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1. INTRODUCTION

In Geophysical Fluid Dynamids an important and much studied pheno-
menon 1s that of baroclinic instability. When a fluid is baroclinieally
unstable, small waves will grow to a finite amplitude: in a meteorological
context the waves observed in the midiatitude Westerlies of the Earth's
atmosphere, and the meanders observed in many ocean currents are believed
to be barodinic waves (e.g. Lorenz 1967, Gill et al. 1974), Similar
observations have been made in two simp;e experiments (see reviews by
Hide and Mason 1975, Hart 1872). Because of their key role in the dynamics
of many geophysical systemé, a detailed understanding o* the behaviour of
these baroclinic disturbances is essential. Models for idealised atmos-
pheric flows have been examined using numerical techniques (Hoskins and
Simmons 1976, 1977), but it is not é%raightforward to test these results
against observation. The main aim of the present work is to develop a
numerical model of one of the two e%periments, the.two—layer system,

where such comparisons should be simpler.

A fluid is said to be baroclinically unstable wken it possesses
gravitational potential energy available for transformation into kinetic
energy; i.e. when the density gradient and the gravitational force

are not parallel (gxVp # 0) . Such a situation is shown in Fig.1.

If a disturbance could interchange the two fluid particles situated

at A and B, then the change in potential energy, APE 1is given by

'‘APE = APE + APE

A>B B>A

pgdh- (p+ 6) g 8h

- g &p Sh

< 0 .
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Fig.1 :The baroclinic instability of fluid elements at A and B
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Hence a disturbance of the correct form will convert potential energy,
called the available potential energy, into kinetic ensrgy, and the
disturbance can grow in amplitude. This idea is similar to that employed
in the analysis of instability of Couette flow, and many other hydrodynamic

stability phenomena.

In atmospheric flows the rotation of the Earth and Solar heating provide
the source of potential energy. In the first of the two laboratory experi-
ments which model baroclinic instability, the thermal annulus experiment,
the mechanism of potential energy generation is similar to that for atmos-
pheric flows. The apparatus consists of an annulus‘Fiiled with a single
fluid subjected to a lateral temperature gradient. The temperature gradient
is induced by heating and cooling the inner and outer (or outer and inner)

walls of the annulus respectively. This is shown in Fig.2. With the whple



apparatus rotatlng rapidly various kinds of regular and irregular,

periodic and aperiodic motions have been recorded (e.g. Hide 1969):

some of these are shown in Fig.3.
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Fig. 2 : Schematic diagram of a rotating annulus subject to a horizontal
temperature gradient. g = (0, 0, -g) is typically >> Q%r and
the temperature gradieat is maintained by temperature baths

at r=aand r = b.
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Fig. 3 : Top surface flow patterns at different values of X, where
X is related to the temperature gradient and rotation rate.
(a) depicts axisymmetric flow at a slow rotation, while (b) = (e)

depict typical wave motions at progressively faster rotations.



The other laboratory experiment, the two-layer system, consists of
a similar annulus, this time filled with two liguids thch are gravi-
tationally stable when the annulus is stationé}y. When the annulus is
rotating a mechanical driving force applied through the 1lid generates
the conditions for baroclinic instability, and motions, similar to those
for the heated annulus experiment, are observed. The laboratory system
is described in more detail and mathematical and numerical models for

it are derived in Section 2.

The typical evolution of a small disturbance is as follows: for
as long as the perturbations. to some equilibrium solution are small they
will grow exponentially; however, when their amplitudes become large
enough so that non-linear interactians become significant a balarce between
the conversion of potential energy to kinetic energy and the removal of
kinetic energy by dissipative mechanisms will develop, and finite amplitude
baroclinic waves are observed. It is the behaviour of such finite amplitude
waves in the two-layer system that is the subject of the present study: for
while an extensive literature exists on the initial growth of infinitesimal
disturbances (see, for example, Hide 41969}, the analysis of finite amplitude
waves is much less tractable and only a few limited analyses have been
carried ont (Drazin 1970, Pedlosky 1970, 1971, Smith 13877). Indeed, one
of the main characteristics of all finite-amplitude analyses is that they
are only weakly-nonlinear, and for a highly idealised number of wave modes.
With a numerical model we will be in a position t- analyse strongly-nonlinear

parameter regimes, and to verify some of the weariy-nonlinear analysis.

In this report we present a verification of the numerical model that
has been developed: linear analyses of the mathematical and numerical

Mulels are presenied L Seciiuns 5 and 4, witihh o detailed coumparison of



these in section 5. Some nonlinear comparisons are made in Section 6,
and in the last section we are able to indicate our conclusions about
the model and to assess the areas in which our model will be of particular

Use.



2. MATHEMATICAL FORMULATION AND NUMERICAL APPROXIMATION

2.1 The Model and Formulation of the Equations

The experimental model in Dr. Hide's laboratory at the Meteorological
Office in Bracknell consists of two layers of homogeneous fluid, each
with a constant (but different) density, contained in an annulus which
is free to rotate about its vertical axis. The lighter fluid lies above
the denser so that the system is gravitationally stable when stationary.
There is a 1id in contact with the upper surface of the lighter fluid,
which is free to rotate, independently of the annulus, about its axis.
Hence, when the annulus and lid are rotating with constant but different
angular velocities, a baroclinically unstable interface is created between
the two fluids and baroclinic waves®will be observed. The apparatus

is shown in Fig.4.

Q = annulus velocity

2+ 6Q = 1id velocity

[ N Y O e

1
|
!
!
1
)
1

Ni=
=

o

Fig. 4 : The two-layer system. A typical configuration of the interface

is shown near z = 3h.
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For the mathematical formulation we shall follow Phillips (1954)
and Pedlosky (1970} in modelling a long straight channel. Pedlosky has
presented a detailed analysis of such a straight channel model (Pedlosky
1970, 1871, 19}2) and it is really to facilitate this analysis that the -
cylindrical effects are neglected. We wish to compare our numerical

results with this analysis: therefore we derive the model as follows.

The two fluids are contained within the planes given by y' = 0 and L ,
z' = 0 and D, where the dashes indicate dimensional quantities. The
pressure in each layer is pi and pé ,» the subscript 1 denoting the

upper layer; the densities and velocities are given by pn and

uy = [un. Ve wn] » for n =1 and 2 , respectively., This is shown
in Fig.5.
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Fig. 5 : The two-layer straight channel model.



Non-dimensional variables are introduced using the following

scalings:
(x, y) = (x', y"I/L Y
z =2'/D
(u,v.) = (u, v/ g

n n’ 'n

woo = waL/(UD]

Fooo(2.1)

t =.Ut'/L

p, =1Lp', *op,.8l2" - D)/ (e, Uf L]

p, = [py + pyglz’ - D/2 - p;8D/2)1/(p Uf L)

-
]

(h* - D/2]/[p1UfDL/g(02 - 0113

where U 1is a characteristic scale for the horizontal velocity and

where 2@ = fo + g'y' . Here the term B'y’' allows the rotation rate

to vary linearly with y' thereby including, in a meteorological context,
the effects of the earth's sphericity and, in a laboratory context, the
effects of sloping end walls. If the model has sloping end walls then

the top and bottom of the channel are not horizontal but are inclined at

some small angle ® . (See Fig.6.)

Fig. 6 : Sloping end walls in the two-layer system.
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In a meteorological context, therefore, y' would be the northward

pointing coordinate on the B-plane and x' would point east.

Defining 2
£ = U/foL . the Rossby number )
E = 2\)/-FUD2 ) the Ekman number
B = B'L2/U ’ the planetary vorticity factor
¢
Ap/p = (p2 - p,I]/p2 5 the density ratio
- p22/80 , D
F = foL/ 5 g 5 P the Froude number
§ = D/L " the aspect ratio

where these are all non-dimensional parameters, the Navier-Stokes

equations in non-dimensional form are:

Du . E - 32 ]
€ _Dt o (1 + eBy]vn = = "—"ax + -2-[6 v Un + -5-22 Un]
Dv ap 52 for
—.—rl = - _ﬂ .E_ 2 2 ——, &
€ Ot +(1 + eBy]un 5y + 2[6 v Vi * 32 vn]
Dw_ %, o 92
2, == U B - e (8292 . '
8¢ Ot 32 + § 2{6 v Wn + 322 Wn)

where the continuity equation is,

ou v ow
n ., _n., n_ g

X ay 9z

for n=1and 2,

and

(2.2)

ne 1 and 2,

(2.3)



11.

The kinematic boundary condition at the interface 1s

F (ah 8h ahy N
€3 {a tug etV By} woooat z-= 1(1 +.eFh) .

The parameters e, E, Ap/p and & are assumed to be small compared with
unity while F and B are taken to Ee 0(1), When the annulus or
channel 1is rqotating rapidly E and ¢ ; being propo;tional to Q1 ,
are indeed small and this is not an unreasonable assumption. Typilcal
laboratory values of these guantities are e = [14, E%= .005, Ap/p = <<,

§ =4, F=7 and B =1 .

