l{-8a+8b-4c+33
1 8 ' 0 24
Hence
A2 =1, B1 = B2 = 53 = a + 3/2
C. = C, = +H3a+b+3) C. = 1(ga+8)
1 2 2 ) 3 6
(13)

D = _2%(34a+18b+4c+27], D, = 2—14-[323*'18!3*'27]

D, = %[1Ua+7)

We first produce results with v = 0 in order to show that this approach

gives results in agreement with those already published.

S822, v =20
We know from reference [2] that when v = 0 we have for 61 5,
e 1is 0(At2), 6 is O0(at) and for 6, = i, € is 0(At?®) and & is zero

1

(N.B. misprinted in Table II in reference [2]).
Hence to include in the expansions all terms up to and including

0(At?2) we must include the terms in 62 and AtS.




- [
Thus from equation (10) with v =0, v = idﬁ% + (-§ + ig)

m

4k

we have

RERPYLS 5. K
) )
k2 |1 2 1 g
+ At? vy 3 > —zﬂ + i 0(At®) + o(at*) = 0 (14)

Equating real and imaginary parts in eguation {14) and sorting out the
terms we eventually arrive at
5 - 1K At (o, - 1)+ 00at?) (15)
2 m 1 °

and

3|x

.2 g = 1] .
o B At [61 361 + 262 + 12,_1 + 0(Aatt) (16)

For unconditional stability we know from reference [2] that we reguire
o, 2 61 > ! and we can see the link between this and the sign of & in
equation (15) as is to be expected.

We also see that the factor on the right hand side of equation (16)

is
11 11
2 - 2 = -
61 391 * 292 ¥ 12 d 61 e1 ¥ 12
8 Z 2
= = B = >
[01 3) O+ 3 for 62 2 e1

and hence unconditicnally stable schemes always have a period increase

for values of the time step such that the 0(At2) term in equation (16)
dominates. It is usually considered that there should be at least 20 time
steps per period and this is sufficient to make the g(At?) term dominant
for practical values of 61 and 62. The lowest pericd increase is for

g, =6, = 0.5.

1 2
For an explicit scheme we take 62 = 0, [1), and then
e 1K 2 2 - 1 b
- g At {;q 361 + 1%] + 0(At7) (173

and hence there is a period decrease if 0.34 < 61 < 2.66, or, together



with a non-negative § , this gives 0.5 £ 61 < 2.6,

We use as test problem (1) equation (1) with k =m =1, p =0

and f = 0.

Figure 1 shows 2U1 with 61 N 92 = 0.5 which gives zero numerical

damping and the minimum period increase for unconditicnally stable schemes,
and 2E1 with 61 = 0.5, 62 = 0, again with zero damping and now with

period decrease.

S532 with v =0

Now from equation (10) using the coefficients given by equations

(13) and preserving all terms up to 0(At®) we obtain

2
SE LA R gy Ly s gt (18)
— 12 m
W
o At? k2 - 5
$ i (3ab - c) + 0(at>) (18)

We know from reference [2] that for unconditional stability we
require a>0,bz20,c20 and 3ab - c 2 0. Hence again we see
the link between the sign of ¢ as given by equation (19) and the stability
condition. Also we again see that with b 2 0 there is a period increase
for all unconditionally stable schemes, the most accurate period being for
b =0 which also gives § = 0.

A well-known method included in SS32 is Wilson-8 where 6. =90,

1
8, = 62, 8, = 63. For 6 = 1.4 we have
2 3
2
§ = 0.084 2—2 At® and - = = 0.182% At (20)
w

We also obtain the single step equivalent of Houbelt by taking

91 = 2, 92 = 11/3, 63 = 6 which give

kz

§ = 0.5 - At> and - £ = 0.45 &tz (21)
m m

£/ m

Figure 2 shows Wilson 6 = 1.4 and Houbolt applied to test problem

(1) together with another example:



U1 : 6. = 0.5, 6. =2/3, 6, =0.75. This is a degenerate case as

1 2

it gives a =0 as well as b =c¢c = 0; thus & is zero and

SERy Y 22

is the same minimum period increase with unconditional stability as with
2U1. The stability polynomial for 3U1 is the same as that for 2U1 with
the extra factor (r+1) so it is better to use 2U1.

For explicit methods we take 63 = 0; for example:

381 ¢+ o, = 0.5, 62 = 1/8, 03 =0 i.e.a=c¢ =0, b =0.5. This gives

the same zero & and the same period decrease as in 2E1

32 : o =13/6, 6, =2, 6, =0 i.e. a =5/3, b= -1/3, ¢ = -11/4.

