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Abstract

A problem with the convergence of fluctuation distribution schemes
for steady hyperbolic equations on unstructured triangular meshes is
that the fluctuations are not driven to zero.

One way of dealing with the problem is to allow the mesh to adjust,
using the extra degrees of freedom to counteract the difficulty and im-
prove the approximation. The method then becomes an approximate
method of characteristics.

Iterative procedures for the solution of the resulting coupled equa-
tions are discussed, including steepest descent least squares and a pro-
cedure coupling least squares with multidimensional upwinding. An
upwind least squares method is also proposed.

1 Introduction

Roe [1] was the first to suggest the fluctuation-distribution framework for
the approximate solution of steady first order hyperbolic PDEs in multi-
dimensions. In this approach nonzero fluctuations, or residuals, on cells
are distributed by signals, implemented by adding weighted fractions of the
fluctuations to the values of the solution at the corners of the cell. The
cumulative update to the solution at a node is of the sum of the weighted
contributions from all cells with that node as target.
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The steps of the procedure are carried out repeatedly, updating the so-
lution values until the total increments at every node become zero, at which
point the process is said to have converged. However, for many types of
discretisation, even though the total increments at a node are zero, the indi-
vidual cell fluctuations do not vanish but only their weighted sums. So even
at convergence the fluctuation in a cell, and hence the PDE residual, is not
zero, leading to an unsatisfactory solution.

One way to alleviate the difficulty is to increase the number of degrees
of freedom available by including the mesh locations as additional variables
[2],[3],[4],[5]- As a consequence, when the total increments become zero the
individual fluctuations in a cell are closer to zero and give a much better
approximation to the PDE. The approach then resembles an approximate
method of characteristics.

In this paper we shall consider a steady scalar hyperbolic scalar equation
on an unstructured triangular mesh for which this situation occurs.

2 Fluctuations

The scalar conservation law

divF =0 (2.1)
with ' = ua becomes
div (ua) = 0, (2.2)
equivalent to the integral form
)’2 ua.ndS = 0, (2.3)

where n is the inward unit normal to the arbitrary closed surface S in a
domain 2, say. Taking the velocity field a to be divergence-free, equation
(2.2) reduces to the advection equation

a.Vu=0. (2.4)

Let the domain in which equation (2.4) holds be divided into cells and
let u be approximated in each cell by a finite-dimensional function U. Then
on each cell we may define the fluctuation to be

=2 /g.VUdQ (2.5)
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Figure 1: The normals.

(see [1],[2]) which is the integral of the residual error incurred in replacing u
by U in equation (2.4).

Consider now the two-dimensional domain € which is the union of trian-
gular cells T, and let U be linear in each triangle of the form

U= Y Ustbei(2) (2.6)

where the v.;(z) are linear basis functions and the suffix e: refers to the

corners of the triangle. Then from equation (2.5) the fluctuation in triangle
T, is

be==[ avUdd=-[ o¥ (z_ mei(z)) a0 (2.7)
= =20 [ 2V ($ui(2) 40 (28)

which may be written

= keilUsi (2.9)

where 1
b == | @V ($e(2)) d0 = ~ 501, (2.10)

n.; being the inward normal to the side of the triangle e opposite node ¢
multiplied by the length of that side (see fig.1).
The vector a, is the average field velocity

1
o, Z/cgdﬂ (2.11)

where S, is the area of the triangle T..
In equation (2.10) the coefficients k.; depend on g. and the mesh coordi-

nates. However, since
Z@bei(g) =1 (2.12)

we may deduce from equation (2.10) that

S ke = 0. (2.13)



Figure 2: A patch of triangles T; (shaded) surrounding node j.

Suppose that the suffix el denote inflow nodes and from now on reserve
the suffix e: for non-inflow nodes. Then equation (2.9) may be written

¢e = Z keiUei + Z keIUeIa (214)
et el

where the U, are prescribed by the inflow conditions.

