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ABSTRACT.

A model is described for large axisymmetric deformations
of a linearly elastic spherical shell compressed between two
rigid plates. The deformation of the free region may be
determined from a two-point boundary value problem, but the
presence of a boundary layer makes the solution difficult by
standard techniques. Solutions found by a multiple shooting
method with some special features are presented here for a
number of cases. Numerical evidence suggests that the onset
of buckling in the contact region is controlled by a single

nan-dimensional parameter.



1.0 Introduction

In this paper we describe a model for the compressive loading of a
thin shell, subject to surface coﬁstraints which cause the formation of
boundary layers. The mathematical model is based on a non-linear shell
theory which admits large deflections and rotations and gives rise to a
two-point boundary value problem. Standard numerical technigues, inclu-
ding simple shooting and simple finite difference procedures were found
to be unsatisfactory for obtaining solutions, due to the boundary layer
formation. A modified multiple shooting method is introduced which com-
bines the advantages of the other techniques and leads to accurate results.
Numerical solutions are presented for a number of shell configurations and

their implications for the buckling analysis are discussed.

In sections 2 and 3 the physical problem and the mathematical model
are described. The model derives from the analysis of Updike and Kalnins.
[10] and uses the non-linear shell theory .of Reissner [9]. An approximate
linear model is also described and the behaviour of the solutions in the
boundary layer region is discussed. A special scaling of the equations is

chosen to make numerical solution of the equations easier.

In section 4 the numerical procedure for finding the solutions is
presented. The method is based on the multiple shooting technique for two-
point boundary value problems int;odpced by Osborne [7], and appears to be
similar to the methods described by Kalnins [3] and Kalnins and Lestingi [4]
for solving these problems. A procedure of this type has also been suggested
by Keller [5]. Novel features of the method described here include the
automatic choice of shooting intervals and the algorithm for solving the
resulting system of non-linear algebraic equations. With an appropriate

formulation of the problem, a continuation method can also be implemented by the
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procedure in order to find solutions of the prablem for a sequence of

A

parameter values.

In section 5 numerical results are presented, showlng the load versus
deflection behaviour of the shell, the critical points for buckling, the
stress behaviour, and the yielding versus buckling points. Conclusions are
given in section 6. The results suggest that the bifurcation point at
which buckling occurs depends upon a single parameter determined by the
dimensions and matefial constants of the thin shell. The hypothesis of
Updike and Kalnins [10] concerning the yielding versus buckling is also

confirmed by the results. -
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2.0' Physical Problem

We consider a hollow spherieal shell of isotropic material compressed
Sétween two rigid flat plates. We assume that the shell is thin, i.e.
has a radius to thickness ratic 2= 40 , and that the interfacial surfaces
of the shell and plates slide %reely. We assume further that loading is
axil-symmetric and that symmetry is maintained during loading, so that all
displacements and stresses are independent of circumferential angle.
Symmetry about the equatorial plane is also assumed.
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. We use the following notation:

a 1is the radius of the undeformed shell

t 1is the thickness of the shell

E 41s Young's modulus of elasticity

¢ 1is Poisson’s ratio

¢ 1s the angle between the axis of symmetry and the normal of
the undeformed shell

¢0 is the value of ¢ corresponding to points at the edge of the
contact region in the deformed shell

polis the radius of fhe contact region

8§ 1is the displacement of the flat plates at equilibrium

P is the total applied pressurs.
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The problem is to find the equilibrium state of the shell under a
given load. In the initial undeformed state (Figure 1a) the load is con-
centrated at the poles. As defofmation occurs, the shape of the shell
is constrained by the flat plates, so that pért of the shell is in con-
tact with the plate and part of the surface remains free (Figure 1b).

The load is distributed over the area of contact between the shell and the
plates, the total pressure P remaining constant. The curvature of the
deformed shell 1s smooth and reasonably small except in the area near the
edge of the contact region. Here the angle of the normal changes rapidly
in order for the shell to satisfy the surface constraints. The bending
moment becomes significant and the formation of a Eoundary layer is

indicated.

As the load P increases, a bifurcation point is reached where an
adjacent equilibrium state exists and the contact region may buckle inward.
We assume, wlth some experimental justification, that the form of the first
buckling mode is axisymmetric (Figure 1b).. When the load P 1s sufficiently
large, the induced stresses in the shell may exceed the yield point and

the material may become partially plastic.

For various shell configurations we wish to determine the following:

(1) Load vs. deflection behaviour - in particular, the relation
between P and §&§ , the deflection of the flat plates at equilibrium,
or equivalently the relation between P and Pp * the radius of the
contact region;

(2) Buckling load;

(3) Maximum stresses;

(4) VYielding load vs. buckling load.