We assume E = 0(e2) , and make an expansion of the dependent parameters

in powers of ¢ ,

N U[OJ + SHTE']J . 622{(12-]

u + L
-n -

NN DR ¢ P b

F* o oaaw

(0) (4, 2,(2)

P, = P, * P, Py *oeer

from which it follows, after substitution in (2.3) that to 0(1)

(0)
©) _ °Pq
u = -
n oy
(c)
@ %Py
V =
n ax
9p(O]
0 = i .
8z
auio] aviol awﬁol Q)
Thus 5 + 3y = 0, and since 57 =0, we oS 0 .

That is, for € << 1 , the lowest order motion is hydrostatic and

0
geostrophic (i.e. independent of 2z}, pg-] being the geostrophic
stream function, horeafier denctediby ¥ .
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Similarly, to O0(e) we have:

(1)
W

(o) (0) (0)
Egﬂ . , (0 Eiﬂ . V(D)'EEQ _ V(1J _ ByV(O] o
3t N A% 3y n . "
..(0) (0) (0)
EZE 7 U;o) EZQ B V(DJ EZE . u[1) . Byu(OJ
ot X ay n
0
(1) (1) (1
Mo e s M
ax Yy 9z
F [ah(D) , (0 ahw] (oj ah(o):l )
—_— | — —_— + Vv —_— =
Z |9t n o ax n oy

Eliminating p£13

(0) . (0) (0) ?
T, T, U;D] g, V(O] 1N ng BV[D
at X Ay 4
where ;(0] =V2y = av$0] = auio) .
n n '5':"" 'a—y'—-

Since the velocities in each layer are indepéndent of z to first order,

we may integrate (2.4) across each layer.

condition we find:
_§_+ u(O] 3 V[U)
|ot 1 3IxX 1

T3+ (0) o (0)

3y,

o |

Yl

+ B

+ B

The Ekman layers which develop on the surfaces

L BN B TP o
aliu DULN Tadav (1 ulll uvilis

V(U]
1

V[U)
2

z:

4+
[

-1p

0

20 x, v, 1)
II
(1)
2w2 (x, ¥,
and z = 1
the

n

b
e Ly

between the first two of these equations yields

mAnrtad ey
(=]

—

(2.4)

n pump"

Using  the kinematic boundary

0)

(2.5)
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vertical velocities w§1],(x. y, 1) and wé1) (x, vy, 0) to be non-zero.

A relatively simple piece of analysis (see Appendix 1) shows that

1

(1 E2 (0) :
N R R PR TR
(1) TS

1 B2 (0o
W2 (XJ yn 0] - 28 ;2 [X, y; D]

are reasonable representations of the Ekman pumping and suction effects,

(0)

and since ;n are independent of z , these simplify to
w£1) (x, y, 1) = - ir QEOJ (x, y)
(2.8)
0
w;11 (x, y, 0) = ir cé ) (x, y)

1
where r = E®/e .

A consideration of the dynamic boundary condition at the interface
shows that the continpuity of pressure pé across the interface demands

that

Using this along with (2.5) anq (2.6) yields the equations of motion to

first order in each layer, viz:

[ 9 Ay, 9 v, 3 r o

o 1 e & 1 1 |2 - o py2
3t " 3x By sy ax) | 1" F o, ‘4’1)1 t B 53 TV,
(9 Ay, 9 oy, 3] t Y,

— D - i = T : V2 o2
3 T ay  ay ax) | V2 Pl "’1]] * B TV,

which we choose to write 4in the more convenient form

aqE_ awp 2
—B-‘.t. +J(l’)pl qp] +BW"'—I‘V lpp 'FOI" p=1.' 2 (2-7]
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where g, = Vzwp + F(y, - ¥,) with the upper sign for p =1, and where

J(Ff, g) - —= — . These equations are known as the QUASI-

To derive the boundary conditions for this system we require no

normal flow at the boundaries y=0.and y =1, 1i.8. V[O] =0 at
y = 0, 1 . This condition requires, therefore, that

3y

a—x—p=o on y=0,1 for p=1, 2. (2.8)
In addition we require vé1) = 0 on the same boundaries, and Phillips

(1954) has shown that this introduces the condition that

X 42
1 v, ,
lim — I dx =0 on y=0,1 for p=19, 2.

In particular, when the channel is assumed to have a periodicity of
LX' i.e. U(x, y) = ¥(x + Lx’ y) , then this condition becomes
9 aq";:1 :
T 3y dx =0 on y=0,1 for p=1, 2 (2.9)
1]
With these boundary conditions we may derive a consistency condition
on the stream function for each layer; the derivation contained in

Appendix 2 yields the condition

f f cp de = 0 VYt and p =1, 2
Q
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where = {(x, y) e [0, Lx] x [0, 1]}, Green's Theorem may be used

to write this in the equivalent form

X P 1
r —F dx =0 Yt and p=1, 2.
0

It should also be pointed out that these boundary conditions are
inviscid in the sense that they do not cause boundary layers on the
sidewalls y = 0, 1 to form,as they would in the laboratogy. Hart,
in 1972, pointed out that thesé boundary layers are essentially passive,
closihg the circulation caused by the Ekman pumping and do not play

a great role in the dynamics of the flow.

Equations (2.7) and the boundary conditions (2.8) and (2.9) constitute
a well-posed initial value problem in the infinitely periodic channel,
and can therefore be directly integrated using some suitable technique,

the construction of which 1s carried out below.

2.3 The Construction of the Solution Procedure

Let us begin by rewriting the system in a semi-discrete form,
treating time as the discrete variable: the two space dimensions, x
and y , are for the present continuous. We may write the system, there-

fore, in the form

n+1 n n
= f(g_, )
q 9, ¢p
n =] 2n n - i =
qp v wp + F(wz ¢1) for p =1 and 2

with the boundary conditions
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and
L

x 9yl
f 3;9 dx = constant (specified by the initial conditions)
0

on y=0 and 1

with the periodicity condition wp(x, y) = wp[x + Lx' y) .

Hence, given initial stream functions, ¢;,' we can use the prediction
equation to derive values of qé everywhere in the region of @ . This

operation does not require the use of either boundary condition.

Then, having used the hyperbolic prediction equation, we use the
elliptic equation to regain valueé of the stream function at the first
time level. Thé inversion of the elliptic operator using both of the
boundary conditions is well posed, and is carried out .as follows: adding

and subtracting the equations yields
2 =
\ (wz + w1J (q2 + qu
2 - = - e f -
_V [wz ¢1J 2F(w2 ¢1] tq, q1)

with the boundary conditions

L
X

3 . m)

a—-[ﬂ)ziw,‘] =0 and f dy

+ = N H] N
” [wz * w1]dx const. on y. 0 and 1
0]

Take, for example, the second of these, the Helmholtz problem. We

start by first solving the equation

) A
(ve - 2FJ¢D = qD
yith

5 0 0, 1
= n = ’ »
wD on y
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where the subscript D denotes the difference between the layer 2 and

the layer 1 quantities.

= A
Then for wD = wD . ¢D we have

V2 - 2F)y_ =0
( ]wD
with
Eb = const. (unknown)
and
' B¢E _
f Iy dx == const. (known) on y=20,1.
0

It is clear that ¥, = Eb(y) and that to find $b we must solve the
twb-point boundary value problem

dzib

@z " TP

with E;— specified at y =0, 1.

Hence we can derive values-of wD everywhere; a similar, but not
identieal procedure, exists for ws (qé being specified only as far as
an arbitrary constant) and so in a semi-discrete sense we have a solution

algorithm.

The fully discrete algorithm follows exactly the same principles: for
the time discretisation leapfrog differencing is used, while central
differences {see Fig. 7) are employed for the space derivatives on a
regular rectangular mesh. The prediétion equations (2.7), are therefore

rewritten as: for p = 1. 2
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- - n ny _ S 2 N 1n22 AN
Dot Qp %1(wp, Qp) 8D, wp r[Vh wp + 2eat Qp ]
o) = v2 y" 2 Fy” - v
P h P 2 (2.10)
where
n _ n - 1¢ant1 -1
DDt Q = AOt 0 /At 3 (0 Q ) /At

<
N
<
|

(62/802+ 6§/Ay2]‘1/n

and Jh is the approximation for the Jacobian term. The actual expression
used for Jh was first derived by Arakawa in 1966, and is equivalent to

using central differences to evaluate

1{[af e _ afagl , [ (-3 _ & ;2
3 ax oy dy 9x ax y y X

This particular formulation of the Jacobian is energy and enstrophy
conserving, and has teen shown to reduce non-linear instabilities that

occur in long time integrations of equations involving Jacobian terms.

It chould also be noted that a "6" +term has been included to remove
the growth of spurious solutions associated with the midpoint rule. Later
we show that a necessary condition for stability is 6 21 . With: 6 =1,

this is a trapezium rule approximation for the dissipative term.