3 Signals

Define {7}} to be the set of triangles surrounding node j (see fig 2). In the
fluctuation-signal algorithm each @, is calculated from equation (2.14) and
added to the value of U; at node j with predetermined weights wj.. The
cumulative signal or total update at node j is then

6UJ - Z wje¢e, (31)
{13}

i.e. using equation (2.14),

5Uj = Z Wye (Z keiUei + Z keIUeI) . (32)

{TJ} et el



The procedure may be repeated until convergence, in which case 6U; = 0
and the U values satisfy

> wje (Z keilUei + keIUeI> = 0. (3.3)
{15} el el

We refer to three examples of weights w;.. First, suppose that the weights
wj. arise from a least squares minimisation of ¢ over the whole domain (see
[2]). Then the weights are proportional to the kj;. and their sum is zero by
equation (2.13). The method is non-conservative in the usual sense, but the
main advantage is the existence of the least squares functional which can be
used as a monitor to measure convergence and in designing iterative proce-
dures for reaching the solution. Secondly, let the constant fraction one-third
be added to a multiple of the least squares weights, giving a two-dimensional
Lax-Wendroff scheme [6]. The sum of the weights is now unity, enforcing con-
servation, and the method is second-order accurate, but there is no objective
functional. In the third example the weights are those associated with the
PSI method of Multidimensional Upwinding [6],[7], which is a conservative
positive upwind scheme. In this scheme the weights are all non-negative but
are solution-dependent in general.

4 Null Space

Equation (2.14) may be written in the matrix-vector form
& = KU + KU, (4.1)

where ® and U are vectors of the values of ¢, and U; taken over all cells
and nodes, respectively. The function U is assumed to be continuous and the
matrices K, Kj are therefore assembled matrices containing combinations of
the coefficients k.; as elements. Equation (3.1) may now be written in the
matrix-vector form

U=Wwe (4.2)
where W is the matrix of weights w,;. From equation (4.1)
6U =W (KU + K;Uy). (4.3)

At convergence equation (4.2) gives

W® =0 (4.4)



while from (4.3) U satisfies the matrix equation
WKU = -WK;Uy. (4.5)

Convergence of the fluctuation-signal approach is equivalent to solving
the (possibly nonlinear) equation (4.5) for U (corresponding to §U = 0).
However, from equation (4.4), unless the matrix W is square and nonsingular
6U = 0 does not imply that ® = 0.

The three examples quoted in the previous section have matrix forms
characterised as follows. Least squares minimisation of ®, which results
in weights proportional to kj., corresponds to W = K* and equation (4.5)
becomes

K'KU = —K'K,;U; (4.6)

while equation (4.4) becomes K'® = 0 so that ® lies in the null space of
K. The Lax-Wendroff method corresponds to W = %I + aK® where a is
a constant: @ lies in the null space of %I + aK*®. For the PSI method W
depends on U but is > 0: the null space cannot include vectors with only
positive components (unlike the previous two methods).

We now describe a simple configuration in which this situation arises. Let
the domain be the unit square with n 4+ 1 nodes along each side. The interior
of the square is discretised with 2n? triangular cells and (n + 1)? nodes by
dividing each square of a uniform grid by a constantly orientated diagonal
(see fig.3). Suppose further that there are just two inflow sides so that the
number of non-inflow nodes is n?. Then the dimensions of the vectors ®
and U are 2n? and n? respectively, while those of the matrices K and W are
2n? x n? and n? x 2n%. It follows that the matrix W possesses a null space of
dimension n? and that at convergence equation (4.4) merely tells us that ®
belongs to that null space. For example, if the weights in equation (3.1) sum
to zero then any row of W has a zero sum and the vector ® = (1,1,...,1)
lies in the null space of W.

In general W will always possess a null space and as a result U = 0 will
not automatically imply that ® is small.

5 Adjustable Nodes

One way of tackling the problem of the null space is to increase the number of
degrees of freedom by regarding the mesh locations as additional variables, in
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Figure 3: A square domain with 2n? triangular cells and n? unknowns.
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Figure 4: A patch of triangles T} (shaded) surrounding node j.

a way similar to that exploited elsewhere [3],[4],[5]. A natural construction in
the present context is to use the fluctuations to generate signals for adjusting
the mesh as well as the solution and this can be implemented as follows.