3.0 Mathematical Model

3.1 Large deflections and strains - the nonlinear model

The formulation of the problem is based on the analysis of Updike
and Kalnins [10] . The equilibrium equations and stress-strain and strain-
displacement relations are developed from Reissner's nonlinear shéll
theory [9]. Large deflections and rotations and large strains are admit-
ted, but the stress-strain relationship remains linear and elastic.
Bending clearly cannot be neglected, but the determination of (1) - (4)
of section 2.0 is essentially insensitive to sheap deformation, and we

may neglect transverse shear strain.

The stresses, strains, and displacements at a point on the midsurface
of the deformed shell are defined in terms of the meridional angle, ¢ ,
of the original position of the point Qn.the undeformed shell. If ¢U
is the value of ¢ corresponding to points on the edge of the contact
region, then we can compute the stresses and deflections in the deformed
shgll, and also the load P , the displacement & and the radius P
of the contact region parametrically in terms of ¢0 . We use the following

notation (see Figure 2):

u, w are the horizontal and axial displacements

B is the rotation of the normal

e¢, €g are the meridianal and circumferential extensional strains
k¢. ke are the bending strains

N¢, Ne are the membrane stress resultants

M¢, Me are the stress couples (or bending moments)

H, V arse the horizontal and vertical stress resultants

Py Py are the loads per unit area in the horizontal and vertical

directions.
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Figure 2.

The governing equations are then

(3.1) (a) Strain-displacement:

v=9¢ -8 .

e¢(a sin y) = dw/d¢ - al(sin ¢ - sin ¢)
e¢(a cos ¢) = du/d¢ - alcos ¢ - cos ¢)
S u/(a sin ¢) |

k¢ = (1/a)dB/d¢

ke = (sin ¢ -'sin Y)/(a sin ¢} .

(3.1) (b) Stress-strain:

Ny = Kley + og) K = Et/(1 - ¢2) ,

Ne = K(ee + ce¢l ,

My = D(k¢ + akg) D = Et3/12(1 - ¢2) ,
Me = D(ké + ok¢] .

(3.1) (c) Equilibrium:

dv/d¢ -r1V/p - upy

dH/d¢ -r1H/p + uNb/p - uPH

dM,/dé = -1, (M

o - Mel/p - u(H sin ¢ - V cos ¥)

¢



where
p = a sin ¢ *tu
=all +¢)
H . . e¢
r'.,I =pnecos = p'

=
1]

Hcos ¢y + V sin ¢ .

In the free regilon, ¢0 < ¢ < /2 , the shell equations can be

reduced to six ordinary differential equations for u, w, 8, H, V, and

M¢ . We normalize the variables to obtain non-dimensional quantities as
follows:
0= ua N wa R = (t/a)8 ,
A A
= H/Et , V = V/Et , Mg = M¢/Et2 .

This is not the standard normalization but it leads to better results for
the numerical method, as we discuss later. The normalized equations are

then given by

A
v =¢ - (a/t)B
. A A A
€y = (1 - 62)¢(H cos ¢ + V sin §) - oU/sin ¢
dW/de = (1 + eg)sin ¥ - sin ¢
dﬁ/d¢ = (1 + e¢Jcos P - cos ¢
(3.2 dBsde = 1201 - 023ﬁ¢ _ o' (t/a)+ (sin ¢ - sin y)/sin
: . A
dﬁ/d¢ = {(1 + e¢]/(sin ¢ + Mhyit-ar - o]ﬁ cos y + oV siny+ 0/sin o}
A . .
aU/a4 = 101 + €,)/(sin ¢ 83 -0 cos 12

dt /dé = {(1 +e, )/(sin ¢ + GJ}i{—(1 _ o

¢ + (t/12a)+(sin ¢

¢ ¢
- sin ¢)/sin ¢}-cos ¥ - (1 + e¢J'(a/t3-[ﬁ sin ¢ - 0 cosy)

In the contact region, 0 < ¢ < ¢U » the neglect of shear strain
predicts that the pressure distribution over the contact region is zero

and all the force is distributed along the edge of the contact region as



a line load of magnitude @Q* = P/21rp0 {(see Figure 1b). Since we are not
interested in the exact pressure distribution over the contact region, but
only in the relation between the total pressure P and the radius Po

of the contact region, this model is sufficient. Then equations (3.ja).

