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ABSTRACT

A second order scheme based on upwind differencing 1is
presented for hyperbolic systems derived from conservation laws
with source terms. The special cases of compressible flow in a
duct of variable cross section and incompressible flow in a channel

are discussed.



1. INTRODUCTION

In [1] Roe proposed a linearised approximate Riemann solver
for the solution of the Euler equations of compressible flow.
Associated scalar schemes which are second order accurate have also
been proposed by a number of authors, (see [2], [3]). The Euler
equations have no source terms but for systems of conservation laws
with source terms Roe [4] has also proposed a method of "upwinding"
the source terms. However, there remains the question of where
the source terms should be evaluated. By analysing the scalar
case we seek to answer this question in such a way that the

resulting scheme for systems is second order accurate.

In section 2 we describe first and second order schemes for a
scalar conservation law without source terms and in section 3 apply
these schemes to a system of hyperbolic conservation laws. In
section 4 we derive first and second order schemes for a scalar
conservation law with a source term and in section 5 we extend
these schemes to a system of conservation laws with source terms.
Finally, in section 6 we discuss the scheme of section 5 when
applied to unsteady compressible flow in a duct of smoothly varying
cross section and to incompressible flow in a channel. This
includes the special cases of c¢ylindrically and spherically

symmetric compressible flows.



e SCALAR CONSERVATION LAW

In this section we describe the first order upwind scheme and

the second order Lax-Wendroff scheme for a single conservation law.

Consider the hyperbolic problem

u + £ =0 (x,t) € (-»,®) x [0,T]

(2.1)

with initial data
u(x,0) = uo(x)

(2.2)
for the function u = u(x,t) with a convex flux function
f = f(u) . We define a(u) = f£'(u) so that equation (2.1) can be
written as

u, + a(u)ux =0 .
(2.3)
Define a grid L + Ax in the x-direction with
constant mesh spacing AX , and a grid in the t-direction

tn = tn-l + at with mesh spacing At and denote by u? an

approximation to u(xj,tn) . We shall assume the solution at time

level n to consist of a set of piecewise constant states

_ .n _ AX AX
u(x,tn) = uj . x € (xj —5 xj + —7)

(2.4)



2.1 First-order scheme

A first order upwind scheme for the solution of equations

(2.1)-(2.2) can be written in the form

ntl _ n _ _+ At _ _
Ui = Uy T Ay R0y T-) T ey m (MY
(2.5)
where we define
+ p—
v o= 3(v + |v]) , v = 3(v - |v|)
(2.6a-b)
and aj-i represents an approximation to a(u) = £'(u) at
2
Xj_y = é(xj_1 + xj) , 1i1.e. at the midpoint of the interval
2
(x. .,x.]1 . The approximation we use for a._, 1is
=177 j-2
n n
f(u. - f£(u.
(uj) ( J_l) ul o o£ ul
N oo jjl=ael J
X j T %1
j-3
V(1 n n n _..n
f (z(uj_l + uj)) Uj_q T Uy
(2.7a-b)

The first order scheme given by equation (2.5) can be thought of as
being centred at the point xj .
Alternatively, we can write the scheme in a form based on the

cell [xj_l,xj] , 1i.e. for each cell we carry out the update:

ntl _ n . n _ . n
ujop T Yy T Pyl 7 Yyo)
(2.8a)
n+l _ n_ + n_.n
uj "t = Uy - vy luy - Uy )

(2.8b)



which can also be rewritten as

ntl _ . n B n_.n ]
ugjly) T Uy »J_é(uJ uj-l)
ur.],'*‘l = ur'l Vj-é < 0
J J i
J
(2.9a)
n+l _ n
uj_1 = uj_1
L Y (u? - W ) Yi-3 2 0 .
J J =273 )|~
J
(2.9b)
where we have introduced the notation V. 4 = a. léE as an
J-2 J-2AX
. . . + + At
approximation to the CFL number in [x. .,x.] , and V. _ i = ai_iz¢
J=1'"] J-2 j-24X
(see figure 1). (N.B. if Vj—i =0 then either of equations
2
(2.9a-b) apply.)
n . n n._n
B vy (ug7uy) V- (U575
n 1 il 1 1
j-1 J j-1 J
Uj—é < O vj-é > 0

Figure 1



2.2 Second order scheme

Consider now the Taylor series expansion of u(xj,tn+At)

about the point (xj,tn) to second order,

u(x.,t_+at) 2~ u + Atu, + At2u
j’"n t 72 Tttt
(2.10)
where the terms on the right hand side of the equation are

evaluated at (x.,tn) . If u(x,t) satisfies equation (2.1) then

we may write

= - = - ' = -
Uy fX f u, a(u)uX
(2.11)
as before, and
] - = - - ! = —
Yee = fxt (ft)x (£ ut)x (a(u)ut)x
(2.12)
which can be rewritten as
i 2
e (a (u)ux)x
(2.13)
using equation (2.11). Thus equation (2.10) becomes
) N _ At?, 5
u(xj,tn+ut) ¥~ u - ata(uju, + — (a (wWu ),
(2.14)

where the right hand side of equation (2.14) is again evaluated at

(xj,tn) ) If we approximate
o L\_u? A+u?
a(u)u, = 2[aj-é a% T 3441 ]
(2.15)
and
n n
(a®(uu,), = %i[a§+éA::j - a?_;AA:j]

(2.16)



where aj_1 are as before, and
2

n n n n
A U, = U, - u A U, = U, - u. "
j+1 i’ -] B j-1

+7]
(2.17a-b)

we obtain the following second order centrally based scheme for the

solution of equations (2.1)-(2.2)

n+1 n 1 1
u = u., - iv. ;A u., - v AU

j s D o i B T S

+ 2 ,aA u? - w2 AUl .

J+z2+7] =3 -
(2.18)
. _ At
We have used the notation Vjié = ajiéKE as before.

The scheme given by equation (2.18) is usually referred to as

the Lax-Wendroff scheme. We can compare this second order scheme

with the first order scheme given by equations (2.9a-b) by noticing

that equation (2.18) can be written as

U.r-1+1 = U.r-l - V. 1A u.

J J J=2 = J

+ v, (1 - v. ()aul

2V gy vj_glayy

-1 - n

Vg1 = Vypp)a,uy

(2.19a)
or

un+1 _ un . A un
j j J+ET+77

n

1 2
+ 2Uj+é(1 + Jj+é)A+uj

s

i
- . + .
2uj_é(1 VJ_é)A_u

(2.19b)



If we compare equations (2.19a-b) with equations (2.9a-b) we can
rewrite the scheme given by equation (2.18) in a form based on the
cell [xj_l,x.] ) Moreover, we can consider the scheme as

J
consisting of a first order increment together with a second order

transfer:
n+l _ n
Ujop T Yyt Py
Vj-i >0
n+1l o
. = + ¢, -
45 Uy * gy T by
(2.20a)
n+1 n
) = . + &, - b.
%3-1 Y5-1 7 F3-1 7 Pi-g
Vj_1 < 0
n+l 2
. = + b.
%3 Uyt by

(2.20b)

where
® = - A
j-4 Vi-gh-t

(2.21)

is the first order increment and
— i -
byoy = 21 - vy Doy,

(2.22)
is the second order transfer (see figure 2). (It is possible to
limit the transfers bj-i to avoid non-physical oscillations

2

created by the scheme, see [2], [3].)



- 10 -

JE N °3-4
!_r-___"
n+l . o ¢
j=2 j-3
n 1 1 1 1
j-1 ] i-1 j
>
V]-é < 0 Lj_é 0
Figure 2

We can also write equations (2.20a)-(2.22) in a form similar

to the first order scheme (2.5), i.e.

n+l n + n _n - n n
T T T A I L L T A A L
1+ _ | n_n _1- _ n_n
vy U-lug  Dugmugg) - oavy o (-fvg g ) (ugmuy )
- n _n, _ 4+ _ n _n
+ 2”j+1(1 luj+§l)(uj+1 uj) 2Vj+§(l 'Vj+5|)(uj+l uj).

(2.23)

by taking account of equations (2.19%a-b).