5.1 Fluctuations

First we derive a nodal based form of the fluctuation (2.9), which may be
obtained by writing

e = Z keilUei = _%Z Ueie-ng; (5.1)
i . :
=3 Z Ueia,. (—(Ym'z —Ye)i + (Xeiz — Xeil),l) (5.2)

where 2,5 are unit vectors in the z,y directions and eil, ez2 are the vertices
of T, taken anticlockwise from ez (fig 3). Writing a. = (ae, be), (5.2) becomes

1
5 Z Uei ((lfeiz - Y;—:il)ae - (XeiZ - Xeil)be) (53)
1
= 5 Z (_}/;i(UeiZ . Ueil)ae + Xei(Uei2 - Ueil)be) (54:)

et



so that an alternative form of ¢, is ([8])

b= Y Lo X (5.5)
(cf. (2.10)), where
L = ;AU. ( o ) (5.6)

(cf. (2.12)), and AU, = Ueiz — Ueiy is the difference in the U values across
the side opposite corner e7, taken anticlockwise around the triangle (see fig

4). Clearly
> L =0. (5.7)
As in equation (2.14), separating out the inflow points leads to the form

be =D L X+ LrXer. (5.8)

el

Inflow nodes are separated out here on the grounds that the X.; coordinates
will also naturally be partially prescribed at inflow. In some problems the
X.; may also be prescribed at outflow in order to constrain the nodes to
remain on the physical boundaries of the domain.

5.2 Signals

Nodal positions may now be updated by signals in the same way as for U.
Denoting the weights for these signals by ;. the analogue to equation (3.1)
is

60X, = Z lje¢e = Yie (Z L X+ Zlel-iez) . (5.9)
{73} {13} et el

At convergence

> Y. (Z L Xeoi + ZleI-LI) =0 (5.10)
{13}

et el

(cf. (3.3)).
If the weights are derived from a least squares approach they are, as in
the case of U updates, proportional to L.



5.3 Null Space

In matrix-vector form equation (5.8) may be written as

where X is a vector of all the 2-vectors X; taken over the nodes. The piece-
wise linear function X is assumed to be continuous and the matrices L,Ly
are therefore assembled matrices containing combinations of the coefficients
[.; as elements.

If I is defined to be the matrix of weights Ve the matrix-vector forms of

equations (5.9) and (5.10) are
6X = T® =T (IX + L;X,) (5.12)

and

In the least squares method T is proportional to L‘ and equation (5.13)
becomes

L'LX = —LtL[XI (5.14)
(cf. (4.6)).

Considering again the illustration of a square domain with two inflow
sides discussed in the previous section, the vector X will have dimension 2n?
and both matrices L and I have dimensions 2n? x 2n2?. Hence I is square
and provided that it is non-singular, 6X= 0 implies that ® = 0, as desired.

One way to understand the situation is as follows. For a given solution
U, by adjusting X we may construct an approximate ”characteristic mesh”
as a triangulation of points which lie on the characteristics of the equation
(2.4). On the resulting mesh a piecewise linear approximation to U on each
characteristic is approximately constant and therefore within each triangle

a.VU =0 (5.15)

giving a zero ®.
However such an approximate triangulation is far from unique and it is
clear that the equation

Pei = Zleil&- =0 (5.16)

does not uniquely determine X.
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6 Constrained Nodal Movement

The above analysis of the situation is still valid when the nodal coordinates
are constrained to move perpendicular to the approximate characteristics
which suggests that we may achieve the same result when only one of the
nodal coordinates is allowed to vary. A single varying nodal coordinate com-
bined with variable U is still sufficient to allow (a) the sides of the triangles
to align with the characteristics and (b) U to become constant along them:
equation (5.15) holds and ®, vanishes as required.

Suppose then that X; is constrained to move only in a chosen direction

E]- and denote the corresponding coordinate by N;. We may take j_V\_j to be
in the direction perpendicular to the characteristic velocity field a; at node
j. Then equation (5.9) reduces to

6NJ' = Z ﬁeiﬁbe . Z ’731' (Z z'ei]\/ve + ZLIN@) (6.1)

{T;} {T;} el el

——~

where ;. = Ej'lje and le- B E.lei with /N, perpendicular to g., which at
convergence becomes

> e (Z I + ZTeINe) =0, (6.2)
{75} et el
Note that as in equation (5.7)

S Ii=0. (6.3)

The matrix-vector equation (5.12) then becomes
6N =T® =T (LN +L/N/) (6.4)

where E, L ; are matrices of the coeflicients Li,iez and T contains the coeffi-
cients ¥j.. At convergence