(3.1b) and (3.1c) can be solved explicitly in the contact region to give

a = §/a - (1 - cos ¢)
ﬁ = (t/al)¢
(3.3) 0 =
A
M¢ = t/(12a(1 - o))
A A
H= f{) ,

A ' A )
where f 1s a known function of u and its derivative, and U satisfies

the nonlinear second-order differential equation

p[G" - sin ¢ + oﬁ'/sin o - oll cos $/sin2¢)
(3.4) £ (1 - c)r1tﬁ - 2 sin2(¢/2) - O/stn ) =0 , 0<¢ < b
=0, ¢=0

If we assume that the contact region is shallow so that émall angle

0

approximations are valid, i.e. ¢ < 15 , and so that the circumferential

strain is small, i.e. 1 + €g ¥ 1 in that region, then we can linearize
A
equation (3.4) and solve explicitly for u in terms of an arbitrary

. R A
parameter. The relation between H and u becomes simply

(3.5) A-s=0/tt1 - )¢) - 92/(801 - o)) .

Equations (3.3) - (3.5) only define the solution in the contact region
up to an unknown constant. However, if we assumé continuity of the vari-
ables G, é. ﬁ, ﬁ¢ between the contact region and the free region, then
together with symmetry conditions at ¢ = #/2 , these relations give us

sufficient boundary conditions to solve the differential equations (3.2)

in the free region. From these results we can determine the solution in



the contact region uniquely. To solve the complete problem, then, we

must solve the differential equations (3.2) subject to the boundary con-

Qitions

8 - (t/a)¢,

A

M. = t/(12a(1 - o)) at ¢ = ¢. .

¢ 0

(3.5) AC A

H= 0701 - adgy - 037801 - o)

A-o, 8-0., fi=0 at . ¢ = /2.

.A‘.
The vertlcal stress V 1s assumed to be discontinuous at ¢ = ¢g -

A
and its limit VU » as ¢ - ¢E in the free region, will equal the

negative of the line load Q* . The solution of (3.2), (3.8) then

A A A _ A A A ) ,
gives us the values w = Wgs U = Ug and V = V0 at ¢ = ¢0 from which

we can computeg 6, and P using

o
§ = a(A + 1 - )

Wg cos ¢0 s
= a(GU + sin ¢D] 2

We observe that equations (3.2) depend on the small parameter t/a .
If we examine the behaviour of the system as t/a - 0 , that is, as the
shell becomes thinner, we find that the system reduces to the case where
bending is neglected. Eliminating ﬁ from the third and sixth equations

¢

of (3.2) we derive the second-order differential equation

A 2 101 - o101 =+ €y)/sin ¢ + ) + g/s1n ¢}cos y B

¢J/tsin‘¢ ¢ - rzade

+ a(t/a)sin(y - ¢)/sin2¢ - (1 - ol((1 + €
(sin- ¢ - sin ylcos Y/sin ¢ =
_ A - A _
1201 - 02)(a/t) (1 + e¢1(ﬁ sin v - Voos y) .
Multiplying by t/a and formally setting t/a = 0 we obtain (for ¢

bounded away from zero)

A A
H sin y = V cos ¢ .
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Substituting for ¢ in the remaining equations we eliminate the effect

A A
of both B, the rotation of the normal, and M, , the bending moment, and

¢
thus obtain a reduced system of order four. Evidently system (3.2) is a
singular perturbation problem, and for small t/a we expect boundary
layers or turning points to appear in the solution. In the physical

problem the large rotations and large bending moments which occur near

the edge of the contact region are responsible for the formation of

- boundary layers, and since the same effects occur in the solutions of

the differential equations, we may reasonably assume that the mathematical

model will represent the boundary layer behaviour as required.

We also observe that ¢ = 0 is a singular point of equations (3.2),
and that for small values of ¢q the solutions will exhibit nearly
singular behaviour close to ¢D . This behaviour must be taken into con-

sideration by the numerical computation procedure.

Both the boundary layer and singularity phenomena are examined in

more detail in the next section with the use of an approximate linear model.

3.2 Small deflections and strains - a linear model

If we assume displacements and strains are small everywhere in the
shell, then the limiting case of the governing equations (3.1) gives us
a set of six linear ordinary differential equations to solve in place of
(3.2). For small ¢U we expect the solution of the linear equations to
give us a rough approximation to the solution of the nonlinear equations.
This will be useful in finding the numerical solution of the problem. The
linear formulation also enables us to examine the analytical behaviour

of the solutions and to test the results of the numerical procedure.
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€

¢’ 0

are small with respect to unity, and that the displacements are small.