In the next section we see how the schemes of this section can

be applied to systems of conservation laws (without source terms).
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< SYSTEMS OF CONSERVATION LAWS

In this section we apply the first and second order schemes of
§2 to systems of conservation laws.
Consider the system of hyperbolic conservation laws
we + £, = 0 (x,t) € (-»,») x [0,T]
(3.1)

with initial data
wix,0) = wy(x)
(3.2)
for the function w = w(x,t) where £ = f(w) .
The approximate solution of equations (3.1)-(3.2) is sought by
assuming a pilecewise constant representation and solving the

approximate Riemann problem

., n n _
we + A(wj_l,wj)wx =0, (x,t) € [xj_l,xj] x (t ot )
(3.3)
where A(w?_l,w?) is an approximation to the Jacobian
o n .n
A(w) = §W(w) , and wj—l’wj represent the piecewise constant
states at time level n , 1i.e.
[.n e _ AX AX
Wy-1 X € ARy_1= 7o Xy gt 7
wix,t ) =
n AX AX
V_’IJ x € (xj 'z_r xj+ 2—)
(3.4)
The notation of %2 is assumed. (A specific example of A is

given by Roe [1] for the Euler equations of gas dynamics.)
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Given the Riemann problem (3.3)-(3.4), we can obtain first and
second order schemes for the solution of equations (3.1)-(3.2) as

below.

8k First order scheme by diagonalisation

Consider the cell [xj_l,xj] and suppose that the approximate

~

Jacobian A(y?_l,y?) = A. , has n -eigenvalues A._ ;, 1i=1,...m

J=—2 1 J-2
with corresponding linearly independent eigenvectors igj—"
2
i=1,...m . If we write
Xjp = li&j-pre - m@y-4]
(3.5)
as the modal matrix then it is well-known that
~_q - = D
Xiog By-s %y-s T M54
(3.6)
h . L i LA SHeme .
where A5-4 dlag(lhj_é, mhj-é)
(3.7)

is a diagonal matrix. Thus, if we define a new dependent variable

by
_ o-1
v = Xj-éw (x,t) € [xj_l,xj] X [tn’tn+l]
(3.8)
then equation (3.3) becomes
(3.9)
i.e. a set of scalar problems
Se(iv) + i"j-;g—x‘i") = 0 i=1, m
(3.10)

where Vv = (lv,...mv)T .
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Equations (3.10) can now be solved approximately using the

first order upwind scheme given by equations (2.8a-b) where we

identify ihj-i with the approximation to aj_1 for each 1
2 2

Thus the scheme for equations (3.10) written cell-wise is

S oo on - AL ;_ (vi-vh )
i“j-1 i“j-1 AX i73-3'i"§ i7j-1
i=1,...m
n+l _ n _ at T+ =L v )
A T L MR ACIEAS IS
(3.11a-b)
4
where iAE—i are defined using equations (2.6a-b). Equations
2
(3.11a-b) can be written in system form as
ntl _ _.n _ At - n _.n
Y51 T Y1 T axty-s(Yy T ¥yed)
(3.12a-b)
ntl _ . n _ At + n _ n
S S~ S D Rt
where
T+ _ “+ G
Aj-é = dlag(lAj_i,...th_é) ’
(3.13)
or, if we transform back using equation (3.8),
ntl _ .n _ At - n_.n
Wii1 T ¥ye1 T oaxti-3 Yy T el
(3.14a-b)
ntl _ _n _ At + n _.n
Wy T = Wy - peRyog Wy - dy)
where we have defined
at = x. .4t x7t
j-3 j=3273=-2"3-2
(3.15)

as the positive and negative parts of Aj C
=]



The scheme given by equations (3.l4a-b) can be written

point-wise as

n+l _ n _ at,+ n_ . n

S R e ETAL-C I
At - n n
Py (i1~ Yy)

(3.16)

which is an extension of the algorithm given by equation (2.5).

3.2 Flux-Difference Splitting

Consider first an alternative approach to the diagonalisation

given in §3.1 which consists of splitting the Jacobian matrix

A = ; with eigenvalues iA and corresponding linearly

0.'| Q
! IHh

independent eigenvectors ;e into

A = at+a”
(3.17)
where
at = x A7
(3.18)
AlL = diag(lhi,...mhi)
(3.19)
and
X = [lg,. .mgl .
(3.20)

If we expand v_v(xj,tn + At) about (xj,tn) as a Taylor series to

second order and use equations (3.1) and (3.17)
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to obtain

w(xj,tn+At) x y(xj,tn) + Atyt(xj,tn)

= w(x.,t. ) - AtAw_(x.,t )
-'7j’ " n =X "3’ "n
_ _ + _ =
= w(xj,tn) AtA wx(xj,tn) AtA yx(xj,tn)
(3.21)
Thus, defining Aj_1 as an approximation to A at
2
X. = 3(x. .+X. and splittin A, into
j-3 = 2%y g7xy) 3 9 B4-1
~ ~y cH
) = ] + A.
Ai-1 Ay-4 j-3
(3.22)

as in 83.1, we get the following first order upwind scheme for

equation (3.1) from equation (3.21)

~ (WQ—wg ) o (wq -wg)
n+tl _ n_ + -j =j-1" _ - =j+1 =3
Wy T WyTAtAy o T AR R
(3.23)
Equation (3.23) is the same as equation (3.16). (N.B. The

matrices A-,Aj_i and A+,A;_1 are associated with left and right
2 2

travelling waves, respectively.) To implement this scheme in an
upwind manner (by looking at each of the m waves in turn) we

proceed as follows.

To implement the algorithm given by equation (3.23) we project
? - y?_l onto the eigenvectors ‘éj—i in the form
2

wh - wh =
45 T ¥y-1

I™~M3 -

(3.24)

so that equation (3.23) becomes



m
_§+1 = wq -z lvf_t ia._1 ig'-i
J ] j=1% 172 J-=2 J-z2
(3.25)
m ~-— ~ ~
- 2z 7N N .e.
soq 17345 17341 15544
written pointwise, or
m ~
ntl _  n _ - 4 p
Wi-1 T ¥y-1 7 2 Y51 i99-3 195
(3.26a-b)
wn+l = wh - g ;+ a e
=3 =3 joqi 3% i73-5 153-3
written cell-wise, (see figure 3), where we have defined
“+ _ At ;i
i’j-4 T BEx i%3-3
ok “i¥5-5 195-3 i%5-3 “i¥3-1 1%5-1 i%3-4
‘(““‘\ /
n 1 1 1 1
J=d J j-1 J
iV5-4 <0 5] > 0
i=1,...m
Figure 3
~4 . 4 . .
We note that the Ag_i have eigenvalues 1‘5—1 with eigenvectors
2 2
iéj—i . In addition, equation (3.24) can be written as
2
n n - ~
W, - W, = X. .
%5 T Fi-1 j-1 ¢3-%
(3.27)
where ;. s = ;. A 5 . ;. 1)T
=J-2 17]-2 m j-z

and using the change of variable given by equation (3.8)
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we obtain

i%5-4 7 1Y T iVy-1 v
(3.28)
i.e. the 'wavestrength' iaj_1 represent a change in the
2
characteristic wvariable iV across the cell [xj_l,xj]

Finally, we note that the scheme given by equation (3.25) is the
scalar scheme given by equation (2.5) when applied to each of the

m-waves.

3.3 Second order scheme

We now derive the Lax-Wendroff second order scheme of 52.2 as

applied to the system given by equation (3.1).