I'é =0, LN = -TL/N;. (6.5)

In the least squares case ' is proportional to I* and equation (6.5) be-
comes

I'LN = —L'L;N;. (6.6)
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7 Coupled Solutions

In the earlier illustration of simple advection across a square domain (see
fig 3)the vector N is of dimension n* and the matrices L and ' now have
dimensions 2n? x n? and n? x 2n?, respectively. By itself equation (6.4) has
the same drawbacks as equation (4.3) with T' possessing a null space and
6N = 0 not implying ® = 0. However, taken together with equation (4.3)
we obtain at convergence the square systems

(?)@:0 (7.1)

(0" w)(N)=-(0" 1 )(~) o

for U and N. Provided that the left hand side matrices are non-singular we
can always solve for a pair U, N for which ® = 0.

In three dimensions a similar argument shows that the inclusion of two
nodal coordinates (rather than the full three available) gives rise to a square
system and hence, given nonsingularity, to vanishing ® at convergence, which
again accords with the method of characteristics. Indeed, in d dimensions
using simplexes, the number of variable nodal coordinates to be included

should be d — 1.

We consider some examples.

for ® and

7.1 Least Squares Weights

If the fluctuation distribution scheme is derived from a least-squares minimi-
sation of ® over both U and N, the weights in W are proportional to kje as
before while those in I' are now proportional to

. — 1 1
lie = Njbie = 5AUje(aj05 + bibse) /(a5 + b3 = 5 ld AU (T:3)

for a constant velocity field a (see equation (6.1)).

A necessary condition for nonsingularity in equation (7.1) is that the null
spaces of W and T be disjoint. However, from equations (2.13) and (6.3),
the vector ® = (1,1, ...,1) lies in both of these null spaces, so in this special
case we have not elminated the null space entirely.
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Nevertheless the fact that ® is small on an approximate characteristic
mesh ensures a good solution to the differential equation when || ®||, is min-
imised. Even though the null space may not have been totally eradicated, all
the ® components (including those in the null space) are small. Moreover
this argument still holds when the least squares minimisation is taken over
nodal coordinates alone: given any consistent weights for U, including those
possessing a null space, least squares minimisation of | ®||, over X (or N)
alone still ensures that the effect of the null space is nullified.

We therefore may either

e choose a unified least squares minimisation of ||®||, over U and X
(or N), leading to a method with an objective functional that can be
monitored, or

e choose a least squares minimisation of || ®||, over X (or N) alone, com-
bined with some other choice of weights W for U with other properties
but lacking an objective functional. In the examples cited earlier the
Lax-Wendroff or PSI schemes can be incorporated with the latter op-
tion.

We have already cited the former, unified least squares, method as an
example in the text. We shall discuss the latter approach in Section 10 and
also extend the idea to an upwind least squares procedure.

8 Iterative Solution Methods

We now consider iterative methods for the solution of equation (7.2) for U
and N. Since K depends upon N and L depends upon U in general, the two
component equations in (7.2) are coupled. However, if U and N are frozen in
WK, the set of equations (4.5) form a sparse linear system for U. Similarly,
if N and U are frozen in I'L, the equations (6.5) form a sparse linear system
for N. This linearisation suggests an iterative solution procedure in which
steps for equation (4.5) are alternated with those for equation (6.5).

8.1 A Jacobi Iteration

For example, the relaxed Jacobi method for the independent solutions of the
linearised equations (4.5) and (6.5) is

diag(WEK)SU = —71W& = —1 (WKU + WK,Uj) (8.1)
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and

diag(TL)6N = —oT® = —o (TLN + TL;Ny), (8.2)

where 7 and o are positive relaxation factors. In component form, for each
non-inflow node j these equations (excluding inflow terms) read

(E ’wjek‘ej) 6UJ = -7 ((Z wjekej) UJ‘ + Z Wie Z keiUei) (83)

{75} {7} {75} et

using equation (2.13) and

(Z %Jej) 6N; = —o ((Z %Jej) Ni+ > Fje ZTeiNei) (8.4)

{15} {1} {T5} et

using equation (5.7), denoting by e¢ the index of those nonzero terms in the
7'th equation of equation (3.3) which are different from j. In the iterations
described here we may interleave these two linearised steps.