1 2 3
2
This gives & = 0.09 %; At® which is between Wilson 6 = 1.4 and Houbolt
€ _ k2 4 . . At
and - == 0.15 oy At* which means increased accuracy for — < 0.08
W

approximately. Figure 3 shows 3E1 and 3EZ2 applied to test problem 1.
Figure 4 shows the % period increase or decrease plotted against
At7T for the examples of SS22 and SS32 mentioned above.
Various references, for example [3] and [4], also show results which

conform with these predictions.

Ss22 v £ 0

We know from reference 2 that in general now e and & are glat)
but when v = 0 the 0(At) term in the expansion for e will vanish
and when 6, = ! both ¢ and & are O(At2). Hence we now include

in our expansion terms with 6%, de,e?, Ate and AtS in order to include

all O0(At2?) terms.

From equation (10) we now have, putting s = v1 - vz,

ZJ/E- s(e+i§)
m

§2 - 2ide - €?

At[E]W6 [%Bi(ﬂ-a]+[91+%][ZVBZi(ﬂ-a]+ Bi[n—ai}

+

m

+

o B EeZi(“_“]+(e +%J[4vei[""°‘]+1l—] (-8+ie)
m 1 J

Zi[ﬂ‘a]J

+

2 1 - i -
pee K2 anezmw “).yp 310" g e

+ 0(At?) (24)




Equating real and imaginary parts in equation (24} and sorting oiit

the algebra gives:

5 =88 Ko -~ 3101 - ayv2) + Bat? + 0(at?) (25)
2 m 1
where
2
(K) ¥2 1 1] 07 3%, 6,
B3 —_ 2 f 2 = — T — = -
B Lm] \’{" [91 %178 T3 e 2 8} (26)
and
s .
e =82 K ¥ o - 1)cave - 3) + DAtz + 00ate) (27)
2 V1-v2 !

We can see that for "small” values of v and At and e1 > 3

the formula for 6 is dominated by the first term and is positive i.e.

the damping is increased. Figure 5 illustrates this for 91 = 0.6,
62 = 0.605, v = 0.1. When 61 = 0.5 the first term is removed and we have
%
_ Kk , Vv [2v2 ]

§ (m] At 5 |:3 62‘1 (28)

which is positive for the explicit method with 6,I = 3, 67 =0,
. ) 2v?2 .

and ¢ 1s negative for 6 » 3 Figure 6
shows this for 91 = 92 = 0.5, v = 0.1 with test problem 2 where the forcing

function f 1in equation (1) is given by

f=0,t=s0;, f=+1, 0<¢ctsg 25 t > 25 . (29)

Here the position of the first turning point after the start only depends
on the damping.
If we write

§ = AAt + BAt2 + 0(At®) (30)

and A and B are of opposite signs, then we must have At <«

%’ for the
first term to dominate. Table 1 shows some values of A,B and |A/B| for
K =m= 1. Figure 7 shows the negative ¢ resulting from a too-large value

of At (= 0.75) with 91 = 0.6, 62 = 1.0,v=20.4.



We now have a formula for the fractional period increase:

- = =—% B e, - Bav - 3) - © D ate
W ‘/1_\)2
+ 0(AL3) (31)
where
3k 2 2 2 2 2
Gﬂ sD = %{91-%] (1-4v2) - %—g; (8,-3) (4v2-3)
3 lave(1-6) + 0, -2 (6, -3)(1-4v2)
4 1 1 2 1
- v2[61—1][61-%)[4v2—3]
+ %Eav‘*(ca—czl + 2v2(-4C4 + 3C, * CJ +Cq- CJ (32}
Writing
e = CAt + DAt? (33)
we note that C has a factor 5_1 and D has a factor s for

61 # 1 hence we expect that this formula will only be useful for smaller
values of VvV . WQ restrict consideration of the period increase or aécrease
to problems where V ¢ 0.5. Table 2 gives values of -C/w and -D/w

and IC/DI (where relevant) for Vv = 0.1 and two unconditionally stable

and two explicit methods. We see that this again predicts a period increase

with the unconditionally stable methods. Figure 5 shows the period increase

with 91 = 0.6, 92 0.605. When 91 = 1 the equation (31) reduces to

g A [P Bl @

s|llm

This formula clearly gives a period increase for 62 231, and v = 0.1

(Fig. 6), and a period decrease for the explicit method with 62 = 0 for

IA

Vv 0.1.
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SS32 v £ 0

From reference [2] we now expect both ¢ and &§ to be 0(At2) for
general 61,62,63, but we know that & 1is 0(aAt®) when vy = 0 hence
we include the Ate term in substituting into equation (10). With the

coefficients given by equations (13}, equating real and imaginary parts and

sorting out we have:

LBt K e o .
T T2(1-92) m (8v Bvz + 1)(3b + 1) + 0(At?) (35)

£ [m

where we know the O0(At®) term is zero when v = 0, and
(K\%b 1
§ = Atzl—J v(2v? - 1)(b + =)
m 3

k2 . 3b c 1
+ At® ‘m—z Ir\)‘*(Zab - 3b - 1] + vz[-Zab + 7 + 5 +§

)

A
12

+

(3ab - c]]. + 0(at") (36)

We see that the formula for -e/w given by equation (35) has a first
term which reduces to the first term in formula (18) for v = 0. We know from
reference (2] that we require b 2 0 for unconditional stability. Hence
we again have a period increase with an unconditionally stable scheme

(provided At 1is small enocugh) and for values of v such that

Bv* - Bv2 + 1 > 0 (37)

This is true for v < 0.4 approx. Figurs 8 shows the period increase with

Houbolt parameters and v = 0.3. Figure g shows the period decrease

with Houbolt and v = 0.5. The formula (36) for § has a first term which
reduces to zero for v = 0; for b2z 0 and v ¢ 0.7 this term is negative
and we know from equation (19) that when v = 0 the O0(At®) term is
positive with values of the parameters which give unconditional stability.
Thus the sign of & for very small values of v can change at a value of
At around the 20 time steps per period mark, e.g. with the Wilson-6 = 1.4

parameters and v = 0.04, at At = 0.35 approximately. For larger values of
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v the critical time step is larger. Figure g shows the negative § with
Houbolt parameters and v = U.3. As b 1is larger for Houbolt (1.5) than
for Wilson-6 (0.339) the effect is more obvious.

It is interesting to note that the explicit scheme 3E1 with 04 = 0.5,
62 = 1/6, 63 - 0 1is unconditionally unstable for v > 0 (thus disproving
the idea that any scheme which works with v = 0 is bound to be all right
with natural damping included). Figure 10 illustrates this for v = 0.1.

We can see why this is so by looking at the stability conditions for SS832

from reference (7,9

12ma + pAt(Bb+1) + 2kaAt?c > 0

2m + 2apAt + bkat? 2 0
(38)
puat + akat® 2 0
kat? 2 0
and
12mp + 12ap? At + pkAt2 (12a2-1) + 2k?at? (3ab-c) 2 0 (39)
The 3E1 parameters correspond to a =c¢ = 0, b = -3 and with these it
is impossible to satisfy the stability conditions with u # 0.
When up = 0 inequality (38) reduces to (3ab - c) 2 0; when p # 0
this is only one of the conditions for inequality (38) to be satisfied.
wWhen we have an explicit scheme with 63 = 0 we have Cc = - %{a +b + 1),
We can now choose b = - 1 which we can see from equations (35) and (3B6) will

make both & and € egqual to 0(At®). The stability conditions now become:

12ma - pAt - 3katz(a + %J > 0 ]

2m + 2apAt - %kAtz )
(40)

pat + akat?z 2z O
kat2 2 O

and
1mp + 1Zap?hAt + ukAt? (12a2-1) + At3(a+3) 2 0

We still have to choose the value of a; a simple and obvious choice

which works out guite well is to take a =14/12 = 0.2887 which satisfies the
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gy

last of inequalities (40} and leaves the stability condition to be st

deduced from the first two. For m = k = 1 these give

(2 + /12)At? + 8uAt - 4/12 < O

(41)
and At? - /12vAt - 6 £ O
For v = 0.1 these are both satisfied for At < 1.5 and for
v = 0.4 these are both satisfied for At < 1.3. In fact they are
satisfied for At = 1 for any value of v < 1.
We call this method 3E3; it is given by 61 = 0.7887, 92 = 0.6220
and 63 = 0. Figure 11 illustrates 3E 3 applied to test problem 1 with
v = 0.1 and At = 1.
Summary of Results
v = 0
Of course & 2 0 for stability. Unconditionally stable schemes
always have a period increase; the lowest is for the marginal stability
case when & = 0. Erplicit schemes have a period decrease for practical
values of the parameters.
v # 0
SS22
0 ¢ v < 0.5 (1) 6 > 0.5 (a) 62 z 91 unconditionally stable;
§ = 0(At); & > 0 for smaller At, § < 0 for larger At ;
period increase.
(b) 6, = 0: explicit, conditionally stable;
§ > O;period increase for smaller At, decrease for larger At.