We assume that ¢0 is small, that the membrane strains ¢

In the free region, ¢g = ¢ < n/2 , the eguations (3.2) become

da/d¢ = (1 - OZJ(A cos ¢ + 0 sin ¢J)sin ¢ - ol - [a/t)g cos ¢
dG/d¢ = (1 - czl(ﬁ cos ¢ * 0 sin ¢Jcos ¢ - ol cot ¢ + [a/tJe sin ¢
dﬁ/d¢ = 1201 - 02]ﬁ¢'- og cot ¢
(3.8) 2 A A :
dH/d¢ = -(1 - olH cot ¢ + u/sin?¢ + UO
e A
dO/d¢ = -V cot ¢
A : A A A
dh/dp = -(1 - oI, cot ¢ + B cot2¢/12 - (a/t)(H sin ¢ - V cos ¢) .

The boundary conditions are still given by (3.8). We observe that near
¢0 the assumptions are not strictly valid since B8 1is not small with
respect to ¢ . However, in absolute terms, both .¢ and B are small
near ¢O » and therefore (3.8) gives a sufficiently accurate approxi-

mation to (3.2) over the free region for our purposes.

We may write equations (3.8) in vector notation as

(3.9) y'

Ki¢ly

where

¢

and

0 -o -(a/t)cos ¢ (1-02)sin ¢ cos ¢ (1-62)sin24” 0 ]

0 -ocot ¢ (a/t)sin ¢ (1-02)cos?$ (1-02)sin ¢ cos ¢ 0

0 -0 -0 cot ¢ 0 0 12(1-02)
K(¢) =

0 1/sin2¢ 1] -(1-0)cot ¢ o 0

0 0 0 0 -cot ¢ 0

0 0 cot2¢/12 ~(a/t)sin ¢ (a/t)cos ¢ =-(1-c)cot ?J

-
Al

e

' A
We note that the equation for w could be solved independently from the

rest of the system. However, for numerical calculations it seems more



A2
efficient to compute all the solutions simultaneously. (The same remark

holds for the nonlinear modsl.)

Tﬁe écéﬁ;aéy énd efficieﬁcy of any numerical method for solving (3.9)
depends on the conditioning of matrix K(¢) and on the range of magnitude
of the nonzero coefficients. We wish to restrict the range to as small
aﬁ interval as possible. For the given choice of normalization, the
range of magnitude is @(1) - ®(a/t) . We remark that without normaliziné
the variable g8, the range of the coe?ficients would be Ptt/a) - @tlast) .
If none of the variables is normalized, the solutions will not be dimension-
less and the equivalent equation (3.9) would have a matrix wifh coefficients
in the range @(t3/a) - #1a/t3) . The more common normalization, in which

A
a = B and M¢ = M¢/Eta ,» leads to a matrix with ooefficients in the range

. B1(t/a)2) - Pl(a/t)2) . The given choice of normalizing factors thus seems

to lead to the best scaling of the matrix while giving dimensionless

qguantities.

To examine the behaviour of the solution in the region near ¢0 ,we
make the assumption that aﬁgle ¢ 1s small, and consider the sclution of

equation (3.9) with K($) approximated by

A -¢ -a/t o 0 i
0 -a/$ 0. 1 - o2 0 0
{0’ 0 -0/$ ] 0 1201 - ¢2) |

K(¢) = -
0 1/¢42 0 -1 - 0)/% T 0
0 0 0 0 ~1/¢ 0

Lo 0 171242 0 a/t 1 - 0/ |

A iy

Solving fhe fifth equation gives V =HV0¢0/¢, and comBining the second

equation with the fourth,and the third with the sixth gives
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Loy
u” + $'U ¢2 ¢ »
A" 1 A' _ 1 A = Eg
Brtg B -ozBg
A 1 , o A

and H -[T-_-_—;'z—]' u' o+ E LI] »
A "1 - o A
My "z - od) BT 8]

wﬁarel Cg 12(1 -0 ][a/ﬂV ¢D —EP/nEt2 5

Cy = o(1 - 02) VU¢D . -aP/2wEta .

. - - - e f " -
It is evident that the solutions to these equations are singular at ¢ =

and therefore that, for small ¢0 , the bshaviour of the solutions in the
region 0 < ¢5 < ¢ << ir is nearly singular as ¢ > ¢0+ . This behaviour
g» ©4 of

'the forcing functions also increase with the total applied pressure P , and

becomes less severe as ¢U inc*eases. However, the coefficients

' therefore. as ¢0 increases, the maanitudes of the sclutions in the interlor

become larger.

For small ¢, and ¢ = ¢ * , the solutions behave approximately as follows:
0 0

.