8.2 Steepest Descent Methods

In the case of a unified L, minimisation of the norm of ® we may construct
iterative algorithms directly using the techniques of optimisation. For ex-
ample, steepest descent methods applied to the least squares equations (4.6)
and (6.5) generate the iterations

§U = —r'KY(KU + K;U)) (8.5)

and

§N = —o'LHLN 4 L;N)) (8.6)

where 7/,0" are relaxation coeflicients. Optimal choices of 7/ and ¢’ consistent
with the linearisation are

R'R StS
r_ I . .
" T TRIK'KR 7 T TSiis (8.7)
where
R = Kt(KU + K;Uy) (8.8)
and o ~
S = Lt(LN + LNyp) (8.9)
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are the residuals associated with the normal equations (4.6) and (6.5).
Equations (8.5) and (8.6) are identical with the relaxed Jacobi iterations
(8.3) and (8.4) under the choices

=1k c=0"> &, (8.10)
{13} {13}

and may be rewritten, using equations (2.13) and (6.3), as

_ Z{Tj} kje (Eei kei (Uei - UJ))

oU;
! 21y Kie (Cei kei)

(8.11)

and = S
Tyl (i Tei (Vi — N;:‘))
q1yy Lie (Zm‘ fe.f)
each being an averaging process on U or N. Averaging processes have been
exploited elsewhere [7],[9].
These algorithms clearly belong to the class of fluctuation-signal type

schemes, even though the sum of the weights is zero and the iterations are
non-conservative in the usual sense.

6N; : (8.12)

9 An Upwind Hybrid Method

As proposed in section 7 we may combine upwind iterations for U with least
squares iterations for N in an obvious way by interleaving iterations for U
from equation (8.3) with the least squares procedure for N from equations
(8.6). In this way we may combine the benefits of a conservative and positive
iteration for U, which follows the flow of information along characteristics,
with an iteration for N which drives ||®]|| down to zero and thereby counter-
acts the effect of the null space.

We now consider weights based on physically based iterations together
with their properties and link them to least squares iterations.

Recall that the fluctuation-signal mechanism (with appropriate weights)
may be regarded as originating in a scheme for solving the time-dependent
equation

uy + div (ug) =0 (9.1)

(cf. equation (2.2)), and hence if used as an iteration to solve equation
(2.2) may be interpreted as proceeding to the steady state limit through
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physical states. Such a physical approach to the limit suggests that the
flow of information along characteristics should be respected and the initial
approximation should consist of inflow conditions, which in turn suggests the
use of upwind weights for U satisfying

Wey = 0 keigo (92)
we; > 0 km’>0.

It is also desirable (although not essential) that the weights chosen should
be such that the iteration for U is conservative. This means that appropri-
ately scaled weights should satisfy

Yowei=1 (9.3)

(which rules out least squares weights).

This type of iteration is associated with Multidimensional Upwinding
methods [5] where by careful choice of the weights the schemes can be made
both conservative and positive, as in the PSI scheme [6],[9].

Similar arguments can be applied to the weights v (see below).

We may then combine such an iteration with a least squares iteration
for N. In this way we obtain the benefits of the multidimensional upwind
schemes as well as driving |®|/down to zero, thus nullifying the effect of the
null space.

We may go further by trying to incorporate upwinding into the iteration
for N. In doing so we give up the formal minimisation of ||®|| but obtain
much faster convergence to a very similar optimal grid.

10 Upwind Least Squares Methods

The least squares approach embeds the original equation in a higher order
equation. The correct solution is picked out from the larger set of solutions
by an outflow condition which is the original differential equation applied at
the outflow boundary. It may be therefore be argued that the weights should
still exhibit an upwind bias.

One way of achieving such a bias is to carry out the minimisation of
|®|| over only downwind nodal values and admit temporary discontinuities
in U. The updates resulting from the minimisation still reduce ||®|| but at
the expense of generating discontinuities. This step may be followed by a

16



projection step which resets all upwind values of U in a cell in such a way as
to restore continuity of U. The two steps are then repeated until convergence
is achieved. The second step is not a descent step and will not reduce ||®||
in general. At convergence we nevertheless obtain a continuous U which
minimises ||®|| because the gradient is zero.