%
Hh

Suppose we split the Jacobian matrix A = as in equations

£l
I }

(3.17)-(3.20) and expand y(xj,tn+At) about (x.,tn) as a Taylor

]
series
wix.,t +at) ~ w(x.,t. ) + atw,_(x.,t ) + At2w (x.,t.)
L ¢ R R o =t 7j’"n 27 =tt'%j’n
(3.29)
Using equation (3.1) we have
we = - iy = - AWy
(3.30)
and
- A= = - = e = 2
Werp = 7 Exe (£e)x (Awe )y = (ATWy)y
(3.31)

so that equation (3.29) becomes

v_v(xj,tn + at) x y(xj,tn) - AtAyx(xj,tn)
+ Atz(A"’w (w.,t_))
2 =x""j""n"’'x °
(3.32)
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We approximate

n n
7 BY T 24
wa(xj’tn) B 2[Aj—§ ax T Aj+5 AX ]
(3.33)
n n
and (A%w_(x.,t. ), = +_ A i I A A—wj]
-x'"j’""n"’'x AX i+ TAX j-17ax
(3.34)
n n _ i
where AWy T Wiiq T Wy
(3.35a)
n n n
AW, = W. - W,
-¥3 Y5 T ¥5-1
(3.35b)
and the Aj+1 are as before. Combining the expressions given by
T2

equations (3.32)-(3.35b) we get the following second order

centrally based scheme

n+1 n at [ n N n
W = w., - A, A W. + A. A, W.
=3 =5 Zax[ j-32"-=3 j+3 +'J]
AE® [ n -2 n
+ e [Aj+;A+wj Aj+§A—Wj] ¢

(3.36)

If we split the approximate Jacobians Al

j as given by

H+

1
2

equation (3.22), equation (3.36) becomes on rearrangement

n+1 n At + n At - n
W = W - —A- A W. . —A- A W
=] =j  AxXj-37-=3  AXi+:T+-]

(At _ Aty n
+ 2A—}-{-AJ 1_(I EAJ“é)A wj
AtT AtT n
1At - At n
toagRPyar (T FRPy41) 844
_ 1At + Aty n
axti+s (T 7 ExPyey)oeYy

(3.37)
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To implement the algorithm given by equation (3.37) we proceed as

in §3.

and

so that equation (3.37)

where

and

i.e. we project

-

-
=

-
=

-
=

-
=

NN NS I NA3 I3 HINAAS N3

| o
=

in the manner

iY5+1 i%5+4

At

10 2
[V

ax i"j-3

(3.38)

(3.39)
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o~

. + . - .
We again note that Ag_i have eigenvalues 1*5-1 with
2 2
eigenvectors i84-1 and that
2

| y )= .; . when vT s £0

i"j-3 1 J-2 1 J-2
(3.40)

[ j—él B = P when vy 4 # 0
(3.41)

The algorithm given by equation (3.38) is written pointwise
and is an extension of the first order algorithm given by equation
(3.25); moreover it 1is an extension of the Lax-Wendroff scalar

algorithm given by equation (2.23) when applied to each of the

m-waves. In addition, we can write the scheme cell-wise in the
form
m
ntl _ .n  _ T - N "
¥5-1 T Y51 > 13-4 1%5-1 185-3

i=1
m —~ — -~

+ Eév—- 1(1" I-V. 1])6(-1 =]

1 J-2 1 J-2""'1 J-2 1-]-z

i=1
m —~

- 1t - " -
D Bv3a(L - vy Doy gy
i=1

(3.42a)
m
ntl _ .n _ } ;+ N ;
=3 =3 i"j-4 i7j-3 i=j-3
i=1
m -~
N ~ = "
1 -

+ ) E i - Iy hiegy ey
i=1
m o~ ~

—_— 1 - -
R AP IR CAE N FUPS RUL MRPRPL P
i=1

(3.42Db)
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which readily yvields the scalar algorithm given by equation (2.23)

when we employ the transformation

n I n
W = X. V.
=j-1 j-3 =3-1

n o n
W =1 X.. V.
=] j=5 =3

of §3.1 as applied to each component of Vv where

Finally, we can write equations (3.42a-b) in

equations (2.20a)-(2.22) as

n+l _ n
Wi-1 T ¥5o1 t By .
n+1 n i¥g-3
, = w. + .¢&. - .b.
=j =3 0 i=j-3 i=j-3
n+l _ n
Wi T Yot ifyor T i®j-g -
s 1
r.1+l = Wn + .b- 1 = J &
=3 =j = 1=j-3
for each i =1,...m , where
i%5-1 T 7 iY5-1 i%j-5 i85-4
and
= 1 _ - .
T L FL I S R

(see Figure 4).

a similar form to

>

<

(3.43a)

(3.43b)

(3.44)

(3.45)
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1By-1 i=3-3
> ,
&
i i%5-1 i%5-3
n 1 i 1 1
j-1 j =il J
iVj-3 <0 iVj-3 > O

Figure 4

The second order transfers can be limited in such a way that

non-physical oscillations are avoided (see [2], [3]).

In the next section we return to a single conservation law,

but with a 'source' term.



4. SCALAR CONSERVATION LAW WITH SOURCE TERM

In this section describe first and second order schemes for a
single conservation law with a source term.

Consider the hyperbolic problem

u + £ = h(x,u) , (x,t) € (-2,®) x [0,T]

(4.1)

with initial data
u(x,0) = uo(x)

(4.2)
for the function u = u(x,t) , where f = f(u) 1is a convex flux
function and the source term h(x,u) contains no derivatives of
u . Equation (4.1) can be written as

Uy + a(u)uX = h(x,u)

(4.3)
where a(u) = £'(u) , so that the characteristics solution of
equation (4.1) can be written

du _
T - h(x,u)

(4.4a)
along

dx _
T = a(u) .
(4.4Db)

If we adopt the notation of 82 and consider a(u) to be constant,
say a , in the time interval [t,t+at] then we can integrate

equations (4.4a-b) to give

t
u(x,t + at) = u(x - aat,t) + IA h(s)ds
0

(4.5a)
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where
h(s) = h(x - a(at - s) , u(x - a(at - s),s))

(4.5b)

4.1 First Order Scheme

We now derive a first order scheme based on integrating
equation (4.4a) along the characteristics given by equation (4.4b)
in an approximate manner.

Consider the interval [x._l,xj] of length Ax and suppose

J
a(u) > 0 so that equation (4.5a) can be approximated as
u?+1 = uQ + .-:.th(xQ , uQ )
i-3 j-3 j-3
(4.6)
where
= - a. 1At
Q5.1 ®5 7 84—
2
(4.7)
and u , 8. 1 are approximations to u(x E) a(u) ,
%5-30 37 °3-4

respectively. We choose aj-i as given in equations (2.7a-b) and
2

set

- n _ At n _

Y. , = Y5 T ax 3534y 7 uy)
J=2
_ n _ at n _ .n
= Yy " zx By 7 Fyap)
(4.8)

where f? = f(u?) . The approximation given by equation (4.8) is

consistent with the first order upwind scheme of 82 in the case

h=20.
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If we now consider a(u) to take any sign we have the
following first order scheme for the solution of equations

(4.1)-(4.2) considered cell-wise

un+1 _ un
i-1 j-1 (4.9a)
1 1 > 0
2
n+1 n n . n n n _n
; = u.-v. L-u. + .-a. -V s=UL .
uy U uj_é(uJ uJ_l) Ath(xJ aJ_éAt,uJ uj_é(uJ u]_l))J (4.9b)
ntl _ n _ n_n _ . n n_n 7
uj_1 = uj-l ”j-é(uj uj_1)+Ath(xj_1 aj—;“t'uj-l’j—é(uj uj_l) (4.10a)
L 0
UJ_;(
n+1 n
: = u, 4.10b
45 | ,( )
where
y N, At
i-3 j-4 A%

Alternatively, we can write equations (4.9a)-(4.10b)

pointwise, centred on x., as

J
.
n+1 n _ + n _n j-3
u. = u.-v. . =U. + At ——
j 37V 5-3 () 5, Moy v Yoy )
J-z2 J—z2 J—2
V.o
- n n J+2
- v, (U, ,-us) + At —° h(x,_ u )
e L Viey 93+ 934
(4.11)
where
- n_ ¢ n _ n
Yog . T U3 7350y T My
+
X = x., - a; At
J-2
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+ +
and v ¢, a: 1 are as before. If we expand  hi(x , u )
J J Qi_é Q§
+

+1
o=

equation (4.11) gives, to first order,

n+1 n + n n - n n
) = , - . . = U, - . u. = .
j Uy = vy (Y j-1) 7 Pyes(Uyeg T Uy
U+ V—
j-1 + n j+3 . n
+ At —° h(x.-a. sat,u.) + At —° h(x.-a., iat,u;
vy (xy-aj_jat,uy) o H(xgmag et ug)

(4.12)
Equation (4.12) represents a first order scalar algorithm that can

be easily extended to systems.