A LA
AL A
' : = K1[¢D/¢) + (:0 - K1](¢/¢0] "
BT K lag/8) ¢ (By - Kp)(@/eg)
B - (0r612) + A
B, S g bg/¢ o °
AT _ : A
My % Kyl - (/018 = Mg
. A - A
§ - W ='K5 1ﬂF¢/¢0] + WO »
- \_/ ; _
where K K=t +c)¢3/18 + fcgdy s K, o tegdy 0 Ky - .igms +c /401 + ),
" ) A A
K4 = 00/48[1 +0), K5 = - H[a/t]c0 + cc1]¢é and BD‘ HD' M0 are,
_ _ A

A
respectively, the values of B, and M at ¢ = ¢0 given by (3.8).

¢

H
+ A A
We observe that, as ¢ > ¢D ,» H ., M are the most badly behaved of
5 , ,
w 1s essentially smocther than the rest.

" the solution components, whille
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We remark that 1f we formally set t/a = 0 , the effect of both
3 and ﬂ¢ is eliminated from the equations, and a lower order "reduced”
system is obtained (approximately eguivalent to the system derived when
bénding is neglected). In general, the well-posedness of the boundary
value problem depends on the well-posedness of the reduced system, provided
the correct scaling of the eguations has been chosen. A complete analysis
of the linear problem (3.8). (3.8) is poésible using the theory developed
wwby_greiss andrNiqhQ}g [ﬁj, bgﬁ w;ll not be discussed further in this paper.

3.3. Analysis of Buckling

To determine the minimum buckling load we assume that in the flat i
contact region an additional axi-symmetric rotation, n, is superimposed
on the normal rdtation which is already required to‘satisfy the constraint
imposed by the platé. The rotation of the buckled state is then
(3.10) B=¢+mn .
Assuming again tﬁat the contact region is shallow, so that small angle
approximations are valid, the equations t3;1a, b, c) together with (3.10)
can be solved explicitly as before. Ignoring second order terms in ﬁ.
the solution for the buckled state in region 0 < ¢ < ¢U satisfies the

original equations plus the additional second order differential equation

” n' 1 ) k"i 2 _
,(3.11) n" + $ - [$2 + _T%_ = K2A2]n =0

and boundary conditions

. (3.12) (@ =0, nley) = O .
IHere
(3.13) k¥ = 1201 - 02)a2/t2 ,

and A is determined by the solution in the free region as a function of ¢D .

[See Updike and Kalnins [8] for detaills.)
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If X is takén as unknown, the eigenvalue problem (3.11)-(3.12]) can be
solved to find A2 as a function of k¢0 . The resulting curve is called
the "buckling curve”, and is shown in Figure 4 in section 5. (Values for
the corresponding function are given in Updike and Kalnins [8]). Similarly,
the curve (A2, k¢O] can be computed directly from the solution in the
free region, where A2 1is given by
(3;14aJ A2 = —k2[ﬁ(¢01 - ¢3/181.
or equivalently by
(3.ﬁ4bl A2 = -(12(1 + a]az/tzl-[G(¢U] = (3= o]¢%/18]/k2¢0 .

%he bifurcation point at‘which buckling occurs is just the point of inter-
section of the two curves. To determine the critical points we solve
the boundary vélue problem (3.2), (3.8) numerically for a sequence of
values of ¢0 , compute the correspondiné points on the curve (A2, k¢03
from (3.14a) anduse inverse interpolation to determine the point at which
this curve crosses the "buckling curve”. The numerical procedure for

solving the boundary value problem is described in the next section and

numerical results are given in section 5.
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4.0 Numerical Method

4.1 Canonical form of the model.

The mathematical problem represented by the system of six differ-

ential equations ({3.2) and the boundary conditions (3.6) constitutes a

two-point boundary value problem where the solution is required for

various values of ¢0 . The parameter ¢D enters into the problem both

as a boundary point, and in the boundary values at that point.

To simplify

the dependence upon ¢D » it 1is convenient to transform the free region

to a fixed interval [0, 1] in a new variable x , such that

(4.1) ¢ = (n/2 - plx + y .

In terms of the new independent variable x , the values of the derivatives

in (3.2) are all multiplied by %%

(3.6) are applied at x = 0 or x

1 as appropriate.

The problem is then in a standard fdrm
(4.2) dy/dx = gﬁx;{i[x]; TR
with boundary conditions
(4.3) Bly(0), y(1), u) = 0.
where in this case the vector ﬁ has a single element u = [u]

the vector function B 1is defined by

T80 - (t/a)lu

A

M¢[0) - t/(12a(1 - o))

A A

H(D0) - u(0)/(1 - odu + p2/8(1 - o)
A

(4.4) B = H{1) .

