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Abstract

Based on the principle of a square law for the resistance of an object
to fluid flow, a aerodynamic model of a two dimensional plate is derived.
The resulting equations of motion are highly non-linear and yet allow
for closed-form potential and kinetic energy expression. The model also
lends itself quite easily to linearisation, which provides insight into local
behavior of the system. In all, it provides an excellent “test-bed” upon
which to evaluate the efficacy of various linear feedback controllers applied
to a non-linear plant.

Keywords Nonlinear dynamics, Linearisation, Aerodynamics.

1 Introduction

A standard model of the resistance of a particle moving through a liquid stip-
ulates that the force acting on the body is proportional to the velocity of the
fluid squared [1, 3]. More specifically, if a body with cross—sectional area A
and coefficient of drag x moves at velocity w through a fluid with density p,
the force acting upon that particle can be written as

F = prAw®. (1)

This model can be viewed in the following way. Suppose a body moves
through a fluid consisting of atoms with high mean-free-path. Suppose, too,
that a fraction x of the particles collide inelastically with this body. Define
further the mass rate of the fluid to be ®, and the rate of change in the
momentum of the fluid that impinges upon the body as Aps. Then the force
acting upon the body will be proportional to the change in momentum of the
fluid with respect to time. Since the momentum change is proportional to the
mass-rate, fluid velocity, and particle cross—section, which in this case may be
written as the product of the cross-sectional area A times the capture ratio &,
the expression for the force acting on the body may be written as: 13 July 95

F = dAM/dt
= xrg®Aw (2)
= kp|lw|w.

It should be noted that this model is not necessarily aerodynamic in nature;
however, despite the fact that this model is limited theoretically to the forces



acting on bodies in an ethereal fluid, e.g., space vehicles at high altitude, solar
sails, etc., its simplicity provides a method of deriving nonlinear aerodynamic
models with which to test schemes by which the dynamics of nonlinear systems
are modified by feedback.

2 Flate Plate Model

In this section we apply the paradigm of the first section to a specific example;
a two—dimensional plate of length ¢ and mass m pivoting about a point at a
distance d from its center of mass, as depicted in Figure 1.

Center of Gravity

Pivot

c=l/2-d

Figure 1: A Schematic of the Flying Plate

In this example, the fluid velocity is w and the acceleration due to gravity
is g. These are defined to be horizontal and vertical, but in general may take

the form:
Wo COS —gosin
w = , y 9 = (3)
wo sin & —go cos 3
For simplicity, we consider only the case with & = 0 and 8 = —7. The
solution to this problem requires the solution of an integral. If v is defined to

be the velocity of the fluid relative to an infinitesimal section of the plate dr,
then as the plate rotates around its pivot with rotational speed 8,

v=w+4+ érn, (4)



where n is the unit norm to the surface of the plate, i.e.,

—sin 6
n= (5)
—cos b
and r is the distance from the pivot.
Using the paradigm of Section 1, the cross-sectional area which the fluid
“sees” at the length of the plate dr is the inner product of unit vector in the

fluid direction and the unit vector normal to the plate. Thus, the infinitesimal
force Fy of the fluid acting on the infinitesimal section of the plate dr is

df,

kpA||v||vdr
= np (gploTnl) [loflvdr (6)
= kplvTn|vdr

Given a force f acting on a point displaced from a pivot by vector g, the
resultant torque 7 about the pivot may be written as

T:fXg, (7)

where X denotes the cross product. In two dimensions, however, torque is no
longer a vector but a scalar, and thus (7) is reduced to

r=flg) (8)

where ¢, is perpendicular to ¢ in the right hand sense.

Returning to the problem at hand, we note that g, = nr. Thus, the
infinitesimal force df, acting at point r along the plate produced about the
pivot the infinitesimal torque

dry = rnl df,
= kplvTn|vTnrdr

(9)

One of the more subtle points in the integration of the torque along the
length of the plate is the fact that the term |v”n| changes sign at the point
where the relative fluid flow along the plate is zero. The integral which de-
scribes the total torque must then be split into two if vTn disappears as a
function of 7 in the region [—¢,£ — ¢]. Since

vIn = (w4 6rn)Tn
= wln+6rnTn (10)