If we wish to simplify this algorithm further we may expand

+ .
h(xj - a;_iAt,ug) about (xj,u?) so that, again to first order,
+2
n+1 n + n n - n n
u = u., - v, u. - u. - v, . - u.,
] R PP B LS EP RS RS N
u+ v,
s 1 N 1
+ At =32 h(x.,u) + at 372 n(x,,ul) .
V. 4 J J V., 1 J J
J=2 J+3

(4.13)

The scheme given by equation (4.13) can be expressed cell-wise

as

n+l _ n .
uj_1 = uj_1
; >
d Vj_é O
n+l n n n n
u. = u. + Ath . L) - . R .
j j (xg,uy) = vy_g(uy - uy_4) ]

(4.14a)
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n+1 n n n
: = . + . ; - v, .= Ul
U1 Uyq Ath(xj_l,uj_l) .)J_é(uJ uJ_l)
. <
Vit 0
utl o= 0
J ] J
(4.14Db)
(see Figure 5).
n _n n n . n n
_Vj—g(uj-uj—1)+Ath(xj—1'uj—1) _Vj-g(uj uj_1)+Ath(xj,uj)
- ,--"—_‘?
n+1 R\\\ {///
n 1 1 1 1
j-1 J j-1 J
vj_é < 0 vj-é >0
Figure 5
4.2 Second Order Scheme
We now derive a second order scheme for the solution of
equations (4.1)-(4.2). Differentiating equation (4.1) with
respect to t gives
Upg ¥ Epe = B = Byue
(4.15)
where
P, o 1)
fer = (ft)x = (£ ut)x

(4.16)
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Thus, using equations (4.1) and (4.16), equation (4.15) yields
—_ - = 1 -
U, = hu(h fx) (£'(h fx))x
so that expanding as a Taylor series as before

W(xy, tbat) = u + at(h-f) + é% h, (h-£_)
T(f(hf))
(4.17)

where the terms of the right hand side of equation (4.17) are

evaluated at (xj,tn) . Following equation (4.17) we propose the
following scheme centred on xj
- n _ Ny
SR WU I L o B
j j 2| j+3 AX
L J
; n n
+ Aty _ (f] - fj—l)w
VIR RS ES AX
n n
" at? (hu)3+ h (fj+l fj)]
2 2 i+ AX
n n
f. - f.
. A2 (h ). _1 . ) ( i J_l)
2 2 j-1 AX
. n n
£ - £
£ [h. ! JJ]
_At2 745 V43 AX
2 AX
n n
f'. h _ (fj - fJ"l)
_ 3-3 j-% AX
AX

(4.18)
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where hjté' (hu)jié' fﬁté represent approximations to h(x,u),
hu(x,u), f'(u), respectively, with x € [xj_l,xj] , and
u € [u?_l,u?] , i.e. at time level n As in §82.2 we set
n n n n
. Bw o f fluy,q) - £luy)
a .. 1 - f 1 —
J+3 J+s3 un un un _ un
j+1 J j+1 3
(4.19)
and similarly for a. , = fl We now wish to choose h.,:,
J=2 J=2 Jjiz
(hu)j+1 so that equation (4.18) matches equation (4.17) to
I3
0(a®) .
Since (hu)j+1 only appear in the second order terms we set
I2
_ n
(hu)jié = hu(xj,uj)
(4.20)
and approximate
h. ; = h(x,u)
J-2
(4.21)
where
= _ ~ c
X PXs_q % (1 p)xj p € [0,1]
(4.22)
= n _ n
u = quy + (1 q)uj q € [0,1]
(4.23)
with similar expressions for hj+1 : From equation (4.22) we get
2
X = xj = p(xj - xj—l) = X. - pAX
(4.24)
and from (4.23)
I n _ n_ n
U=y q(uj uj_l)
. n _ 2
= uj g AX u(xj,tn) + 0(ax®) .

(4.25)
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Thus, using equation (4.24)-(4.25) we rewrite equation (4.21) as

h]_é = h(xj - X_, u? - u_)
(4.26)
and similarly
hj+§ = h(xj + X, u? + u+)
(4.27)
where
X, = 0(ax), u, = 0(ax)
(4.28)
Substituting the approximations given by equations

(4.19)-(4.20) and (4.16)-(4.27) into equation (4.18) we obtain,

after expanding all terms about (xj,u?), the following expression

for the right hand side of equation (4.18)

U+ At(h - £) + A% - £)n
X 2 X u

(), )

XX

At At
+ —7hx(x+ - X_) + —-z-hu(u+ -u_)

h_£f f h
At2 XX X u
* m[ (%, + x )= - (u + u-)'u_]
X X
+ 0(a®)

(4.29)
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All terms in equation (4.29) are evaluated at (xj,tn)

used the following expressions:
i - f

J+l j _ _ AX 2
AX - fx _Qfxx + 0(ax%)
f. - £.
Jj j=-1 _ AX 2
- ax fx e _fox + 0(ax)
fx AX fx
1] —
ey = e [, o)
X X/ X

and we have

(4.30)

(4.31)

(4.32)

In order to make the scheme given by equations (4.18)-(4.19)

and (4.26)-(4.28) second order accurate we must choose

X, - X_ = 0
x, +x_ = &%
u, - u_ = 0
u, +u_ = 0

so that equation (4.29) yields

2 [ c£2 , 3 2hf
<22 [—]]T
X XX

X

and using f = f'u equation (4.37) gives

At? _
—7—(f (h fx))x

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)
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Equation (4.38) is of the correct form as can be seen by
comparison with equation (4.17). Thus, solving equations
(4.33)-(4.36) we obtain

Xy T Tz Yy T
(4.39)
Therefore the second order algorithm given by equations

(4.18)-(4.19), (4.26)-(4.28) and (4.39) becomes

n+l _ n 1 _ n _ n
uj = uj + Z(Athj+§ Vj+é(uj+1 uj))
1 _ n_ n
At(h ).,
u Jj+z _ n _ .n
At(h ). 4
U j-3 _ n_ n
t — (Athj_é Vj—é(uj uj_l))
o _ n _..n
2(vypg (28R = vy (e~ ¥y))
n n
Vg athy o - vy Uy = Uy )))
(4.40a)
_ At ) At
where vjié = ajié e E fji; =
(4.40Db)
_ n
(hu)jié = h(xJ,uj)
(4.40c¢)
AX n
and hjié = h(x, * — uj)
(4.404)
Equation (4.40a) can be rewritten as
n+1 n At n n
: = .+ + 3 . - V. T T
1 _ At \ _ n _ .,
_ 1 _ At _ n _ .n
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or u?+l = u? + (1 + é§(hu)j+§)(Athj+; = uj+§(u?+1 - u?))
£ 31+ vy + S5h) 5 ) (athy - vy g (uf - ug )
- (L vyt Bohy) sps) (sthy,y - vy (U5 - u3))
(4.41Db)
If we compare equations (4.41a-b) with equations

(4.14a)-(4.15b) we can consider the scheme given by equations
(4.40a-d) as based on the cell [Xj—l’ xj] i Moreover, we can
consider the scheme as consisting of an increment stage together

with a transfer stage:

R
l- — l_ l_1
j-1 j-1 i%2 . . >0
J-2
n+l n
X = . + . - ,
Y5 Uy * ¥51 7 Sy
(4.42a)
n+l n
, = , + v. - R
uj—l uj-l J_é cj_é 1 v, 4 <0
un+l = un + ¢ | 7
j j j-3
(4.42Db)
‘where
At n n
, = + N . - . P j
¥5-4 (1 + =5(hy) s g)(athy o - vy g(uy = Uy )
(4.43)
. o B At ~ n_ . n
cjoy = - B(L - vygl o+ Sp(hy) g g)(athy o - vy g (uy = Uy )
(4.44)

(See Figure 6).