801

A
w(1)

¥~ ¢y

n/2 - u , while the boundary conditions

, and
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Here the last element is added to ensure that x = 0 corresponds to
¢ = ¢0 while allowing ¢U to be varied easily. The method of con-
tinuation can then be used to solve the equations for a sequence of

values of ¢D .

4,2 The multiple shooting method.

The numerical solution of the problem (4.2) - (4.4) is found by a
"multiple-shooting” method using a general code described in detail by
England [1]. The domain [0, 1] is divided into sub-intervals,and an
initial value problem with differential equation (4.2} is solved over
each sub-interval. The correct initial values at each "shooting” point
are chosen to satisfy continuity requirements at the "matching” points

at the ends of each interval, together with the boundary conditions (4.3).

To describe the precedure mathematically let the vector function
Y(x, z, W, ﬁ) éatisfy the system of differential equations
(4.5) dY/dx = G(x, Y, u)
with initial conditions
(4.6) Y(z, z, W, p) = W.
The Jacobian matrices Jw(x, z) =3Y/oW and Ju(x. z) =3Y/3p then

satisfy the variational eguations

(4.7) [‘”_w c”u] . [’f’_ﬁ. 3_%] Ty Iy
dt “dt| {3y du 5 =

with initial conditions
(4.8) J (z, z2) =1, J (z, z) =0
W u

where I, 0 are identity and zero matrices of appropriate orders.

Given q/2 + 1 shooting points 2z, (i =0, 2, ..., g+1), and

q/2 matching points Xq (i =1, 3, +v.., q) , such that Z; 4 < xy < Z4 41
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and u

<z (1 =1, 3, ..., q), where z. =0, =z =1,

and  z;_, i+1 0

the original boundary value problem (4.2), (4.3) reduces to a system of

non-linear algebraic equations for Xﬁzi] , 1 =0, 2, ...; q+1,

l(xi; 21_11 l(zi_,ljj H] - _Y_(Xi. Zi+1: l(zi.‘.,]J; E] = _Q_ ’
[4-9] i=1: 31 “-w 8y q

Blylz,J, l(zq”J, u) =0,

where the values of function Y are determined by solving initial value
problems of form (4.5), (4.8). The solutlion of non-linear equations (4.9)
1s found using the Jacobian matrix of the system; which in this case is

Just the structured block matrix

10 a2 51
Jag  Jg4 Ka
(4.10) | -
J -J
g,q-1 g.q+1 q
2B 9B 38
3y(0) ay(1) - WHJ
Here Jim = Jw[xi, zm] > 1=1,3, «v., g3 m=1%1, and

Ky = Ju(xi, z; 4) - Ju(xi. Zy4q) » 1=1,3, ..., d . and both may be

evaluated by solving initial value problems of form (4.7), (4.8).

The multiple shooting method thus consists of three principal parts:

(1) the selection of shooting and matching points; (ii) the solution of

initial value problems; (iii) the solution-of systems of non-linear algebraic

equations. The techniques used to implement each phase are described

in the next section.

General advantages of the multiple-shooting method are mentioned in

England [1]. We note thaf with only one "shooting” interval, the multiple

et —-

T
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shooting technique reduces to ordinary shooting; whereas, if only one
step is used in the integration across each sub-interval, the method .
reduces to a simple finite difference method. For our problem, rapid
growth of the Fuﬁdamental solutions is associated with the formation of
Ithe boundary 'layer, and it does not seem possible to obtain a solution
with less than two shooting points, thus excluding the ordinary shooting
method. On the other hand, with the simple finite difference procedure,
a considerably larger number of non-linear equations would need to be

solved for similar accuracy and much more computer storage would be

required.

4.3 Special features of the multiple shooting method used.

The multiple shooting program used provides a facility for automatic

selection of the shooting and matching points, in a manner which 1s intended

both to avoid any possible ill-conditioning of the matrices Jim which

might result from the wide span of the eigenvalues of matrix K(¢)

in equation (3.9), and to limit the growth of integration errors within

each shooting interval.

The points are chosen sequentially until a

is found, and

final matching point Xq

along the initially estimated solution:

satisfy the following criteria

(4.11) [13,,0x55 2,0 N z )|, ~¢C.
1i=1,3 ..., m=41-1 (i<s), m=1+1 (i2s8),
(4.12) z =x3. 1=1,38,...u0 (i #s8); m=41+1 (i< s)
m=1i-1 (i > s)
Shooting is from left to right for x < X , and from right to left for

X > X . Firstly, given zq = 0,

equations (4.5),

(4.7) are integrated

forward until the first point of the discretization where the norm in



20.