Given initial values of the stream function, values of vorticity,
and hence Qp can be calculated at all interior points, i.e. at all points
in Dy (see Fig. 7). Actually on the boundary vy = 0 or 1 we must devise

. —n. == e oI
some way Ot calculating The VvOrtlclity, gp - V“wp o7 LT BARIPLEBL mBLIIuU,
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which is, incidentally, consistent with the derivation of the Jacobian
formulation being conservative of enstrophy as well as of energy, is

to require Cp =0 on y=0,1, This condition in fact implies

au T |
EVE- =0 on y=0,1, and is equivalent to there being no boundary

layers at the side wall.

ZIQY+1
2
x L
1 2 ZIQX+ :
Oy, = {(i,j) :+ 1 <14% 210X, 1,1 < < 2I0Y, 13

|
"

h {(ipj] :1SiS2IQX+ '],j:’lorj:zIQY_,_;l}
Fig. 7 : The finite difference grid

An alternative boundary formulation would be to follow the method
suggested by Roache (1872 : putting ¢w+1 = ¢(x, Ay) , the stream function

evaluated ane mesh point away from the wall, and ww = ¢(x, 0) then

"P = w + Ay .?_12 + _Ay_?- 3_2, w + Ay,s 3311)
w+1 W Ay y 2 Jy2 " 6 9y3 "
and
PP | BTNV S| RN —%83
w2 W oy oy2 y 3 oy "
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Thus, taking a suitable linear combination of these we find that

2yl _ 2 2
5y2 y 8y (ww+11/ay + 0(Ay)
Hence since EE =0,
ax
w
C E 21 2
W &y (¢W+1]/Ay

is a first order approximation to ¢ at the boundary. Obviously, by
using more mesh points higher order approximations may be derived.

Unfortunately this formulation has been found to be unstable.

At this stage we apply the prediction equation (2.10) to obtain
values of Q; at all points of D, . The time discretisation being a
two step method required somg starting procedure for the first step.
This is, typically, an Euler predictor with a Crank-Nicolson or fully
implicit corrector applied five or more times to obtain good starting
values. This is then sufficient to allow us to solve for W: at every
point in 0, U Fh in the way described above; the integral constraint

is evaluated using some quadrature rule such as Simpson's rule with a

3y

3; The inversicn of (V2 - 2F)Y = Q

third order approximation to
i w

uses Fast Fourier Transforms, which have been kindly provided by Professor
Hockney in his program POT 1(4g7g. An outline of *this procedure is given
in Appendix 3. Some form of diagnostic information can now be extracted

before the next time step i1s performed.
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3. LINEAR THEORY OF THE DIFFERENTIAL EQUATION

It is important to understand how the differential equation behaves
when the wave amplitude is very small. To analyse the behaviour of such

small perturbations we proceed as follows:

Into the differential equation (2.7) substitute wp =0 Uy + ¢p
¢
(p =1, 2) , where 3 Uy is an exact solution of the system and represents
the basic, unperturbed state and where |¢p|'?< U . Thus ignoring terms

involving products of the ¢p and their derivatives, we derive a

system of linearised equations, namely

, 3¢
9 9 2 - P s = 2
‘at + U aé] [y ¢p + F(¢2 ¢1J] e (B + 2FU) rV ¢p

for p =1 and 2. (3.1}

We examine these using a Fourier mode of the form

eikx (x-1t)

Yoy = $, = AY sin kyy (A, v, c € @)

where kx = 2ﬂ£/Lx. ky =mr and % and m are positive integers;

substituting this into (3.1} gives

' - ' - 2 - B
1k {(-c # UJ(-k2¢p £ Fldp - ¢4)) + (B £ 2FUIg ) - vk =0, (p =1, 2]
that is
[(kZ + F)(c - U) + (B + 2FU)Iik - rk? - Fle - Ulik, $=0
- Fle + Uik [(k2 + F)(c + U) + (B - 2FU)]ik .- rk?| (3.2)
where $ = ¢1 .

7
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The first of these equations can be used to give an expression for Y
the quantity which represents the phase shift and/or amplification

between wave modes in each layer, namely

[k2(c - U) + F{c + U) + B + il[rk2/ke]
Fle - U)

y = (3.3)

Setting the determinant in (3.2) equal to zero yields a quadratic

equation for C, , namely

c?[k2(k2 + 2F)] + 2c[ (k2 + F)g + irk?(kZ + F)/K,]

+ [(B + irk2/k )2 - K2U2(K2 - 2F)] = O (3.4)
ie. o= [K2*F )p  ir) . (kMUZ2(K* - 4F2) + F2(p « irk?/kx:m% (3.5)
T K2 + 2F)\k2 Kk ) ~ k2(k2 + 2F)

We now need to derive expressians for growth rate, positions of
marginal curves between regions of linearly stable and linearly unstable
modes and expressions for vy : the general case for the difference scheme

being somewhat intractable, we consider each of the cases

(A) r=0; B=20

(B r

|
o
>
M,
o

(C r#0; B=20

in preparation for comparison with the theory of the difference scheme.

The growth rate of the Fourier mode is just kx c.. » where Cp =Imec ,

I

and so regions of growth are characterised by cr > 0. if we always suppose

kx >0 .



23,

Equation (3.4) becomes

2
2 . 2 (kS - 2F)
c u (2 7+ 2F) 3 (3.A.1)

so the growing modes are those of lowest wave number k2 < 2F , and it

is this that defines the curve of marginal stability. (3.A.2)

For growing modes

1
- 1l 2F = k%\° |
i U{EF ¥ k?-} [3.A.3)
d C g gs 2 KErFE L 5. p )
s Y E 45794 F - U) A,
T
c-U F
Note that v = eiw2 for k2 =0 and y =4 for k2 = 2F .

incre;;::;\\u

K2

Re

v

k2 = 2F

Sketch of path of y for increasing k2



24.

(B) r=03B#0

For r = 0 , equation (3.4) becomes

[N

c2[K2(K2 + 2F)] + 2cBkZ + (B2 - k2U2(k2 - 2F)) = O (3.B.1)
1
so that c = - (kK2 +F | g+ [kMU2 (kY - 4F2) + F2p21% .
KZ + 2F | K% KZ(KZ + 2F)

Thus the growing modes are given by

K¥(4F2 - k')> F2g2 . (3.8.2)
0?2

Note that for there to exist any growing modes it is necessary that
aF" > F2p2/U2
i.e. U > UC = B/ZF

The value of Cq for a growing mode is

1
cp = (KMU2(4F2 - kM) - F2p2) ®

KZ(KZ -+ 2F) SRS
and
Y = k2(c - U) + B + Flc + U) ‘
F T (3.B.4)
M
4F"Y .
S
F262/U2 ...........................

- -

I . S

//0 UNSTABLE MODES

4F2
Sketch indicating unstable modes for r = 0, B # 0.
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(C) r=001) ; B=20

For r = 0(1) equation (3.4) reduces to

c2[k2 (k2 + 2F)] + 2c[irk?(k? + F]/kx]

+ [- K2U2(K2 - 2F) - r2k*/k 2] = O

so that 2 (il 2 2.2/ 27
- - 2
ca- K2 + F ir + Cu=(k ?F ) Fer /kx ]
K27+ 2F) K (k% + 2F)

For growing modes we need

U2(4F2 - K*) + F2r2/k 2 > (k2 + F)2r2/k 2

i.e. U2(2F - k2) k2r2/kx2
i.e. k?Z. 2
7z (2F - k2) > Gz 5

Note that for any modes to grow we need U > UC = r/V 2F

. B 1
(U2(4F2 - kM) + F2r2/kx232

=—£ k2+F +
Fy k \kZ + 2F (kZ + 2F)

[k2(c - U) + F(c + U)] + i[rkz/kx]

and Y =
Fl(c - U)

Note that the curve of marginal stability is defined by

u2 = rzkzl[kXZ(ZF - k2)] , and hence on this curve

_ K2 -F . V2F - K?
Y = ik S

- (k2 - )2 2 (2F - k2)
w> |y|2 = Ho P e 8 R

25.

(3.C.1)

(3.C.2)

: for such modes

(31iE:3))

(3.C.4)
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ki(ZF - Kk2) /K2

2

i}

r2/u2 /J%A_L

UNSTABLE
MODES

Sketch indicating unstable modes

=0

B

for r 2 0,
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4. LINEAR THEORY OF THE DIFFERENCE SCHEME

We linearise the difference scheme in a way exactly analogous to
that for the differential equations; i.e. we substitute Wp =3 U +0
into the difference scheme and ignore all terms involving products of

Qp and their derivatives. The linearised difference scheme i1s, therefore

ik n = - 2:" &+ 1p 520" =
(Dot * UDOX]Qp + DOXQD(B + 2FU) r(Vh¢p + 38 GtQp) (p 1, 2) (4.1)
—1I=2n n_n
where Qp VHQD + F(¢2 ¢1] .