- 34 -

Figure 6

—_—
& -
C._1
J-2
////ﬁ;j-;
1 1
IFL ]
v > 0

We can also write equations (4.42a)-(4.44) in a way similar to

the first order scheme (4.13)

n+l
u

[ ST

Ve

[V

(M

1+ £5(n
1 + 4%(h
le_il +
le_1| +
luj+él +
IVj+3I +
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Written cell-wise, equation (4.45) becomes

Gttt L s [1 + 2&(h ), 1][Atu]'5I he, o - vs 4 (uf - u )]
j-1 3|~ 27 u' -3 ZEw j-3"73 |
1 At r L";_i - n
& 2[1 - IVj_iI + —z(hu)J é] Lﬁtu—jmz‘ h]“é = Vj_é(uj - u _l)]
+
+ 31 - v |+ 25(n ) Att-:-—_-é h ot ® - W)
z j=30 7 T2V u’ -2 Y j-3 j-3 el
(4.46a)
V+
n+l _ n At j-1 + n ]
» p— o + + 3 iy e ] = 'l = »
U.J uJ [1 _Z(hu)J—é] [Atuj_é h]"é bj_é(uj uj—l)
+
1 At v.-é + n n
- 2[1 - 'VJ 1! + T(hu)J 1][Atvj—.-§ hj_é - Uj_%(uj - uj_l)]
v,
1 _ At =2 - = - n
+ 2[1 IVJ 1| + T(hu)3_1][ﬁtu—j_é hj-é vj—é(u uj—l)]

(4.46Db)

In the next section we apply the  schemes of this section to

systems of conservation laws with source terms.
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5. SYSTEMS OF CONSERVATION LAWS WITH SOURCE TERMS

In this section we apply the first and second order schemes of
§4 to systems of conservation laws with source terms.

Consider the system of hyperbolic conservation laws

we v+ £, = ¢ (x,t) € (-,%) x [0,T]
(5.1)
for the function w = w(x,t) , where £ = f(w) and where the
source term g = g(xXx,w) contains no derivatives of w . As in

53, we assume that the approximate solution of equations (5.1) 1is

sought by solving the Riemann problem

n n — c
w, + A(wj_l,wj)wx g(x,w) , (x,t) € £xj_1,xj] x (to .t 1)
(5.2)
where A(w?_l,y?) is an approximation to the Jacobian
of n .n
A(w) = EW(W) and wj-l’wj represent piecewise constant states as
in equations (3.4). A specific example of A is given by

Glaister [5] for compressible flow in a duct of variable cross

section. The algorithms of this section are illustrated for this

example in $6.

Sgl First order scheme by diagonalisation

Assuming the notation of 83.1, we can 'diagonalise' the system
of equations (5.2), using the change of dependent variable given by

equation (3.8), to

(5.3)
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where
~_1 ~_1 -
Xyoy glxow) = Xy g(x,Xy_.v)
= h(x,v)
(5.4)
Equation (5.3) represents the sequence of scalar problems
3 N 3 _ C_
3€(iv) + iAj—é Ei(iv) = hi(x,iv,...mv) ) i=1,...m.
(5.5)

Equations (5.5) can now be solved using the first order upwind

scheme given by equations (4.13), where we identify ihj—i with
2

the approximation to aj_1 for each i . Thus the scheme for
2

equations (5.5) cell-wise is

n+l _ n _ At - n _ n
iVio1 = iVy-1 T aw ity-1(av5 T iVy-1)
A g
i"j-3 n n
+ At : hi(xj-l’lvj-l""mvj-l)
i%3-3
(5.6a)
i=1,...m
n+l _ n _ At 4+ n _ _n
iV = 1V§ T Ex i45-404Y T 1Y5-1)
iA;— n n
2
+ At = hi(xj'lvj"”mvj)
i%3-2
(5.6b)
i=1, m
~+
where 1*5-1 are as before. Equations (5.6a-b) can now be
2
written in system form as
ntl _ .n _ At - n_ .n
Y521 T ¥5op T oax 43-3 Y5 7 Y1)
-1 - n

(5.7a)
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n+l n At + n n
. = w = st = N
Y5 Y5~ ax 49-1¥5 7 ¥5o)
-1 T+ n
+ atAa, . h(x.,v:
atd Zsdyy Blxy.¥5)
(5.7b)
where
“+ T+ “+
Aj_é = dlag(lAj_é,.. m)lj_é)
(5.8)

If we transform back using equations (3.8) and (5.4) equations

(5.7a-b) become

n+1

n At - n n
Wii1 T ¥ye1 T oax Ay-(¥y T W)
-~
+ AtAj—g Aj—l g(xj_l,wj_l}
(5.9a)
n+l _ n _ At + n_.n
o Wy - 3x Ay-y (W5 T W)
-1 T+ n
+ A- . wh
At As_s Ayy glxy.wy)
(5.9b)

where A are given by equation (3.15) and have eigenvalues

-~

. b

+
i 5_1 i=1,...m . The scheme given by equations (5.9a-b) can
2

r

be written pointwise as

ntl _  n _ At;+ n_.n _ iy n _ . n
d5 T ¥y T ERRy-1 Yy T ¥e) T ER Ay (W T Y
+ At;.ligf ) g(x.,WQ) + Atgfligf . g(x.,w9)
J=2 J~2 IF =y Jtz  J+2 ] =]

(5.10)

which is an extension of the algorithm given by equation (4.13).
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To implement this scheme in an upwind manner by looking at each of

~

the m waves with wavespeeds ihj—‘ i=1,...m we proceed as
2
follows.
5.2 Flux-Difference Splitting
of
Following the approach of §3.2 we split the Jacobian A = o
into
A = at +a”
(5.11)
and g similarly as
+ —
g = g *tg
(5.12)
where
+ -1._%
g = A lA' g .
(5.13)
3 & . .
The matrices A~ are defined by equations (3.18)-(3.20).
Expanding v_v(xj,tn + At) about (xj,tn) as a Taylor series and
using equations (5.1) and (5.11)-(4.13) we obtain
v_v[xj,tn =fn Avteg)n 5= y(xj,tn) + Atwt(xj,tn)
= w(xj,tn) i At(g(Xj,tn) - wa(xj,tn))
_ + .t
= W(xj’tn) + At(g (xj,tn) A wx(xj,tn))

+ At(g_(xj,tn) - A_yx(xj,tn)) .

(5.14)
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Thus, defining Aj-i'gj—l as approximations to A,g at
2 2
Xj_1 = é(xj + Xj—l) and time level n , and splitting Aj_1r9y-1
into
~ ~y =
Ay T Byep T By
(5.15)
+ =
. = . + g.
95-3 9j-13 7 95-4
(5.16)
where
+ _ ;-l ;i
9-5 T %49-1 %5-4 95-1
(5.17)

we get the following first order upwind scheme for equation (5.1)

from equation (5.14):

+1 n + (w5 - wig)y

Wy o= wy At[gj-i A

~- (W?+1 B W?)

+ At[gj+é - Aj+§ =% ]

(5.18)
(N.B. ;§-§ are as in §5.1 and are associated with right(+) and
left(-) travelling waves.)

Comparing equations (5.18), (5.10) and (5.17) we see that we can
take the approximations gjié used for wupdating y? to be
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To implement the algorithm given by equation (5.10) written

cell-wise in equations (5.9a-b) we project as before:

m o~ ~
n n _ .
¥5 T ¥5-1 T > 1%5-1 1841
i=1
(5.19)
m
n _ 1 N N n
g(x5_10¥59) 7 "X > ih3-3 1B5-1 1%5-4
i=1
(5.20)
and
m
. _ 1 N - -
glxy,wy) = - z% ) i j-3 i73-4 i%5-4
i=1
(5.21)
to give expressions for iaj-é’iﬁj—é and iyj—é; i.e. project
+ - . 5 - - .
gj—§’9j+§ in eguation (5.18) onto igj-é'i§j+é’ respectively.
Equations (5.9a-b) and (5.19)-(5.21) now give
m
ntl _ _n _ At - - -
Wio1 T Y5-1 T OEX ih5-14 1°%5-1 iSj-4
i=1
(5.22a)
and
m
ntl _ _n _ At o+ - -
Y5 T %3 7 Ax ) i*3-3 1653 1851 ¢
i=1
(5.22b)
where
i%5-3 T i%-3 T ifj-4

(5.23)
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and
= . +
i®j-3 i“j-3 " i 3-3
(
N ~+ . - “+ .
(N.B. A. ;,A, ;4 have eigenvalues A, _1,.A7 1 respectively.)
J=2" J-=2 i"j-271i"3-

5.24)

The schematic representation of the scheme given by equations

(5.22a)-(5.24) can be seen in Figure 7.