- wlin + 97“



T
the point where vTn is zero is £ = %52,

Thus, the torque that results from the fluid flow is

13 l—c
o= cr/ kp(nTv)irdr — a/ kp(nfv)2rdr, (11)
e ¢

where ¢ = £/2 — d and where

&éﬂ y —C S § < l—c
E=4 L—-c , £ > L—¢ (12)
- , —c > ¢

The variable o = £1 in front of the integrals in (11) depends on the relative
direction of the fluid relative to the point £ on the plate, which is determined
by the sign of the inner product vTn. Since this function is monotonic as a
function of r, the value of 0 may be determined by the difference of the relative
motions of the end-points of the plate, i.e.,

sign ((an + (¢ - c)) - (an + 0(—0)))
e sign (0)
In the case where § = 0, the gradient of the wind velocity along the plate

is zero, requiring a different approach for determining o. The value of o is
determined in this case by the sign of the inner product w’n, i.e.,

o = sign (an) . (14)

a

(13)

Substituting expression (10) and (13) in (12), we have

Tf = OKp (ffc (an 1t ér>2 rdr — fg_c (an i 9T)2 rdr)

= okKkp (ffc ((an)zr 4 2wTndr? + 92r3) dr
— €Z—c ((an)Z’r + 2wTnér? + é2r3dr>)
(15)
= OKp ([%(an)2r2 + 35 wlndrd + 102 4]
L~
s [%(an)zrz + %—an07~3 + %02’"4]5 c)

Il

oKp <%£2(’LUT’I’L)2 + %E3ané + %&9'2)
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where
£y = 262 —c?—(L-¢)?

3 = 2834 —-(L—c)® (16)
Ly = 28t —ct—-(L—-c)

with ¢ defined as in (12).

In addition to the torque produced by the fluid flow, the other torques which
affect the dynamics of the plate are the torque due to the angular acceleration
T,, the torque due to gravity T,, and the applied torque T;. The torque due
to angular acceleration may be written as

T, = —I6 (17)

where I is the moment of inertia of the plate about the pivot, with the negative
sign reflecting that it is a reactive force. For a plate made from a material of
uniform density § = m/l, the moment of inertia may be written

I = [TC6érkdr
= %[%r?’] (18)

_ miy
3¢

where /3 = (£—¢)®+ 3. The torque due to gravity may be simply written as
T, = mdg’n (19)

and the applied torque as
ih=—n7. (20)

The dynamical principle that states that the sum of all torque of a free
body is zero implies that

: 1 . .
10 — kp (§£2(10T1z)2 + §£30an + 2&102) +mdgTn+r=0 (21)

which gives the dynamics of the plate.



3 System Energy

As a means of determining the passivity of the system, the energy of the system
is determined. In particular, the system energy may be written as

E(8,6) = V(6) + K(8) + Ag(9,6) (22)

where V(8) is the potential energy, K(9) is the kinetic energy, and Ag is the
energy loss (gain). In accordance with the law of conservation of energy, we
insist that

E(8,0) = 0; (23)

therefore, since V(6) and K (0) are defined to be positive functions, the rate of
change of the sign of Ag(#, 0) will indicate whether the system is passive.

The potential energy function is defined at the integral of the torque pro-
duced by the wind as a function of 8 with 6 = 0. By convention it has minimum
energy at zero. Thus, for d > 0 and 0 € [0, 7]

V() = Jo7s(6,9) d¢ |y
= 0 Rpl(l- 0 — ) (wTn) db
= 2rp((1-c)* - *)wd Jo sin? ¢ d¢
= %K,p((l —¢)? — c)wd foo 1—cos2¢ do
= Irp((l - ¢)? - c*)w} [gb — 1sin 2(;5]2
1
1

kp((l = ¢)? — c?)wd (0 — 1sin 20)

(24)

Taking into account the symmetries of the problem, the potential energy func-
tion may be written as

V() = %mpfgwg (|0| — 1sin 2|0|) i wed >0 , G€[-m, 7]
B %npfgwg (|0 —m| — 1sin2|f — 7r|> i wod <0 , 6€][0,2n]
N (25)
where £y = ((I — ¢)? — ¢?).
The kinetic energy is more easily written; it is simply

K(9) = %Jo'? (26)



4 Linearisation

Suppose that we have a differential equation which describes the evolution of
a system described by the differential equation

o= f(z,) (27)
where the function f, the state vector, and the input vector are respectively
[ fi(z,v) 2 v1
flz,0) = fz(fa”) s = 2.2 R 1):2 . (28)
B fN(Zav) ZN VM

Probably the most common form of linearisation [2] is a Taylor’s expansion
of the dynamical equations about a fixed point (29,v9). This produces the
equations

&t = Az + Bu (29)
where
oL bh oh
A = dz1 Ozn B = Ov
ofa 3f2 ! of2
921 Ozo v (30)
T = z-—2z , U = v-—1g.