(4.11) exceeds the constant C , whiPh has normally been taken as 10. This
point is taken as X4 and z, - The point xq = zq_1 is found in a similar
way by integrating backwards froﬁ Zq+1 = 1 . Integration ?hen proceeds

in the direction of the larger of the last two shooting intervals, the
comparison being repeated after each matching point has been found, until

the integrations from the two ends meet in xS . fhis is a somewhat ad hoc
procedure, inspired by Osborne [7], and can be sensitive to the

initial estimate of the solution, as it is not convenient to modify the
shooting and matching points at a later stage. Although values of C

larger than 10 may be advantageous, the procedure has generated satisfactory

shooting intervals for our problem with the selected parameter values.

The method for solving initial value problems uéed in the program,
is based on a fourth order Runge-Kutta method given by England [2]
with step adjustment determined by a fifth order local error estimate

for equation (4.5) only (but not (4.7)]..

To solve the non-linear algebraic equations (4.89), the program uses
a version of the Marquardt algorithm implemented by Reid [8] to minimize
the sum of squares of the residuals. A Newton method could have been
used, but the convergence of the procedure is then strongly dependent upon the
initial estimate of the solution. The Marquardt-type algorithm tends
to improve the global convergence properties while having the same con-

vergence rate as the Newton method in the neighbourhood of the solution.

4.4 Use of the multiple shooting method.

For given values of the geometric and elastic parameters t/a, o,
solutions of the boundary value problem are required for various values

of qh, increasing from 0, at least as far as the buckling point. For

e . ee—— L e e e e L el ey — L s ol S0
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small values of ¢g » @ good estimate of the solution is available, from
the linear model, and convergence to the solution of (4.8) is in any case
easy and fast even from a poor estimate. However, for larger values of

40 » convergence becomes slower, and it is correspondingly more difficult
to provide a good initial estimate. Nevertheless, for large ¢D , solutions
have been obtained using only crude initial estimates, as a fesult of the

global convergence properties of the Marguardt algorithm.

However, it is natural, and duicker to use a continuation process
in the parameter ¢0 . Since results are required for various values
of ¢0 ,» the solution for one value may be used as the initial estimate
for the next. If values of ¢D are taken in increasing order, and close
to one anothe;, the initial estimates are in each case good, and rapid con-
vergence to the solution of (4.9) is observed. As the eguaticns are non-
linear, there is also a possibility of multiple solutions. The process

of continuation in ¢ corresponds to the physical application of the
0 2

load, and ensures convergence to the correct solution.
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5. Numerical Results

—

Complete solutions to the thin shell problem were obtained for a
variety of physical parameters. The behaviour of the displacements and
stresses was determined for values of t/a ranging from 1/40 to 1/180

and for o = 0.2, 0.33, and 0.45 . For each case, solutions were found
for values of g ranging from ¢g = 0.0436 to ¢g = 0.35 1n steps

of approximately 0.02 .

\

In Figure é, the load versus the deflection behaviour is shown for
o = 0.33 and various values of t/a . The bifurcation point at which
buckling may occur is indicated, and it can be seen that at this point
8§/t takes the same value, &/t = 2.3 , in all cases, at least to a first

order of accuracy.

In Figure 4, the "buckling curve”, as defined in section 3.3, is.shown.
and the curves (A2, k¢O] computed from the solutions of the boundary
value problem are plgg;gd for ¢ = 0.33 and t/a =1/40, 1/80, 1/100,
1/420, 1/160 . The curves for the various values of t/a are virtually
indistinguishable. The same curve is found in the cases o = 0.2, 0.45 .
Near the intersection of the plotted curve with the "buckling curve”,
solutions were obtained for values of ¢0 at steps of about 0.003 . 1In
all cases the bifurcation point determined from the intersection of the
curves is gilven to twq decimal accuracy by
(5.1 k¢0 = 2.75

b
u

where k = (12(1 - 02) a®/t?) Hence the critical point for the buckling
can be determined directly as a function of the ratio of the thickness

to the radius of the shell and Poisson's ratio of the material of the shell
(at least for the given range of t/a) . It appears also that the diéplace-

ments at ¢O are similarly dependent on the parameter Kk, and hence the

value of 6/t for which buckling occurs can also be determined from Kk .



23.

These results do not appear to be described in the literature and no analytic
proof has been found to confirm the results for all thin shells. However,

in the case of the bending beam problem and the problem of the flat plate
under compression, the buckling point can be shown to depend on a simple
parameter determined from the dimensions and material constants of the
elastic body. That such a result holds also for the thin shell does not,
therefore, seem unlikely. In Table 1 the critical values of '¢0 at which

buckling occurs for various t/a with o = 0.33 are shown.