As with the differential equation, we can now examine the linpear
characteristics of the difference scheme using a Fourier Mode, except that

now we use the discrete mode given by

YhQ: - o7 = ANy Nl (2bx-CnAt)

2 sin k /mdy (4.2)

y

where the triple (2Ax, mAy, nAt) defines a discrete point corresponding
to (x, y, t) . Here Ah and Yh represent the finite difference equiva-
lents to A and ¥y in the differential equation; C is the phase speed

corresponding to c© .

Substituting the discrete Fourier mode into the four difference
operators which appear in equation (4.1) we can define K2, Kx, CA
and € as follows:

- sin %KX&X 2 sin ik Ayy2 : N
v2p = - —_— + ‘_—1—1_"] & = - K2¢
p 1AX z4Ay p P

n sin kx&x n
= i |[——————| = 1K ¢
el ( A ] s (4.3)
n = 1 ‘- -1' n = - n
D t¢p (A AT4) @p/At = inCAQp

1 620" =1 (A -2 + 27D ¢2 = ség
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where

A = exp (- ikaAt] .

&

We can observe that as At -+ O (kx fixed), then
K2 » k2

K =+ k
X X

CA +~C+cC

e >0,

where ¢ is a function of X and hence is dependent upon C , and
l}
that we can resolve all modes such that '

- T < kAX £
X

Ni=—=
3

- i € k Ay £
3 y y

In the analysis which follows we shall assume that ko, and k= ere

positive; we shall also solve for CX and then obtain 2 from

AtA - 1 =0 ' (4.4)

A+ ZinCk

Substituting (4.3) into the linearised difference scheme (4.1} the

following pair of equations is derived:
_ + 4K | u g o n _ LN + n
{ incA 1KXU} {- K L F(e, - ¢} + 1K (B % 2FU) 2
_2n _ 2n l"l_ n - -
+ r[-K @p + e0(- K @p t Flo, @1)]] 0 (p=1, 2)

and denoting [@?, @;]T by gh , this can be rewritten in the form:



i 1 - 2 -1 - 3 =
1K (8 + 2FU) + 1(K.C, - K UJ(K2 + F)  -1(K.C, - K UIF| 2" = 0

- K2 - ree(K2 +« F) + roeF

- 4(K C + K UY(KZ + F)
X X

A

+ KXU]F 1KX(B -.2FUJ + i[KxCA

|+ reeF - K2 - rEe(kZ + F)

The first of these equations can be used to give the value of Yh >
namely

iK_(g + 2FU) + 4(K_C_ - K UJ(KZ + F) - rk2 - rfe(K?® + F)
X X A X

i(KxCA = KXU]F - rbeF

2 - : 2 2
£k [CA u) + F(CA + U) + Bl+ ilrK /Kx + rPe (Ke + F]/Kx] (4.5)

F(CA - U+ iree/Kx]

Requiring a non-trivial solution for Eh ylelds an equation for CA ’

namely

C‘}\[KZ(K"’- + 2F)] + ZCA[B(KZ + F) + irk2(K2 + F + g0(K2 - 2F1)/K, ]

2
+ [(B + i_z:_]z - U2K2(K2 - 2F) + %’5 (2(BiK, - rk2) (K2 +F) - rOek2(K2 + 2F))]=0

(4.6)
and it is important to note that this is an eguation for CA and not C .
Furthermore, as noted above, ¢ depends on A. (or C) and so whenr # O
we must look at the quartic for A directly without first obtaining an

expression for CX o

We now want to demonstrate L-R stability for the difference scheme,
and derive results for growth rate and stability boundaries for comparison
with the results for the differential equation; again, it is most convenient

to consider the cases
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]
o

(A) r 3 =20

(B) r

1
o

3 B#AGO
(C) r#0; g=20

Before we do this, hoyever, we glve conditions for the roots of
A2 +2bA-1=0 (b et)

to be contained within the circle of radius 1 + KAt , 1.e.

Al < 1 + KAt . This will greatly help the analysis of equation (4.4).

(1) b = bg : IbR| < 0(At)
(11) b = ib; ¢ |by| < 1 + 0(At?)
(111) b= b, + 1by ¢ [A] <1 + Kot 4FF (1 + KAt)2p2 + 2b(1 + KAtIp-1 = O

has all its roots in the unit circle. Miller's criterion gives
(a) when K =10, bp=0 and |b| <1
(b) when K >0, [b (1 + 2KAt) - 21bKAt(1 - 3 Kat)| <

KAL(1 + %-KAt) + 0(AL3)

i.e. |bg - ZibIKAtI < 0(At) .

For flow with these parameters equation (4.6} reduces to

C§K2(K2 + 2F) - U2K2(K2 - 2F) = O

giving

»

1% ijz (4.A.1)

Gy =2 [ﬁ
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(1) L-R Stability

For Lax-Richtmeyer stability we require IAI = 1 + 0(At) . Using
the conditions we derived for the zeros of A2 + 2Ab - 1 we can say

the following:

(a) Whenever K2 > 2F , ck is real from (4.A.1) and X in (4.4)

is 1 + 0(At) only if
|k C.At] < 1 + 0(at?) .
XA

Substituting in here for C, we require

A
0 < sin(k_ax) |u At K2 - 2F) 4 4 ocat2)
T X o AX K + 2F}
and when kxAx = %- as Ax » 0, this condition yields the familiar
CFL criterion
At
U'A—;S'IJ

and the time step is bounded by Ax/U .

(b) Whenever K2 < 2F , tx is purely imaginary and we can conclude

from (4.A.1) that lAI = 1 + 0(At) because

c.at| = k uat [Z= 2)* :
K, C\at] = K Ut [Se—mr| < (2F)% UAt = 0(At)

(ii) growth rates and position of neutral curve

We now wish to find the region in which there is no growth, i.e.
regions in which IAI <1 . This ocours, from the analysis of (4.4). only
when C, eR, i.e. when KZ > 2F . There is growth for the lowest

wave modes given by
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K2 < Kg = 2F . (4.A.2)

Then CA is entirely imaginary, and so A is entirely real and (4.A.1)},

(4.3) imply
k. C._At -k _C_At 213
x I I _ = 2F - K
. 2 %
2F = K 5
= . LI\ )
> K Cp = KU (ZF - Ki] + 0(At2) (4.A.3)

We can also note that (4.5) implies that Yh » the phase shift between
the two layers, is given by

h . K2(C, - U) + F(C, +U)

Yy = 0,/9 (4.A.4)
z F(CA - W

(iii) positioning of spurious modes

For each value of CA we have derived there are two values of A

and hence, since there are two values of CA there are two spurious
modes. Can we be sure that we will nnt be troubled by these spurious
modes growing faster tham the physical modes (i.e. relative instability)?

We show that we can.

When there are growing modes, a little algebra gives the four values

of A to be
Ay~ ek Jc, |at as At > 0
A, = e o gk lc, |at as At + 0
2 x1 X1
Ay = 1 - kI, [at as At >0
-1
Ay =5 = -1 -k |C,[at as At >0

3
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Here A and AB represent the true modes while A and A represent

1 2 4
the computational modes. In fact A1 S A4 and A2 E = AS . Hence
A Im the true part of the growing mode

and the.spurious part of the decaying
mode grow at the same rate: similarly

X A Re the true part of the decaying mode and

A
3
3¢ ) the spurious part of the growing mode

decay at the same rate.

The conclusion is that neither

spurious mode upsets the computation.

For flow with these parameters-the equation for C, . (4.68), reduces to

CiKZ(KZ + 2F) + ZCA(K2 + F) + (B2 - U2K2(k2 - 2F)) = O

[N

=> Cl = - {(Kz il ] B +'[U2KI+(Kl+ - 4F2) + F282]

K2 + 2F) K2 KZ2(K2 + 2F) } SLE

(i) L-R Stability

Following the same procedure as in Section (A) we look at the

following two cases:

(a) CA is real if KM(4F2 - KM) < F282/U2 in which case stability

requires IKXCAAt] <1 + 0(At2) . Now

1
(K2 + F)B + UK2|K" - 4F2|% + Fg
(K2 + 2F)KZ2

K, C,at] = K At [

g
< KXAt [—K-z- + U]

< At LUK, + B/K,]
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Clearly At[UKx + B/Kx] <1+ 0(At2) as At + 0 unless Kx‘+ 0 .or
Kx + o ; however we have

sin kK AX 2
X

=--——-——>...: .
Kx AX Tom Kx.

and kx is bounded below by %; where Lx is the length of the channel;

: X
s0 we can assume that K;l = 0(At) and since Kx < (8x)"! we have

2 ) A
At[UKX + B/Kx] < 1 + 0(At4) if U o <1 .