“i¥j-4 1%§-4 i%j-4 Ti¥j-3 i%5-1 i%3-4
n+l <_\-1\ /"‘_?
n 1 \ 1 1 1
Vg3 <0 Yy > 0

i=l’.'.m

Figure 7

Written pointwise, equations (5.22a-b) become

m
n+l n } “+ - -
. = wWw. - sV . L.
=Jj =3j i"j-3 1%j-4 i=j-3
i=1
m
= E Vst i1 s€s 4
17 J+3 1 J+z 1=]+2

-

(5.25)



~y ~4 _ .
where .v. 1 = At AT g Equation (5.25) could have been derived
1 J_2 AX 1 J_2

. . . n n n n
from equation (5.10) by projecting wj - wj—l’ wj+1 yj onto the

respectively, as given by

cal eigenvectors e, .e.
1o 9 i%3-57 iSj+3”

equation (5.19), and projecting the term g(xj,w?) occurring as
= BN n -

g(xj,yj), Aj+§ Aj+§ g(xj,w?) onto the local eignvectors
respectively, as given by equations (5.20)-(5.21).

As in §2, we can use equations (3.8) and (5.19) to represent

. as

(5.26)

in addition, we can use equations (5.4) (5.20) and (5.21) to

~

represent the 'additional wavestrengths' iBj-i’ 179-4 as
2 2
e n
~ A._iX._1g(xl_ ’V_J'_ ) 2
B 4 — _[3232 j-1 3jL=Hls - _ AX h. (X. IVI’_I )
i"j-2 A ~ i*"j-17-j-1
( Ji it -1
(5.27)
and
| n
~ A." 11X, . .
. - |3 3-39%5950)  ax B (x. %)
i’ j-3 AX i s L R
i i"j-3
(5.28)

Finally, we note that the scheme given by equation (5.25) is
the scalar scheme given by equation (4.13) when applied to each

ofthe m-waves.



5.3 Second order scheme

We now derive a second order scheme for the solution of

equation (5.1) using the scalar scheme of %4.2.

Q
Hh

Suppose we split the Jacobian matrix A = , and the source

£l
1 |

term g as in equations (5.11)-(5.13) and expand \g(xj,tn + at)

about (xj,tn) as the truncated Taylor series

5 At?
v_v(xj,tn + At) y(xj,tn) + Atwt(wj,tn) + —— th(xj'tn) .
(5.29)
Using equation (5.1) we have
We = 9Ly T 97 AWX
(5.30)
and
Wer = 9 " Exe T og¥e 7 (i
= g¥ - (AW )y = g,(g - Aw) - (Alg - AWy) )y
(5.31)
so that equation (5.29) becomes
y(xj,tn + Aat) x w + at(g - wa)
At? AtZ
+ —— gw(g - Aw.) - (A(g - Aw,)), .
(5.32)

where the terms on the right hand side are evaluated at (xj,tn).
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1 N (V'JJ B "_Jj_]_)
(g - AWX) (x.,t_ ) - z[gj_é B Aj_é AX
j’™n
n n
. o Wy T Yy)
9i+1 j+3 A%
(5.33a)
) - (W - wyy)
gw(g - Avy) (%, £ ) = 2[(gw)j-‘[gj-é - Aoy 3% ]
j’™n
-~ (wh, - W)
_ j+1 =]J
¥ (gw)j+é[gj+é Aj+y A% ]]
(5.33b)
and
- (wg - wg)
- s U - =j+l1 =3
(Alg = Awy))y = Zﬁ[ J+;[gj+§ j+3 AX ]
i - lwy - W?-l’]
i Aj—;[gj—; B B s ,]

(5.34)
where the approximations gj—é’(gw)j-é to g.9, at
(x,tn), x € [xj—l’xj]' will be determined by the scalar algorithm
of 84.2. Substituting the expressions given by equations
(5.33a-b)-(5.34) into equation (5.32) and using equations

(5.15)-(5.17) gives the following scheme centred on X,

]
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at? _ at
T 7ax j+._,[93+1 Biys aX
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- ;. [gf - gf (wj _ wj_l)
j-31%3-2 j-3 AX
- ""'_ (V_\l? = wrj-l_l)
+ g. -
dj-3 = By-4 ZX ]]

(5.35)

To express this scheme as an increment stage and a transfer

stage as in 83.3 we rearrange equation (5.35) as

n+1 n [ At [ .+ At + n n )
) = . + + , . - —=A . ., - X
“5 wy T _f(gw)J-é][Atgj-é 7Pj-3 (W5~ ¥y
. At - At - n n
o (1 250y 0] [seahey - BASnd - ¥
1 _ At At ot AL+ n_.n
2[1 i _7(gw)3-1}[“t93-é 7hj-3 (¥ Wj-l)]

[ At At [ - At - n n ]
i - -
] R G P _7(gw)3—é],Atgj-é AX J'é(wj Wi-1)
o _ At at + st + n Al
el - ZRPy4 _7(gw)j+§] Atgsis ~ axPi+s Wy~ W5op) ] -
(5.36)
We project
m — —
n n _
Y3 7 ¥5-1 T ) i j-1 iSj-4
i=1

(5.37)
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m
_ _ 1 N = n
99+; T T ax ) it5+s iP5+s 185944
i=1
(5.38)
m
. _ 1 N N =
dj-1 = AX E i*5-3 i75-4 1%j-3
i=1
(5.39)

so that we can apply the scalar algorithm of 84.2 to each of the

m-waves. Also,
m
At - _ - -
38051 1858 T ) ki®5-3 k85-4
k=1
(5.40)
and
m
At ~ _ - -
709y 545 1S5+1 E kifj+1 kEj+1
k=1
(5.41)

Thus comparing equations (5.36)-(5.41]) with the scheme of

-~ ~

54.2, we see that Bt and e should be evaluated at
17 ]+2 1 3-2
AX n AX n .. ~ -
Xj + _I'Wj and xj - _Y’Wj . Similarly, kiwj—é' ki8j+é should
be evaluated at x.,ws . This means that g._; = g(x; - Ax,w?),
3’=3 j-2 i 2’73
= AX N _ n .
di41 = g(xj + —z,wj), (gy)jié = gw(wj,wj) ; Thus we project
m
AX _n = B N - "
glxy + 25w = - 3% ) Ay 1Bes 18942
i=1

(5.42)



so that

ipj+;

and

Moreover,

where Q. _

10

and hence

.43)

.44)

.45)

.46)

.47)

(5.48)
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_Atg-1 -
9541 T 754109 541%54
At -1 n,.
= Tyes GyiXge¥y Ny

(5.49)

We note that the expressions given for iBj+§’ iT5-1r ki¥®i-3c

kiBj+1 by equations (5.42)-(5.49) are consistent with the
2
algorithm of §4.2. Using equations (5.16)-(5.17) and

(5.37)-(5.39) we can write

m
+ AtTt n n _ At % - -
At giy - ERAS (S - Wil = - ER ) iAoy 16501 1854
i=1
(5.50)
m
t AtZ+ n n _ At R - -
At 93+§ AX j+§(wj+1 V—"j) - T AX } i g+4% i%3+% i=5+%
i=1
(5.51)
where
i%9+41 T i%5+s T 1By
(5.52)
and
i69-4 T i%5-3 T i34

(5.53)
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Finally, we need to consider expressions like