The algorithm has a strong upwind bias which reflects the nature of the
original problem and its dependence on characteristics. In fact the second
of the two steps is automatically implied if the updates in the first step are
carried out in the usual least squares manner but with upwinded updates
suppressed. With an appropriate scaling the first step is then equivalent to
the LDA scheme of Multidimensional Upwinding [2],[11].

The generalisation to adaptive meshes is straightforward and is again
motivated by the flow of information. The norm || ®|| is minimised over only
downwind values of N and when the local updates are carried out N becomes
discontinuous at the nodes. The projection step then resets all upwind N
values in a cell so as to make N continuous again. At convergence we obtain
a continuous N which has driven |®| even further down towards zero.

The method may be called Adaptive Discontinuous Least Squares (ADLS).

As in the previous section this procedure for N may be interleaved with
iterations from a standard upwinding scheme for U, such as PSI, providing an
algorithm which takes full advantage of the hyperbolic nature of the problem
as well as speeding up convergence and counteracting the effect of the null
space.

11 Numerical Results

The canonical result for the unified least squares method is due to Phil Roe
in [2]. The problem is that of the circular advection equation,

Yyug; — zuy =0, (11.1)

in a rectangular region |z| < 1,0 < y < 1 with initial data u = 0 except
for v = 1 at two adjacent gridpoints on the inflow side. The method is to
minimise the residual &2
F=> — (11.2)
cells S
over the nodal values and nodal coordinates. The iteration is performed using
steepest descent least squares (for both the solution and the grid) and the
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Figure 5: Resulting grid when using steepest descent least squares.
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Figure 7: Convergence history when using steepest descent least squares.
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result is shown in fig. 3. In [2] the comparison between this result and that on
a fixed grid is shown via graphs of the outflow profile. A different comparison
may be made by shading the cells by the value of the local residual (||®]]).
In fig. 4 this shading is shown on grid plots for both the fixed and optimal
grid solutions, as well as at two stages during the iteration, demonstrating
the way in which the grid movement capability drives the residual down to
very low values. Fig. 5 shows the corresponding convergence profile.

One of the drawbacks of the method is slow convergence. This is likely to
be partly due to the way in which the least squares method updates upwind
nodes as well as downwind nodes and partly due to lack of conservation. The
iteration may be considerably accelerated by changing to the upwind least
squares method of the previous section (for both the solution and the grid).
However we find that some grid smoothing is needed. At the end of a period
of alternately interleaving solution and node iterations the grid is subjected
to the simple smoothing

il N
X}Le‘w = N X:IX‘” (113)
ji=
where ji goes round the N outer nodes of the patch of cells surrounding node

7, unless this results in mesh tangling. The result is much faster convergence
to the same solution.
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Figure 8: Results using upwind least squares.

In figure 6, starting from the fixed grid solution, we show grid plots after
0,20,40 and 80 iterations, shaded by the value of ||®||, and in figure 7 the
corresponding convergence history.

12 Conclusion

In this paper difficulties experienced with fluctuation distribution methods
on fixed unstructured grids in generating zero fluctuations/residuals has been
addressed by including the mesh locations as variables. This allows the grid
to adjust in order to drive the least squares residual of the fluctuation down
closer to zero. The null space invoked by fixed grid methods is counteracted
by the extra degrees of freedom provided by the moving nodes.

For a scalar advection problem in 2-D the procedure may be used in
association with least squares minimisation of the average residual, giving a
unified scheme for the solution and the grid, as in [2]. The resulting scheme
is an approximate method of characteristics on a triangular grid. The nodes
need only move perpendicular to the characteristics to provide the desired
effect.
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Figure 9: Convergence history when using upwind least squares.

The argument still holds when least squares is used only for the grid, with
a more standard, physically based, scheme such as the PSI scheme used for
the solution.

Iterative methods are discussed for the solution of the systems of equa-
tions which arise.

A hybrid multidimensional upwinding-least squares method is discussed
and an interpretation of an upwind least squares iteration is given.

The discussion is restricted to a class of scalar advection equations in
two dimensions but is also applicable to three dimensions. For systems of
equations, where there is no single family of characteristics, the approach
must rely on mesh movement in the mean.
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