The flying plate of the previous section may be written in the format of (27),
i.€.,

f1(2(8,8)) f
fa(2(8, 0)) = ﬁfn'z (6£2w2 sin2 @ + 803wl sin 0 + 3E492>

]
z:[é],v:t (32)

For these equations, all equilibria points must have the property that § = 0,
otherwise the linearised system would be time-varying. This greatly simplifies
the linearisation as the terms containing € in A and B may be set to zero after

Il

(31)

|

with



the linearisation. It also implies that £ in (12) is either —¢ or £ — ¢. With the
assumption that go =0, @ = 0, and § = 0, (30) may be written as

) [ 0 1
B 3kpolly ¢ T, . Ton 2kp0t T
_Lmls (w'nw” §7) “L=w'u
0 1
= 3rpatly wg sinfcosd  2xpobiy sind (33)
mlia m
B =

i

Here o is the sign of £ in (12), which must be defined in the limit as 6 goes to
zero.

Furthermore, we note that the torque vg = 7 = —7; under equilibrium
conditions, i.e., with § = 0 may be written

vo = —iokply(win)?

= —%Uﬁpﬁgwg sin? 4.

(34)

The simplicity of this formulation is conducive to inversion, thus for any given
T within its appropriate range, the equilibrium state zg is

arcsin( 27 2)
20 = o kplywj (35)
0

The linearisation of this system provides some insight about the system’s
behavior; in particular, the local behavior about a point # may characterised
by the position of the eigenvalues of the state matrix A(6).

For 6 € [0, 7], the eigenvalues of the system may be directly computed, and
are

A(A(0)) = Likpowgsinf+

36
2L \/tlskpsin 6 (30Lam cos(0) + £lakpsin §). (36)

The linearisation also provides a means of characterising the behavior of the
system further. In particular, the damping factor ¢ [2] provides a qualitative



measure of the dampedness of the system. This quantity may be written as

[ —kpallssin b
(= 3¢,mcos b (810}

Perhaps a more instructive measure of dampedness is the angle ¢ between
the radial line from the stable eigenvalues to the origin and the negative real
axis. This measure is related to ¢, namely ¢ = arccos(().

5 Numerical Experiments

In the first experiment, we examine the time response of the state variables
9 and 6 from their equilibrium points with a slight positive perturbatlon the
variable 6. In Figure 5, we plot the time response with § = 0, = 15> Wo = 4,
L=4,d=1,m=10,9g=0,p=1,k =1,and 7 = 0. InF1gure5,the
constants remain the same with the exception that d = —1. The first case
corresponds to a system that is unstable about the equilibrium point 8 = 0,
while the second is stable about this points. In both plots we note that the
total stored energy, i.e., the potential and the kinetic energy, is continuously
decreasing, indicating that the system is passive.

The behavior of the system that corresponds to the data represented in
Figure 5 may be reasonable well accounted for by the insights gleaned from
the linearisation of the system. In particular, the eigenvalues of the system
as they vary with the plate angle 6, as shown in Figure 5, reflect the nature
of the response of the system as shown in Figure 5. This plot indicates that
initially (about 8 = 7 /2) the system is unstable, as the real part of one of the
eigenvalues goes positive. At § = 37/4, the system is again stable, but as the
plate angle approaches = 7, the eigenvalues become increasingly undamped.
This can be inferred from the fact that ¢ is tending to zero. We plot arccos(()
as defined in (37) and corresponding with the data represented in figure 5
versus the plate angle in Figure 5. The increasingly undamped nature of the
system about @ = 7, with its concomitant increase the period of the oscillation
is evident in Figure 5, as the period between the zero crossings of 6 grows
longer.

6 Concluding Remarks

In this note we have modeled a two-dimensional plate based on first principles.
Since the model assumes a fluid with infinite mean-free-path, it is not aero-

10
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Figure 2: Time Evolution of the State Variables
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3-D Plot of Eigenvalues vs. Angle 6
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Figure 4: Eigenvalues of Linearised Equations
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The Arc of the Damplng Faclor vs, Plale Angls
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Figure 5: Relative Damping Angle versus Plate Angle

dynamic in the strictest sense; however, it does seem to produce reasonable
behavior. Furthermore, since it can be written down exactly and is highly
non-linear, it can provide a reasonable means of testing the efficacy of linear
controllers applied to non-linear plants.
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