_ AtA At , (.- _at,,n _ . n .
D = [I + X j+4 + _Q(gy)j+§]lAtgj+é Zi(wj+l wj)] . Now, using
equation (5.51) we can write
m
_  _ At Aty ] .- . ~
b = Z§[I a7 _?(gw j+2 J[ } i%3+3 17343 i=j+3])
i=1
m
_ _ At Aty t NG a -
= +5 ) [I tates T _I(QW)j+5]iAj+§ i%5+8 i%5+3
i=1
(5.54)
Also, since Aj+5 has eigenvalues ihj+é with eigenvectors i§j+§
we can use equation (5.41) to rewrite equation (5.54) as
m m
_ _ &t - - - At T - < - N
D=-%% ) it 543 15j+;[i§j+; *ax 1t 5+ 18543 T 2 kif5+2 k9j+;]
i=1 k=1
m — B -~ —
=) iV e 4 J+2[(1 tiV5e1)i854 i§3+é]
i=1
(5.55)
where
o~ m —
if543 ° ) kif5+1 k€j+1
k=1
(5.56)
and
3 _ At 7 ot _ At 4
i7j+3 zx i1 iV3+41 T Ex iti+s

(5.57)



Similarly, defining
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m ~ ~
= ) k%53 K85-2
k=1
.- 3 )
V-1 1%5-10i85-3 T 185-4)
1
Y41 18545 0i8541 * 1E54s)
. L+ - _ - -
2iV5-4 i‘ej-i[(l livg-11) 58521
R - 5
bv5es 18501 [0 - 10Dt
. L+ - _ - -
2i¥3-3 %3 ‘[(1 FLERERELTEY
L - . - -
21¥j+4 i5j+é[(1 FLEFFRRELNS'

(5.58)

j-4)

vy
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Finally, we can summarise this scheme by writing it in the

cell-wise fashion

m
n+l _ n _ ~- - N N
Wil T ¥- ) i¥5-3 1%5-30i85-1 * 1fy-4)
i=1
m -~ -~ ~ —~
1 . -
R 153-%[(1 iv5-31) * 1§J-é]
i=1
m ~ —~ —~ 4 d
R Wt s (1 - v s])ses s + :¢
2 i"j-3 i"j-3 li"5-317i=j-% = i*j-3
i=1
(5.60a)
m
n+l n X ~+ = B -
. = , - , , , e . + .< .
Y5 Y5 2 iY3-3 155-30185-5 T 18y-4)
i=1
m ~
1 + - _ - - N
+ )b Vi 56 1[‘1 liv5-11) 5854 * iij—;]
i=1
m —~ o~ —~ ~ —
_ 1 - -
E 2 i¥5-4 163—1[(1 liv-31) 3851 * 1£J-é]
i=1

(5.60Db)



and iBj-é’

eigenvectors

respectively.

In addition, following equations (5.40)-(5.41),
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B ;+ e are as before
jEir 1737 17342 ’
f5-3 7 i%-3 F iP5y
(5.61)
i%5-5 T 1%5-3 T 1754
(5.62)
in-i represent projections onto the local
2
- AX . n AX . n
lgj_; of g(xj Trwj_ljr g(XJ ‘—2'1‘/_‘7])'

(5.48)-(5.49),
og

N N at n
(5.56) and (5.58), R & . represent - SW(Xj—l’wj—l)’
1 J-2 1 J-3 =
at °9 n -
— Eg(xj’wj) applied to igj-é . Finally, we can write equations

(5.60a-b)

increment and transfer form,

w

n+1
j=-1

n+1

j

n+1
j=1

n+1

in a similar form to equations (3.43a)-(3.43b), i.e.
as
| ]
= ¥y-1 T i€5-4 | .
A > 0
N . i3-3
= A S - .b.
LSR5 B S 5 B
(5.63a)
—_— n —
= Yy-1 T a¥y-p 7 iS58 3
AL < 0
N . i%j-2
= . + .b.
¥y T 1244

(5.63b)
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for each i =1,...m, where
i25-5 T 7 iV5-p 185-10485-1 F 18y-y)
(5.64)
5.5 T 7 i¥y-3 185-50i%5-g * afyy)
(5.65)
____1~ - - - - N
5oy = 7 vy g0 Iy Diegy ¢ 1$5-4)
(5.66)
.__1~ - - - - N
i€5-5 T 7 2 i¥5- 15j—1[‘1 I3 05855 * iij—a]
(5.67)
This scheme is represented schematically in Figure 8. As a
special case, equations (5.63a)-(5.67) reduce to equations
(3.43a)-(3.45) in the case g =0 .
//’_ﬂ /\_‘
i€5-4 iRy-1 i€5-4 iBj-4
e i¥5-1 ifj-4
n Q:HH\\\ 1 1 1
<0 > 0

Figure 8



In the next section we discuss the special cases of
compressible flow in a duct of variable cross section, and

incompressible flow in a channel.
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6. EXAMPLES

In this section we discuss the application of the algorithm of
§5.3 to particular systems of conservations laws. Firstly, we
consider the Euler equations of gas dynamics with source terms
arising from flow in a duct of smoothly varying cross-section.
Secondly, we consider the non-linear shallow water equations with
source terms arising from flow in a channel whose lower surface is

smoothly varying.

6.1 Euler egquations

The Euler equations for the compressible flow of an ideal gas

in a duct of cross-section S(x) can be written as

(6.1)
where
- i
w = S(x)(p,pu,e)
(6.2)
£(w) = S(x)(pu,p+pu?,ule+p))”
(6.3)
g(x,w) = (0,pS'(x),0)T
(6.4)
and
o = e

(6.5)
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(see Glaister [51]). The quantities p = plx,t), u = u(x,t),
p = p(x,t), e =e(x,t) and ~r represent the density, velocity,
pressure, total energy and the ratio of specific heat capacities of
the fluid, respectively, at a general point x and at time ¢t

The special cases s =1,x,x* refer to flows with slab,
cylindrical or spherical symmetry, respectively. Following
Glaister, we define new variables & = S(x)p, U = u, P = S(x)p,

E = S(x)e so that

w = (%,%U,E)T

(6.6)
L E (%U,P+@U2,U(E+P))T

(6.7)
g = (0,PS'(x)/S(x),0)T

(6.8)

and

E = ——r + $au? .

(6.9)

For the algorithm of %5.3 we devise an approximate Riemann problem
as given by equation (5.2). In the specific example of this
section we use the approximate Riemann problem proposed by

Glaister [5] based on the work of Roe [1].
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- of
The approximate Jacobian A(wq ,wg), to A = — 1in the cell
=j-1'=3 AW
[xj_l,xj] at time level n 1is
r
0 1 0
— 2 ™

; = LI—%lH“ (3-7)U -1

(r-1)u® _ . a2 ety
— HU H (r=1)U* ~U |

(6.10)
where the averages of U and the enthalpy H = (E+P)/% are given

by

= N U + V¥, U.
U = j-1 "3-1 i 3
VE. .+ V&
it J
(6.11)
= N3 . + V&, H.
H = j-1 H3-1 s
V& + V&,
=1 J
(6.12)
The eigenvalues of A are
1,2,3Aj-; = U+a, U~-a2a,U
(6.13a-c)
where
a = Jr-1)(H-30%) ,

(6.14)



with corresponding eigenvectors

1 ] 1] (1 ]
1,2,3%5-4 T Uta | & U-a_ L Y
H+Ua H-Ua j tuz
(6.15a-c)
Thus the modal matrix Xj—é = [lgj—é’Zgj—é'3§j—é] has the inverse
— ~2 - - -
(r-1)U Ua a-(r-1)U ry =1 1
.-\._ _ ~2 St - ~ ~
x7t, = Ll L ya ca-(r-1)U y =1
J-2 2a2 s 2 P =
2a? - (r-1)u? 2U(r-1) -2(r-1)
(6.16)

To apply the scheme of §5.3 given by equations (5.60a-b) we

~ -~ ~ -~

need to calculate the quantities iaj-é' iﬁj—é’ iT5-4¢ 1€j—§'
igj—é’ i=1,2,3. Denoting
AY = Y. - Y.
J J-l ’
(6.17)
equations (5.26), (6.6) and (6.16) yield
Qe 4 B [AP + a(a(au) - Ua®) |
1 J-2 232 J
(6.18a)
i1 = —=—|AP - a(a(#U) - UA%)]
J 2 2a2L
(6.18b)
- _ _ AP
3aj_é = AR -a::;-

(6.18c)
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where we have used equation (6.9) and the property of U that