(b) CA is complex in the small range of K values given by
K*(4F2 - k%) 2 ¥282/02

Thus for all Ax K 4is uniformly bounded both above and below and it is

easy to show that v

Re(K,Cyat) = 1 + 0(at2) , Im(K C\At) < 0(At) as At >0

(i1) growth rates and position of neutral curve

As in Case (A) we now wish to determine the region in which there

are no growing modes. The criterion is again CAG R for ]Al <1

i.e. there is growth for the lowest wave number modes given by
K4(4F2 - K%) > F2p2/u2 (4.B.2)

Now, however, CA has both a real and an imaginary part and (4.B.1) and

(4.3) imply
o 1Kt __+ik CAt _

- 2inCAAt

2 2klbrar? _ w4 - a2e273
ZinAt{[K + F ] 8 . [U2K4(4F K4¥) - B2F23} }

K2+ 2F| k2 * K2(K2 + Zr)
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Comparing real and imaginary parts implies:

= 5 1
cos(kaRAt][ekaIAt ~a XFTAYIL oK ARTUZKMER2 - K¥) - B2F21%/(K2 (K2 + 2F))
= 2K At Re(C,)
' or_kgCTAt | -kyCpAt- K2 +F ) 8
and Sin(kaRAt][B +e _-_|—. 2KxAt W K.Z

= - 2K At Im(C,) .
X A

These give

C; = T . [UXKZ(4F2 - KY) - F28278/(K2(K2 + 2F)) (4.B.3)
_wherg T = sec{sin‘l(KxAt Re[CA)} + 0(At2) .
Here I =1+ 0(At) , and in practice |1 - T| <1072 .

Finally we may observe that (4.5) implies that the phase multiplier
yh is given by

K2(C. - U) + F(C, + U) + B
h A A
AL FE D) (4.B.4)

(iii) positioning of spurious modes

Again there are only 2 true modes and there are 2 spurious modes.
Proceeding in exactly the same way as before we can conclude that the

four values for A are :

A~ 1 [KCy et + a]k C ot as At + 0

1
A, = 7: ~- 1+ IKxCAIIAt + iIKxCARIAt as At + O
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Ay~ 1 - [K T, oAt + a]k Cofat as At > 0
1 :
A4 = X; ~ -1 - leCAIIAt + lleCAR|At as At >0

where C, = CAR + iC

A AL °

A brief reference to the sketch of the positions of Aﬁ, A2’ AS’ 14

will enable us to draw the same conclusions as were made before in Case (A),

1 although now the phase speed along
1. the channel will (to O0(At)) be the
'r' \‘\ same for all waves.
® /X o' X
Aq i A3 Ay i A N
-1 +1

(C) r#0; g=0

This is the hardest of the three cases we wish to study, the difficulty
largely arising out of the "8" term used in the stability of the dissi-
pative term. Equation (4.6) gives the following relationship for CA

and € .

ci(Kz + 2F) + 2C

. e
. E%E (K2 + F) + ;r e(K2 + 2F)

X X

2¢2
+ [- LB - B2k2 - 2F) —-E%E (2r(k2 + F) + reg(K? + 2FJJ] =0.
X

As previously noted both CA and € depend on A and hence on C ,

although e << 1 and tends to zero as At becomes small. It is therefore
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best to use the definitions of CA and e in (4.3) to rewrite this as

a quartic in A , viz:
AM(1 + reAat)2 + 4a3(1 + reAt)rAt [(E ;F] - e]

+ (1 - reAt)2 - 4Xx(1 - reAt)rAt [( S ZF] - e]

. 2 _ ’
+ A2{- 201 - r?e2at?) + 4KZu? [52—-—2':-] At2

Ke + 2F
(1 - 8)r? 2 2 _ _ N
+ 4 Z v 2F At (K=(1 ) 2F8)} =10

which factorises to

{A2(1 + roat) - (1 - reAt)}{A2(1 + roAt) + 4rata [[K = F-—] - 91

. ] 2 _
- (1 - roAt)} + 4At2)2 {K§u2 (52__2_':1

KZ % 2F
- 8)r2 :
¢ G2 w2 - @) - zFe)} = 0. (4.C.1)

We write this as

n
o

2
pZEAJ qZ(A] + AX

where A depends on U, At, kx’ Ax, Ay, ky, F, r, 6. To show L-R
stability we must show that the roots of this equation can be bounded by
1 + MAt uniformly as At -~ 0 with %% in some refinement set.
Clearly, the zeros of pZ(A] qz(ll must be situated somewhere near
the zeros of pz(A] q2[A] + AM2  for the sums and products of the roots

for the two functions are the same. It is therefore prudent to examine

pz(l) q,(1)  first before the AA2  term is added.

The zeros of pztk) qz[l] are found easily: those of. pZ(A) are

sltuated at

 fi-r o) :
'{1+1‘Atj
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and are therefore real and situated within the unit disc; but those of

qz[ll ~are more complicated, namely

2

_ K2 + Fo_ 2,09 K2 + F _ _ a2 i
7\1_ = [~ 2rAt (—K-z—_'_—z—lg e] + (1 + répt2(4 "—————Kz T oF 0 841)°1/(1 + ?"B‘At).
K2+ F o g Wk, ks Bx, A
We can deduce that because K2+ 2F <. x’ Ryl X, Ay,

[A,] <1 + M (r, F, 6JAt, whers M, are independent of Ax, Ay, Ko Ky

When 6 2 1, we can go further and say that

2rit

- 2 = 2
A, =1 ¢ e (K208 - 1)+ Fo) + 0(at2) > 1
= - _2rAt _ (k2(q - 2 =
and Aos oYy e (K€(p .- 1) + FB) + 0(At2) > - 1

The effect of adding AX2 to p,(}) a,(3)  to get p,(A) q,(2)
+ AA2 = 0 1is now clear (see Fig., 8): the rdots ry and r, move closer
together when A > 0 as do Ty and T, ¢ the converse is true when

A < 0. There is also some critical value of A, A0 say, (AO > 0)
above which the zeros of pszl qz[AJ + AA2  all lie or within the unit
disc. If A < Ag» the root at r, {and possibly r4] will be outside

the unit circle, and to show L-R stability we must show that ry < 1 + MAt

uniformly. We need not consider r, since |r1l >|r4l.

Referring to the enlargement of p.g, + AA2 near A = + 1 (Fig. g},
272 '

we can say that
£ < n/f'(1)
where

FO) = p, ) g,(0) + AX2, Y
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A + AAZ
P, (Mg, (A + AX
(A>0)

{
[}
{
[}

PZ(A]qZ(A)

Fig. 8 :

Fig. 9 :

Sketch of PZ[A]qZ(A] showing the positioning of the four

roots r,. .
1 .

) P (Mg, ()
P, (Mg, (A) + Ag) 2(Mdy

e
Uy
~-

<

Snlargement of Fig., 8 in region A = 1°
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A, - A
i'e- E S D .

(g9 |y + 28

Then

A. - A
r, =1 +E<1+ 0 .

1 -
(p,a,) |A=1 + 2A

Using the fact that p2(1)q2(1) + AD = 0 gives

_ -4r2At2p {

; (2 - 8)KZ + 2(1 - 8)F}
2F + K

Now with

4rat (1 + reAtJ'{

(Mg, ()], = (3 - 8)KZ + (3 + 0)F}

“2F + K2
and
- k2 2 _ _
A = aat2[-kau2 L2E 2K (g gyp2 (KEUT - 0) - 2F6)
(2F + K2) 2F + K2

we deduce that

r1 <1 + E/G

AL - A

whers E 0

AAt2 (K2UZ(2F - K2) - r?K?)/(2F + K2)

and

[ep)
t

= (Pyly)yaq * 2R
_ __arAt

[(3 - 8)K2 + (3 + 8)F}
(2F + K2)

— N BAt2K2U2 _Zf_'_Ki
‘ 2F + K2

. 4At2p2 (

; K2(82 - 8 +2) + F(58 - 1)6)
2F + K '
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The condition Ag

this being 2F > K2 . We know, therefore, that as At becomes small,

> A requires that E > 0O , a necessary condition for

kxﬁx and kyAy also become small, Kx and ky being bounded. Hence

LY

6= —T8t_ [(3 - 61K2 + (3 + 8)F} + 0(At2)
2F + K2
an r, <1 + E/G

{KiUZ(ZF - K2) - r2k2} At
=1 + + 0(At2)
r{(3 - 8)KZ + (3 + 8)F}

= 1 + 0(At)

The only thing left to show before the demonstration of L -R
stability is complete is that the high frequency modes which arise when
kxﬁx is fixed as At » 0 are stabfe. For this we need all the roots of

(4.C.1) to be bounded by 1 in modulus in the 1imit At - 0 ; hence
S oAk 27 At . R0 &
(A 111 + 4 {UAx sin KxAx} 0
must have roots Ai such that |Ai| <1 . This is only possible when
At
U-A-;S1

(ii) growth rates and position of neutral curve

We now wish to specify regions for which |A| <1 . The analysis
of the position of the roots of (4.C.1) shows that when A > AD (see
pravious section) we can say that IX] £ 1, with one root actually at +1

when A = AU . Hence setting A = A0 we find that

K2UZ(2F - k2) = r2k2 ,

and so thore is no growth for the lowest wave number modes given by
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Ky 2
-2 (2F - K2) > — . (4.C.2)
K2 u2