(2) 61 = 0.5, (a) 62 2 61 unconditionally stable;

§

0(At2); & < 0; period increase.

(b) 62 = 0; explicit; conditionally stable,

§ > 0; period decrease.



_13_

5532

(1)

(2)

With parameters for unconditional stability, & = 0(At2); v < V2/2:
§ < 0 for smaller At, 6§ > O for larger At;

(a) 0 ¢<v < 0.15 period increase

(b) 0.15 £ v £ 0.5 period decrease

v > V2/2: 8 > 0 for smaller .At, 6§ < 0 for larger At (Figure 12).

Explicit, conditionally stable; with b = - %u46= 0(At®). With

0 <vs0.5 a>»0; 8> 0; period increase for smaller At, decrease

for larger At.

Example: 61 = 0.7887, 62 = 0.6220, 63 = 0 (3E3).

Because of the nature of the solution of the differential equation (1)

changes when approaches unity we have restricted the discussion of this

backward error analysis to values of v 1less than or equal to .0.75.

Conclusions

The results presented here of the backward error analysis of the

numerical solution of the dynamic vibration equation (1) by the single-step

methods proposed in references (1,2,3] give some general rules which should

be useful in choosing parameters for a particular purpose. For example,

we know that most structures have modes with damping < 10%, sometimes as low

as 4 or 5% [Q], hence results obtained here for Vv < 0.1 will be relevant.

We can see that it is not possible to have unconditional stability with

§ 2

0 guaranteed for all sizes of time step. If we want 6 2 0 in order

to give no overshoot then we must accept some limitation on the time step

and 3E3 with its extra accuracy looks well worth considering.
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TABLE 1
Stability
v 0, 0, A B |A/B| et
-2
0.1 | 0.5 0.5 0 -2.5x10 - =
0.1 | 0.8 0.605| 4.8x10 2 -2.9x10" % 1.6 -
0.1 | 0.5 0 0 3.3x10" 4 - 2
0.1 | 0.6 0 4.8x10 2 1.5x10 3 32 1.8
0.4 | 6.5 0.5 0 -7.9x10"% = -
0.4 | 0.8 0.605| 1.8x107% -8.5x10"% 2.1x10" " =
0.4 | 0.5 0 0 2.1x10°2 - 2
0.6 | 0.6 0.605[-2.2x10"2 -6.9x10 2
SS22 § = AAt + BAL2
TABLE 2
v 0, -C/w -D/w |c/D|
-2
0.1 +5 0.5 0 8x10
0.1 .6 0.605 | 1.5x10 2 8.6x10 2
-2
0.1 .5 0 0 -4.4x10
0.1 .6 0 1.5%10°° | -g.3x10" % 0.24
SS22 € = CAt + DAt?
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LIST OF FIGURES

1) 201 : S22 with 6, = 6, = 0.5 g
2€1 & 5222 with @, = 0.5, 6, = 0

2) 3 : SS32 Wilson-0; 0, = 1.4, 6, = 1.96, 0, = 2.744
3H : SS32 Houbolt; 8, = 2, 0, = 3.6667, 0, = 6 v = 0, At = 0.25,
3U1 : SS32 with 6, = 0.5, 6 = 0.8667, 6, = 0.75 f=0

3)  SE1 : SS32 with 0 = 0.5, 6, = 0.16687, 8, =0l _ o A g5 4 -
362 : $S32 with @, = 2.16807, 0, =2, 6, = O

4) Percentage period increases and decreases for the algorithms represented
in Figures, 1,2 and 3.

5) SS22 61 = 0.6, 62 = 0.605, v = 0.1, At
§ » 0 and period increase.

B) 3522 91 = 0,5, 62 = 0.5, v = 0.1, At = 0.75, f*
shows & ¢ 0 and period increase.

7) SS22 91 = 0.6, 62 = 1.0, v = 0.4, At
shows & < O.

8) SS32 Houbolt v = 0.3, At = 0.5, f = 0 shows § < 0, period increase.

g) As (8) but with v = 0.5 shows § < 0, period decrease.

10) 3E1 : S532 with 61 = 0.5, 62 = 0.16667, 63 = 0, v = 0.1 unstable.
11) 3E3 : SS32 with 61 0.7887, 6, = 0.6220, 6, =0, v = 0.1, At =1.0,

2 3
£ = 0.
12) SS32 Houbolt with v

0.25, f =0 shows

step function

0.75, F = step function

0.75, At = 0.5, shows 8§ < O.
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