In Figures 5-8 the distributions of the stresses and stress couples
in the shell are shawn for various values of ¢O and t/a with ‘g = 0.33,
We observe that for small ¢D » the solutions increase or decrease rapidly
away from the edge of the contact region. This phe5omenon is due to the
nearly singular behaviour of the variables for ¢U ~ 0 and is independgnt
of t/a . The solutions also have large variations aver a short interval
in the interior adjacent to ¢0 . This behaviour arises from the formation
of the boundary layer and is worse for small t/a . We see that as t/a
decreases, the width of the boundary layer decreases and the large oscillations
in the solutions are pushed closer to ¢0 . The magnitudes of the stresses
decrease also with t/a and with ¢0 » however, due to the decreased
loading force P required as the shell becomes thinner, or as the compression
of the shell is reduced. These results are all predicted by the analysis
of the small-angle linear approximation in section 3.2. 1In the Appendix
complete solutions are shown for ¢ = 0.33 with t/a = 1/40, 1/100, 1/160

and ¢D = 0.0436, 0.1312, 0.2219.

In all the solutions obtained, the maximum stress is calsed by the
meridional bending moment and ocours in the boundary layer just outside
the contact region. In most materials, yielding will occur for stresses

above E/100, i.e. for
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6 max{M, } A
(5.2) = 6 max{M, } > 1/100 .

¢

Et2
Téble 1 gives the minimum values of ¢0 for which the yielding condition
(5.2) is satisfied for various t/a with. ¢ = 0.33. The numerical results
shaown in the table confirm the hypothesis of Updike and Kalnins [10],
that for large a/t (thin shells), buckling will occur before yielding,
and for thicker shells the opposite will occur. Here we find that for
a/t < 80 yielding occurs before buckling is expected, and for a/t > 80
buckling may be expected before yielding. In the cases o = 0.2, 0.45

the same result is obtained.

Table 1.

‘Thickness/radius Buckling Yielding
t/a ¢O crit, ¢O crit.
1/40 0.240 ~ 0.131
1/60 0.196 ~ 0.153
1/80 0.170 0.164
1/100 0.152 ~ 0.175
1/120 0.139 ~ 0,199

1/160 0.120 ~ 0.189
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6. Conclusions

The mathematical model descfibed here for the compression of a thin
shell between flat plates is necessarily idealized, and a number of additional,
simplifying assumptionshave been made in order to obtain solutions to the
problem. In particular, for the analysis of buckling, a linear approximation
is taken and small-angle behaviour is assumed. The description of the
buckling does not take into account any rolling or sliding of the shell
surface under the plate, and friction is ignored. The pressure distribution
over the plate is not considered either. More sophisticated maodels, incor-

porating some of these features have been derived by Updike and Kalnins [11,12].

Despite the limitations of the idealized model, useful insights and
conclusions can be drawn from the results. The boundary layer and singular
behaviour of the solutions near the edge of the contact region with the
plates is of special interest, since the membrane and rotational stresses
reach maximum here. Mathematical pfoperties of the problem related to this.
behaviour also cause difficulties in finding numerical solutions. We have
examined the analytic behaviour of the solutions near the contact edge using.
small angle approximations and have sthn the singular nature of the solutions
for small compression and the greater variation in the solution which occurs

as the shell becomes thinner (i.e. as t/a =+ 0) .

The numerical difficulties caused by the boundary-layer formation were
overcome by the use of a multiple-shooting method which includes an auto-
matic step choice and a non-linear solver with wide global convergence and
guadratic local convergence. For the geometric parameters used here, the
routine was able to find accurate solutions with little a priori information
about the solutions. The method was adapted for continuation with respect
to the loading of the shell, and a whole sequence of problems with increasing

load was easily solved in one run.
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The numerical results obtained suggest that in this model problem,
the poiﬁt at which buckling occurs is dependent on a single parameter
determined by the dimensions and material constants of the shell. These
results may only hold for the range of parameters examined here. However,
such results hold generally for other model problems, namely the bending
beam and compressed plate problems. An analytic proof for the thin shell
problem might arise from a more complete analysis of the well-posedness of
the model equations using singular perturbation theory. This approach will

be considered in another paper.
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Appendix

In the following diagrams, the stresses and stress couples

O = 103 Ng/3Et
op = 103 N¢/3Et
O & 103 Me/Et2
Iy " 103 IVI¢/E 2

in the shell are shown for ¢ = 0.33, ¢U = 0.0436, 0.1312, 0.2219,

and t/a = 1/40, 1/100, 1/160.
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