A(RU?) - ZGA(%U) + GZA% = 0
(6.19)
If we define the average of %j—l’%j
(6.20)
then
A(RU) - GA% = &AU
(6.21)

so that the expressions given in equations (6.18a-b) simplify to

-~ ~ o~

1,2%5-4 = 2iz(AP t %aaU)
a

(6.22a-b)
In addition, using equations (5.43), (5.45), (6.8), (6.13a-c)

and (6.16) we obtain

- ((+-1)u - a
. = 2 P
173-4 ¢ U+ a -1
(6.23a)
. _ ler-nyu - a
2P5-4 « -
(6.23b)
By = - 2(r-1)Py

(6.23c)
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and_
l‘)’. 1 = K [(7—%)U : aJ P.
1=z U+ a J
(6.24a)
- +-1)U + a
2"5-3 T L = £ &
2 U - a
(6.24Db)
3744 = T 2x(7—1)Pj
(6.24¢)
where
AX
__Stxg = =)
N - o AX
2a“Ax S(xj - —7)
(6.25)
Finally, using equations (6.8) and (6.9)
' 2 3
g = [0, Ser-nE - 5p,0)7
(6.26)
where M = #U so that from equation (6.6)
w = (gterE)T
(6.27)
and hence
0 0
g, = (r-l}s-g-(—)—;x) 1y2 Sy
B 0 0

(6.28)
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Therefore the expressions if5-1r i , of 85,3 become
2 2
. - a’ L (U= * 4 oa(u- 1 olT
1§J_é [O'Tj-l ;—_—1- + 2(U UJ 1) + a(U U-_l)J,OJ
(6.29a)
- _ ;2 . “’- 2 _ ~ ""_ ] ]T
(6.29Db)
e 4 = (0,74 5(U-U, )%,0)7
3%3=3 1 j-1% j=1° !
(6.29¢)
g - o,r ;2 + 1(L~I—U )2 + ;(G-U )|,0 T
123-3 AT E 2 A 3 K
(6.30a)
= 3 ;2 ) —-_ 2 _ ~ ~_ T
gy = [ors[Ey + sup” - aup),0)
(6.30b)
N i T
- 1 - 2
BSj—é . (OITjZ(U Uj) ro}
(6.30c)
where
At(r-1)S'(x.)
T, = J
J 2S(xj)

(6.31)
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occur in the second

V>

We observe, however, that the ;¢

j-3' i2j-3
order terms of equation (5.35) and since
= LU,
U-Ug o= - )
l+ ] ‘:’l-
p il
(6.32)
~ AU
U-U = !
j~1
J 1+ V&, /%,
=173
(6.33)

we could approximate the expressions in equations (6.29a)-(6.30c)

by

2 pqH
TORRL RIRL g ;;fx;fi;l)‘o'l’o’T' sty T 0
(6.34a-c)
% % ;2AtS'(x.) T ~
185-4 T 284-3 e R S T
(6.35a-c)

6.2 Non-linear shallow water equations

The shallow water equations for the flow of an incompressible

fluid in a channel of rectangular cross-section can be written as

(6.36)
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where
w = (g(n+h), glp+h)u)T
(6.37)
£(w) = (g(g+h)u, g(g+h)u® + 3g®(g+h)*)"
(6.38)
and
g(x,w) = (0,92 (g+h)h' (x))7T
(6.39)
(see Glaister [61]). The quantities g5 = n(x,t) , u = u(x,t) and
h(x) represent the free surface elevation, velocity and an

undisturbed depth of the fluid, respectively, at a general point x

and at time t . The acceleration of gravity is represented by
g . Following Glaister, we define ¢ = g(5+h) so that
w o= (8,6u)"
(6.40)
= 2 1 22 T
g = (¢U., dU + ¢ )
(6.41)
and
= 1 T
g = (0, géh'(x))" .
(6.42)

For the algorithm of 85.3 we devise an approximate 'Riemann
problem' as given by equation (5.2). In the specific example of
this section we use the approximate Riemann problem proposed by

Glaister [6].



- 66 -

= of
The approximate Jacobian A(w?_l,w?) ; B A = 3: in the
cell [xj_l,xj] at time level n is
~ 0 1
A = o~ <
¢ - u? 2u
(6.43)
where the averages of u and ¢ are given by
= V. . u. + V¥, u
u = j-1 "3-1 3
vo . + Vé .
j-1 3
(6.44)
$ = (. . + o
2(3_1 JJ
(6.45)
The eigenvalues of A are
sy - S uEe =T
(6.46a-b)
with corresponding eigenvectors
~ 1 1 3
1,2%5-4 ~ = | - !
u+ v Lu-va
(6.47a-b)
where
y = Vvo .

(6.48)
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Thus the modal matrix X. ; = [.,e. i1, ~€. 1] has the inverse
J=2 1=j-3' 2=j=-2
~_1 1 Y - u 1
X, = = ~ -
J7a 2¢ | u + ¥ -1 |

(6.49)

To apply the scheme of &5.3 given by equations (5.60a-b) we

need to calculate the quantities i%5-47 iﬁj—" 17540 igj-é'
igj—é’ i=1,2. Denoting
AY = I ’
Y3 j-1
(6.50)
equations (5.26), (6.40) and (6.49) yield
- 1 -
194.1 T == YAad + (A(du) - uad)
2 2¥
(6.51a)
- 1 - ]
294-3 T == Yas - (A(eu) - ua¢)
2 2¢ L J
(6.51b)
If we define the average of ¢j-1’ éj
$ = Vo. ..
=13
(6.52)
then
A(du) - uaé = AU

(6.53)
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so that the expressions given in equations (6.5la-b) simplify to

Q
1l
NV
>
S
I+
N
TR R

112 J_é
In addition, using equations (5.43),
and (6.49) we obtain
~ B ) K ¢j—l
1$5-4 T T T
u+v
; _ K ¢J 1
- T TS
u -V
and
< K .
17._1 = et = J~
J72 U+ ¥
~ K éj
Yi_ 1 = = -
23"z u-v
where
. _ AX
.- gh (xj =)

-

2y

Finally, using equations (6.40) and (6.42)

o O

g, = gh'(x)[
1

AU .

(5.45),

e —

(6.54)

(6.46a-b)

(6.55a)

(6.55b)

(6.56a)

(6.56b)

(6.57)

(6.58)
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Therefore the expressions of 85.3 become

185-5 = 07y
(6.59a)
285-3 = (0751
(6.59Db)
185-5 = (O7y)
(6.60a)
283-5 = (07y)
(6.60b)
where
Atgh'(xj)
TJ = —-——z——o

(6.61)



7.  CONCLUSION

We have presented first and second order schemes for scalar
conservation laws with source terms and have applied them to

systems of conservation laws with source terms.



ACKNOWLEDGEMENTS

I would 1like to express my thanks to Dr. M.J. Baines for

useful discussions.

I acknowledge the financial support of A.W.R.E., Aldermaston.



REFERENCES
s P.L. ROE,
2. P.L. ROE and J.

3.

4.

5.

6.

RVP

P.K. SWEBY,

P.L. ROCE,

P. GLAISTER

P. GLAISTER,

"Approximate Riemann solvers, Parameter Vectors
and Difference Schemes", J. Comput. Phys. 43

(1981), 357.

PIKE, "Efficient Construction and
Utilisation of Approximate Riemann Solutions"
in Computing Methods in Applied Sciences and

Engineering VI (1984), 499.

"High Resolution Schemes using Flux Limiters
for Hyperbolic Conservation Laws'", SIAM J.

Numer. Anal. 21 (1984), 995.

"Upwind Differencing schemes, Hyperbolic
Conservation Laws with Source Terms'", 1lst Int.
Congress on Hyperbolic Problems, St. Etienne,

(ed. C. Carassa, D. Serre), (to appear), 1986.

"Flux Difference Splitting Techniques for the
Euler Egquations in Non-Cartesian Geometry",
Numerical Analysis Report 8-85, University of

Reading, 1985.

"A Difference scheme for the Non-Linear Shallow
Water Equations", Numerical Analysis Report in

preparation, University of Reading, 1987.