To deduce an approximation for CA we note that € is small and

that, in general, r < 1 : hence ignoring terms involving re we find’

that CA almost satisfies

Ci[Kz + 2F) + 2Ck[ir(K2 + FI/K) - (r2K2/K§ + U2(K2 - 2F)) = O

i 2 1
-, =-3 (5——1—5—1 + 1{U2(4F2 - K4) + r2F2/K2}E
2
X K5 v 2h /(K2 + 2F)

Hence when there are growing modes C is entirely imaginary and

A
C; = Im(C)) + 0(At2)
2 1
- _.%L Fﬁ__i_f_] + {U2(4F2 - kM) + rze/Ki}2 + 0(At2)
x (K% + 2F | /// (K2 + 2F)
(4.C.3)

At this point we may also observe that (4.5) gives the following

. h
expressinn for vy

h  [K2(C, - U) + F(C, + U)] + ilrk2/K_ + rbe(K?+ FI/K 1
Y A A X X

F(C, - U) + iFrée/K
o X (4.C.4)

(iii) positioning of the spurious modesd

A The fastest growing mode is the

true mode; it is possible that T,

(a computational mode) will also

grow while r, and r both decay.
3 r, r, 2 3

;

1 ) The system is, therefore, relatively
stable and no problems with growing

L spurious modes will be encountered.
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5. COMPARISON BETWEEN THE LINEAR BEHAVIOUR OF THE DIFFERENTIAL
AND DIFFERENCE SYSTEMS

-The main aim of the analysis of the preceding two sections

has been to derive complementary results for Ehe behaviour of the
differential equation and the difference scheme respectively. The
motivation for this was two fold: first to determine how well the
differential equation is modelled by the difference scheme for any
given resolution (Ax, Ay, At) and secondly to provide a yardstick

by which the operation of the computer program could be shown to be
satisfactory. We shall consider both of these aspects in this section,

beginning with a comparison between the two theories for the cases

(A), (B) and (C) previously considered.

There are three main results to consider here, namely the

position of the marginal curve, the growth rate and the phase shift:

Differential equation Difference scheme
Growth if k2<k§ = 2F Growth if K2<Kg = 2F
(3.A.2) (4.A.2)
! ' 1
o =y [ZE= K2 o - KU f2r - K2)°
I 2F + K2 I 2F. + KZ
(3.A.3) X (4.A.3)
kK2 + F _ 2FU h K2 +F 2FU
Y = + Y = +
F Flc - U) F F(C)\ - U)
(3.A.4) (4.A.4)

It is obvious that as At -+ 0 for a fixed wave mode, the
difference scheme approximates asymptotically the differential equation.
The following values of kC & KC demonstrate the closeness of the

approximation for various wave modes and mesh refinements.
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33 x 33 points 65 x 33 points 129 x 129 points
Wave K
number c K K K
C c c
1 3.2038 3.2024 3.2033 3.2037
2 3.3836 3.3794 3.3803 3.3833
3 3.6637 3.6487 3.6495 3.6628
4 4.0232 3.9825 3.9832 4,0206
6 4.8073 4.7439 4.7445 4.8968

The difference scheme, theretfore, always underestimates the positian
of the neutral curve, but for low wave numbers, e.g. £ = 1, 2, 3, a mesh
of 33 x 33 points is adequate and a 65 x 33 mesh is little improvement.

A table giving numerical comparisons of kx c. with Kx C. for a 33 x 33

I I

«3125 = 10 Ay).

mesh is given below (for a 33 x 33 mesh Ax

L =1 L =2 £ =3
" C
I
S C1/0 KLy Sie kL1 I/c
I I I
5 = =7 = = E =
5 .03509 .9960 .03854 ,9992 - .
7 .04931 .9945 .07958 .9794 . 05470 1.0302
8 .05872 . 9940 ,10234 .9764 11158 .9629
g .06574 .9936 .11854 .9749 .14389 .9530
10 07127 .9934 .13105 .9739 16724 .9486

We can see that the numerical growth rate for the first three modes should

be better than a 95% approximation to the true linear growth rate for a

s PR T+ Xa WY Vo R R H an
L YUY N v i uey =N
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number 1. The phase shift being of less importance, we quote just one

typical value of y and Yh for comparison, namely at F = 9 and £ = 1:
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Y .57024 - .821481 => v

h . 56973 - .821831 => v

1
n

(1 + 2 x 10 6)e

(1 - 2 x 10 ®)e
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(-0.9639991)

(-0.9646181)

h

Thus there is virtually no error in the amplitude or phase of vy .

(B) r=0;8%0

We again gather together the main results of the linear theory:

Differential Equation

Difference Scheme

Growth if KkM(4F2 - k*)> F2p2/U2

(3.B.2)
Cp = {KMU2(4F2 - kM) - F2g2}H
k% (k% + 2F)
(3.B.3)
vy = k%(c-U) + B + F(c + U)
Flc-U)
(3.B.4)

Growth if KM(4F2 - K*)> F2p2/U2

(4.B.2)
. 1
Cp = T{KMU2(4F2 - kM) - F2B2}7%;T~1
KZTk% + 2F)
(4.B.3)
2 .
SN2 KECy - U) + B+ FIC, + U)
F[CA - )
(4.B.4)

For F = 10, 8 = 1, U = .2 the modes for which k*e[6.35, 383.85] = I

are unstable whereas on the finite difference mesh only the modes for which

K4eI are unstable. Since for any mesh and wave mode K* < k%, this

means that we are overestimating the size
For F = 7, 8 = 12, U = .2 with wave number 2, C./

on a 33 x 33 mesh. So we are estimating c

of the unstable domain.

I cI = ,978

I to within about 2%:

for smaller values of B we do better since T is nearer 1 in (4.8.3).

For the same parameters y and Yh are found to be

Yy = -.48063 - .98666i => vy = 1.0975e

h

with Yh= -.48124 - .991531 => y = 1.10213e

which means lyI/Ith

= 1.004 and the phase shift = 0.05°.

-2.024081

-2.022631




-t s bt b b

i — — -

e T

e e e et i it

12

10

46.

(c) rt03B=20

This is, perhaps, the most interesting case to look at;

however, to complete a table of comparisons we must make an approximation

to C

I° Im[Ck] since A is now the root of a guartic with non-zero

coefficients for A3 and A. The table is as follows:-

Differential Equation

Difference Scheme

Growth iff ki[ZF—k2]>r2

Growth iff K§[2F—K2]>r2

*z w2 (3.2.2) Rz 0z (4.C.2)
1
cp o cofkZ ¢ F ), (U2(4F2 - kM)« F2r2/k2) Cra - r (2 » F ], (URG4F2 = kW) + p?F2/K27°
K kZ + 2F (k% + 2F) N K K+ 2F (K% + 2F) >
(2.c.3) (4.C.3)
_k*+F _2FU | irk%/k, v k2 4+ F . 2FU irk? /K.
Lf F Fle-0) = Flc-U0)" F F(C,-0) ' F(C,-U)
’ (3.C.4) : {(4.C.4)
The graphs below show the neutral curves for wave numbers 1 to 4 in the
(F, r) plane, the regions of instability for each wave mode being above
its neutral curve.

Wave number of

neutral curve

0.4 0.2 0.1

¥

0.04

Q
o
N
Lo}
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Computation of the roots of the dliartic (4.C.1) gives the following

table comparing kch with kXCI, the ratio CI/CI being given:

Wave number (M::h“““‘hnh_hﬁhj; 0.2 0.1
1 7 - =
8 - =

9 - . 9346

10 . . 9680

M - .9782

2 7 = .8769

8 = .8387

9 = .9483

10 .7098 . 9520

11 ) .8609 . 9540
3 7 = -

8 . = .9103

9 ] .5407 .9155

10 . 8057 .9175

11 . 8498 .9183

(for a 33 x 33 mesh)

This table shows us that away from the marginal curve the
approximation is quite good but near the marginal curve we may well
need to use a finer mesh, especially for the higher wave numbers and

larger values of r. Typical values of F and r give the following values

for Y and Yh : (F = 7’ T =.1‘ U = .2]
y = .67010 - .742271 => y = g ~+836%1 | ‘
yh = .66291 - .748701 => y" = ¢ 846N

which represents a phase shift error of less than 0.5°.
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It is fair to conclude from the results of (A}, (B) and (C) above
that a mesh of 33 x 33 points should yield an approximation to the
differential equation which is not only qualitatively correct, but which,
iﬁ the majority of cases, is also accurate to within 10% and usually to
within 5%. We now give results of a comguter program written to implement

the algorithm, to check both the analysis and the program.

(i) Testing for growth if K2<K§ = 2F when r =g = 0.

A series of five runs was performed for values of F Just less than
and just greater than %Kg, the critical value. A mesh of 33 x 33 points
was used along with wave no. 2. For these parameters %Kg = 5.71031 compared
with %kg = 5,72437. The values of F used were 5.71000 incremented in
steps of 0.0001, the first four being subcritical on the linear theory for
the difference scheme, all five being subcritical on the linear theory
for the differential equations.

The observations were in complete accord with the theory outlined
above for the subcritical computations all exhibited decaying modes whereas
the supercritical run exhibited growth. In fact a sequence of runs
conducted with F € (5.71030, 5.71040) also agreed with theory.

To che;tfthe method with a higher wave mode a series of runs around
%Kg b 7.93008 (with wave number 4)ﬂwas conducted, and gave the expected

results.

(ii) Testing for growth if Ki(ZF - K2)/K2>r2/02,8 = 0.

Now we include the dissipative mechanism of Ekman suction and pumping
on the top and bottom layers and test the program around the point F =
6.6623, r = .1, with wave mode 2 and U = .2, A series of five runs with
F = 6.64 incremented by 0.05 was carried out with the desired result thét
the first three exhibited decay (i.e. were subcritical) and the 1last two

showed exponential growth.
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.(iii) Testing the growth rate for r z 0, B = 0.

This was tested for wave mode 2 and wave mode 3 in the regions
F=7,r=.1and F=9, r = ,2, Two tables showing the growth rates
predicted for the differential equation, the predicted growth rates for the
difference scheme and thase observed in the model are given:

(mesh = 33 x 33 points).

(r = .1) F Kch kXCI Observed
6.9 875 740 728
7.0 1170 1026 1014
7.9 | 1453 1300 12889

Lol 22 F | e K Cy Observed
9.1 1498 921 899
9.2 1773 1178 1156
8.3 2042 1428 1407
9.4 2302 1672 1650

For these computations the starting conditions were such that

so that the model would not have to adjust the relative phases of &,
and Qﬂ before growth would begin. The results seem to be entirely

satisfactory.
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6. NONLINEAR THEORY AND RESULTS

The only way in which non-linear behaviour has been investigated
theoretically is through asymptotic expansion methods. = Pedlosky has
conducted theoretical analyses in several different portions of
parameter space and has derived some interesting results. However,
his theory is restricted to weak non-linearities, 1.e. to regions
near the neutral curve, and to flows with an oversimplified modal
structure.

We first summarise these non-linear resulfs without giving the
details of their derivation. In the expansions the lowest order
solution is the linear solution derived in Section III, with a slowly
varying amplitude A(t}. Then the second order solution is a mean-flow
correction term arising out of the self-interaction of the main wave
{the linear solution), and is therefote independent of x. At the
third order soclution secu.larities willﬂoccur unless A(t) satisfies
a particular non-linear ODE; making'such a reguirement on A(t) renders
a finite amplitude steady solution for the main wave provided r
is sufficiently large. For smaller values of r a vacillation in the
wave amplitude A(t) has been shown to occur.

At the present time we are concerned with the steady-state
equilibration phenomenon since for these solutions quantitative
comparisons between theory and the nuég?ioal model afe altogether
easier than those for the vacillating solutions.

It should be pointed out that the results obtainable from an
analysis of the differential equation are, in principle, obtainable
from a similar analysis of the difference scheme. A treatment of

the difference scheme in the case r # 0, B = 0 rendered the same
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mean-flow correction as that for the differential equations, but with

the coefficients arising from differential operators replaced by their

discrete analogues.

Some non-linear numerical results are now reviewed.

First

51.

of all, for non-linear equilibration, we have drawn up two tables to show

equilibration amplitudes for runs in twc different parts of parameter

space, and for different wave numbers.

meshes.
(r = .1)
(r = .2)

Both were computed on 33 x 33

Calculated from

Observed in

-

analysis model

6.9 176 169

7.0 202 200

7.1 225 226

E Calculated from Observed in
analysis model

9.0 184 142

9.1 203 170

9.2 220 182

9.3 235 211

{(wave mode
2)

(wave mode
3)
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Caution should be exercised in the interpretation of the results for
wave mode 3, for these results may be near the limit for which the weakly
non-linear theory is strictly applicable. Boville (1980) has also
observed that under similar condi?ions a spectral model of the same set
of equations can overestimate the weakly nonlinear amplitude.

The other important feature that the weakly nonlinear theory
gives is the amplitude of the meanflow correction. Theory for the point
(F, r) = (6.0, 0.04) gives the meanflow correction.

69 COS my - 4.8 COS 37y + higher frequency terms
whereas in the numerical model it is

70 COS my - 4.2 COS 3wy + higher frequency terms.

An example of a nonlinear equilibration in which the GHOST
(the Graphical Output System) suite of subroutines (implemented on a
COC 7600) is used to produce computer plotted graphs is presented

below in Fig. 10.
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7.  CONCLUSION

The verification of the algorithm and the program has been
the motivation of this report. We have sought to present a comparison
of the linear behaviour of the differential equations with that of the
algorithm for various different parameter regimes, and to demonstrate
the correct operation of the computer program. This has been done for
the cases when both r and B are zero, and when either r or.B is non-
zero, by showing that the linearised algorithm accurately approximates
the linearised differential system with the coefficients arising from
differential operators replaced by those arising from the corresponding
discrete operators.

In particular, we are able to show that by using leapfrog time-
differencing an algorithm is produced which approximates well the regions
of growing mocdes and decaying modes.

We have also clearly demonstrated that linear growth rates have
been well reproduced in the algorithm; such a feature is important in
the applications planned for the model (see below). The last useful
result from the linear analysis is that the phase shift between modes
in the two layers is well approximated by the algorithm. Indeed, in many
subsequent computations we have observed that 1Yh| = 1 throughout which
indeed increases confidence in the model.

One feature of the algorithm which should be noted is that leapfrog
differencing ensures an absence ofadissipation for the linear problem
and that the Arakawa nonlinear formulation ensures conservation of
energy and enstrophy within the accuracy of the time-stepping.

When the energetics in the system are worked through, it is clear that
the dissipative Ekman terms act as the sources and sinks of energy,
and experiment has shown that the level of dissipation greatly affects

the tvbe of finite amplitude solution derived. It is therefore important
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to ensure that no additional sources or sinks are created, thereby
upsetting the energy balance within the model.

Numerical experiments with the model both at small (i.e. linear
theory level) and at finite amplitude appear to indicate the correct
and satisfactory operation of the program. The stability/instability
criterion of linear theory was found to be highly accurate and any
doubt concerning growth rates can be dispelled by observing that
as the mainwave grows, energy passes to higher frequency modes, by
self-interaction and interaction with the mean-flow correction, thereby
slightly reducing the growth rate. For the finite amplitude results,
although these are rather limited, agreement seems to be adequate
in view of the weaknesses outlined in the nonlinecar theory.

Now that confidence in the correct operation of the algorithm
and model has been established, a series of experiments can begin with
the intention of understanding more'?ully the finite amplifude dynamics
of baroclinic waves. Particular emphésis will be made on using the model

in strongly nonlinear regions of parameter space where no analytic

theory can be developed, and where regular vacillations should be observed.

Dther application areas inclpde the addition of more physics
in the model. The insertion of Ekman layers at the interface or indeed
the effects of surface tension at the interface seem to be the two
most important aspects of the physics which are currently missing.
When surveying possible uses for the model it is important to include
aspects for which a finite difference model is particularly well suited.
The most obvious area in which the finite difference model can operate
where a spectral model, for example, cannot, is for flow over a
topography with sharp corners.

Our intention will be to increase our understanding in the areas
outlined above while paying particular attention to effects of mesh

resolution and to the influence on wave interactions of using various
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orders of nonlinear differencing.
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APPENDIX 1 : THE EKMAN LAYERS

If a fluid 1s in geostrophic balance, then since up and v,
are z independent, boundary layers must exist at the solid horizontal
boundaries whenever they have a velocity different from that in the
mean flow. In the two layer system we -have, to first order, geostrophic
balance, and hence the presence. of Ekman layers at the bottom and top
of the channel on the boundaries z = 0 and 1.

When we look back to the non-dimensional Navier-Stokes equations
we find that near z = 0 say, for the viscous terms to balance the
Coriolis forces we need A 2

E u,, = 0 (1)

W

Since u and v are 0 (1) and E << 1 this means ,
Lﬁii# u

that we require a vertical scale of variaticn

1

A=E*=1(zg]5 S N N

D \fo

This layer, whose width is independent of the relative motion of

the fluid, is called an Ekman boundary layer and has dimensional

W=

thickness of (2v/fo)?.
Near z = 0, within the Ekman layer, we represent the velocity

fields in the following way: -

(0)
L|=UB (XJ y:n: €, E)=UB [X.’ y:'ﬂ]*‘
(0)
v = VB (X: \'Z) n’ €, E) = VB (X. o 'QJ +
1
W= Wy (x, ¥» n, €, E) = 0 + Ezwé1) (x, ¥ n) +

1
where n = z/E? is the natural co-ordinate scaling in the boundary
layer, and the subscript B denotes a boundary layer quantity.

Substituting these into the non-dimensional Navier-Stokes equations

.yields:
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(0) > (0)
_.(0) -BPB ‘I ) Ug
B Ee -
on
” (0) 2. (0)
ug) = e vy P
o HEEQFDJ
9z
- (0)
with EEE(U) . BVB- _ fSWB(1)
K% ay 5;—

Solving these equations with the conditions:

0@ 2o

and vg(0) _ g

on n = 0, gives the result that
, o1 1 :
WB(1] = - 4 ;iO) {1 -v2 exp (-2z/E%) sin (2/E? +w/4)},

where the subscript I denotes a quantity of the interior flow. Now

applying matching conditions at the edge of the boundary layer gives

E

: wé1] (x, y, «)

wI(x, vy, 0)

- 1t Cio]

similarly for the surface z = 1 we find

. 1
. o2 [D)
WI (X. \'2 1] = 2E CI

Applying these conclusions to our particular problem we find
(1) (0)

- 1
that We (X, Y, 0) = 2w, (x, y, 0) = } Eg
€ e 1
g 1
and w:1][x. vy, 1) =1 wztx, y, 1) = - 4 EEC£0]
- T T



APPENDIX 2 : THE CONSISTENCY CONDITIONS

There is a consistency condition arising from the Poisson equation
derived in the numerical treatment of the two-layer system, and another
one, similar to that for the Poisson equation, arising from the Helmholtz

equation. Suppose we want to solve the equations in Q@ = [0, Lx] x [0,1].

Let ¢S = ¢1 + ¢2, qg = 94 * gy- Then
] v2¢, = qu = Q. say.
Q f
» N
But fv2¢s = [[- 99 dx1¥ ! » because of the
o o 9Jy y =0

periodicity condition ¢S(XJ = ¢5 (x + Lx]. The boundary conditions

imposed on ¢S are
Lx
398 _ g, 3_| 2¢ - 2 0.
N 0, 5T ] Bys dx 0, for vy 0, 1
Lx ¢
or s dx = IO' I1 (constant in time) for y = 0, 1
| o 9dy .
Thus we must have Q = 11 = IO' and sb Q is constant in time. Now
a9 . 1% = - r v2¢_ - B 8g - |5, ~ (3.
dt "at—' S r 4 2
i . | Q Q % a Q

i where J1 = J(d),]: Cl,ll; J2 = J[¢2 » qz)-

1 .
! x=L

| Therefore g% =-r Q=8 [[0 ¢de] =0 [Jq IJz _
; Q Q

But

0 3y x=0 0 ER
R T B B (SO VR
LL¥9H1°x=0 “y=0 JU‘ 5 1 T8 Cy=0
X
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Similarly for Iﬁz.
Q
Therefore
-rQ = d@ = 0 since Q constant in time
t
Lx 90 =1
and so [[ 5 dx J§=D = 0 is a necessary consistency condition.
0 oy :

In a similar manner denoting ¢1 # ¢2 by ¢D we find

L _
[f . Efg dx ]z;a =0
0 oy

arises from the Helmholtz problem. Combining these two together we

show that
s, - |
v, g, =10 vt
{ Q
2 *r
and fv v, = [;2 =0 vt
Q f

L -
[[ X ¥y dx]y;a = 0 vt
0 oy y
Ly du, | qv=1
and [ * 72 dx] g = 0 vt



APPENDIX 3 : THE FACR ALGORITHM USED IN POT 9

The problem which we are concerned with is highly amenable
to treatment by a Rapid Elliptic Solver using Fourier Analysis and Cyclic
Reduction. The procedure employed in the program POT 1 is, in fact,
the FACR(2) algorithm with ¢ = 1. The parameter 2 indicates the number
of levels of cyclic reduction that are performed before Fourier analysis
takes place. As g varies from 0 to logzn (where n is the number of
intervals in the grid) we have a range of algorithms varying from a basic
method involving no cyclic reduction to the Buneman algorithm involving
no Fourier analysis. Of particular importance is the existence of an
optimum value of g = 10g2 [logzn]. which leads to an algorithm with a
minimum operation count proportional to n210g2 (logzn].

Basic Method

We want to solve (V2 - A2) ¢ = s
on a rectangular region with Dirichlet conditions along one boundary
and periodic conditions along the other. For a square mesh, the usual

five point difference formula for V2 yields

$y-4 * Ayt 4y 7 5
where jﬁ is the potential along the line y = jh, h being the mesh
size and‘
e | —a-a2p2 ]
A 4-X%h + 1 0
+1
\ 1
% N 3a ]

We then perform one cyclic reduction, for FACR(1), eliminating all the
odd rows, and retaining only the even ones. This gives

G _ 2 - _
Byt @I - A%) &5+ 85,5 =S4y T ASy * Sy

where j is even.

A5



AB

We can then perform Fourier analysis using the discrete transforms to

obtain®

k Ak Ak ék
J

_2+aR¢j+¢j+2= j ‘FOI‘k=1, sy n—1

where ak = 2 - (4 + A2h2 - 2 cos bﬁ]z'
n

These systems are then solved by cyclic reduction or Gauss

A
elimination for each ¢§. Fourier synthesis then returns values of

Qﬂ on the even lines and we know that

Aij-1 = §j-1 —Qd_z -Qj (3 even)
Cyclic reduction or Gaussian Elimination here provides vaiies for

ij on every line, and the problem is solved. Hockney (1970) has given
a formula for the number of operations in the FACR/L) algorithm as a

function of the number of levels of reduction and assuming that scalar

cyclic reduction i$ used for the solution of the tridiaggnal systems,

T(g) = n2[4.5¢ + 3 + (5 1og2n N 4)2_2]
(FACR)

Differentiation gives 2*, the optimum choice of &, as 1og2(10g2n] with
T* = 4.5 nzlogz(logznl.
FACR

Hence for computation on a 32 x 32 grid, where n = 25, 2% =1

and T* = 419 operations per mesh point. This is eguivalent to a large

number of iterations using SOR.



L e e e

References

1.

10.

11.

12.

13.

14.

15.

ARAKAWA, A. (1866), Computational design for long-term integrations
of the eguations of fluid motions. Part 1 : 2-D flows.
J. Comp. Phys.; 1, 118.

BOVILLE, B.A. (1980), Amplitude vacillation on an f-plane.

J. Atmos. Sci., 37, 1413.

DRAZIN, P.G. (1970), Non-linear baroclinic instability of a continuous
zonal flow. @Q.J. Royal Met. Soc., 86, 667.

GILL, A.E. GREEN, J.S.A. and SIMMONS, A.J. (1974), Energy partition
in the large scale ocean circulation and the production of
mid-ocean eddies. Deep Sea Res., 21, 489.

HART, J.E. (1972), A laboratory study of baroclinic instability.
Geophys. Fluid Dyn., 3,181.

HIDE, R. (1969), Some laboratory experiments on free thermal convection

in a rotating rluid subject to a horizontal temperature gradient

and their relation to the theory of the global atmospheric
circulation.

In the Global Circulation of the Atmosphere ed Corby, Royal
Met. Soc., pp 186-221. '

HIDE, R. and MASON, P.G. (1975), Sloping convection in a rotating
fluid. Adv. in Phys., 24, 47.

HOCKNEY, R.W. (1870}, The potentidl calculation and some applications.
Methods in Comp. Phys., 8, 135.

HOCKNEY, R.W. (1978}, Rapid Elliptic Solvers. Report, Dept. Computer
Science, Reading.

HOSKINS, B.J. and SIMMONS, A.J. (1976), Bapoclinic instability on the
sphere: normal modes of the primitive and quasigeostrophic
equations. J. Atmos. Sci., 33, 1454.-:

HOSKINS, B.J. and SIMMONS, A.J. (1977), Baroclinic instability on the
sphere: solutions with a more realistic tropopause.

J. Atmos, Sci., 34, 581.

LORENZ, E.N. (1967), The nature and theory of the general circulation
of the atmopshere. W.M.O0. publication no. 218.

PEDLOSKY, J. (1970), Finite amplitude baroclinic waves. J. Atmos.
Sci., 27, 15.

PEDLOSKY, J. (1871), Finite amplitude baroclinic waves with small
dissipation. J. Atmos. Sci., 28, 587.

PEDLOSKY, J. (1872), Limit cycles and unstable baroclinic waves.

J. Atmos. Sci., <49, o9a.



16. PHILLIPS, N.A. (19856), The general circulation of the atmosphere:
a numerical experiment. 0.J. Royal Met. Soc., 82, 123.
17. ROACHE, P.J. (1972), Computational Fluid Dynamics. Hermosa Publications.
18, SMITH, R.K. and REILLY, J.M. (1977), On a theory of amplitude
vacillation in baroclinic waves : some numerical solutions.

J. Atmos. Sci., 34, 12586.



