UNIVERSITY OF READING

An Analysis of Properties of the Shock Tip in

Two-Dimensional Steady Compressible Flow

Peter C. Samuels

Numerical Analysis Report 7/88

University of Reading
Department of Mathematics
P O Box 220
Reading RG6 2AX

MATHEMATICS DEPARTMENT




An Analysis of Properties of the Shock Tip in

Two-Dimensional Steady Compressible Flow

Peter C. Samuels

Numerical Analysis Report 7/88

The work reported here forms part of the research programme of the
Institute for Computational Fluid Dynamics at Oxford and Reading and was
carried out with the support of RAE Farnborough under Contract No.
DER/1/9/4/2035/065//XR/AERO.



Contents
Preface
Abstract
1. Derivation of the Fluid Motion Equations in

differential divergence form

1.0 Background
1.1 Conservation of mass
1.2 Conservation of momentum
1.3 Conservation of energy
2. Shock Slope Conditions for the Viscous, Conductive

Limit of the Fluid Equations for the Two-Dimensional

Steady System

2.0

2.1

2.2

2.3

Overview

Derivation of the Two-Dimensional Steady System

in Divergence Form

Statement of the Shock Slope Theorem
for a Single Divergence Equation.

Application of the Shock Slope Theorem to the

Two-Dimensional Steady System

31 Further Results from the Shock Slope Conditions.

3.1 The Two-Dimensional Steady Rankine-Hugoniot

Jump Conditions

3.2 The Flow Speed near the Shock Tip.
4. Results concerning Shock Tip Curvature

4.0 Overview

4.1 Preliminary Results

4.2 First Case: Zero Shock Tip Curvature

4.3 Second Case: Finite Shock Tip Curvature
4.3.1 First Model
4.3.2 Second Model

4.4 Third Case: Infinite Shock Tip Curvature

4.5 Summary and Conclusions

page no.

12

12

12

14

15

17

17

18

21

21

22

26
27
31
33

35



5. Theory and Examples of Flux Jump Order and Tip Curvature

using Characteristics
5.0 Overview
5.1 General Theory
5.2 First Model: Single Straight Characteristic
Base Curve with Quadratic Data
5.3 Second Model: Single Straight Characteristic
Base Curve with Logarithmic Data
5.4 Third Model: Two Straight Characteristic
Base Curves with Linear Data
5.5 Summary
6. Conclusion
7. References

Figures

37

37

37

40

46

49

54

56

57



Preface

After many hours hard toil (especially by Mrs. Brigitte Calderon who
kindly typed out my appalling notes) I here present my second numerical
analysis report on the analytic behaviour of the weak end of shock waves.

I would like to express thanks to Dr. Mike Baines for supervising me
and also to Dr. Peter Sweby, Prof. John Hunt and Prof. Bill Morton for the

useful contribution that each of them provided.



Abstract

In my first report (see [1]), I analysed the qualitative structure of
weak shock waves in one dimension. This second report is an attempt to
tackle the problem of the "weak end" from several other angles.

The first two chapters of this report give the groundwork for the
proof of the generalised shock slope conditions (similar to the Rankine
Hugoniot Jump Conditions but in space not in space and time), the proof of
which will appear in a later report. The fluid motion equations are
derived in divergence form in the two-dimensional steady case. A sketch of
the proof and its constructions is then given.

Chapter three shows how this result is consistent with the stationary
Rankine-Hugoniot Jump Conditions, but has a better theoretical basis and
expresses the information in a way more appropriate to this context. It
also deals with the relationship between the shock and the sonic line.

On a different track, in the fourth chapter the shock tip curvature is
categorised and modelled using a simple asymptotic result concerning the
shock slope derivable from the Steady Jump Conditions.

Finally, in chapter five, three example models for a single
conservation law with different geometry and analytical data type are
analysed, looking at the asymptotic shock tip curvature and flux jump
strength. It is hoped that these models will prove to be a suitable
foundation for analytical models of greater complexity which have a more
meaningful physical interpretation (e.g. multiple conservations laws, more

realistic jacobian matrices and a domain with an inner boundary).
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1. Derivation of the Fluid Motion Equations in Differential Divergence

Form.

1.0 Background

No originality is claimed for this chapter, but no one reference found
gives the equations in the same form. For a similar account, see [2].

The assumption is made that a suitably small volume of fluid 4&V(t)
(with boundary 6&S(t) moving can be regarded as passing through successive
states of thermodynamic equilibrium (see fig. 1). Therefore we can use
thermodynamic variables without restriction provided suitably small fluid
volumes are considered. The standard three conservation laws are now

derived.

1.1 Conservation of Mass

The mass of 6V 1is given by

ém = [ pdV where p 1is the fluid density.
ovV(t)
Conservation of mass = a% ém = O
= TS pdV = 0
5V(t)
dp
= —a?dV+ pa.dS = O
ovV(t) oS(t)

where q 1is the fluid velocity.

= [ Eg% + v.(pg)]dV = O by the divergence theorem.

ovV(t)



Hence by taking o6V(t) -0 :

g% +v.(pa) = O at all points in the flow, at all times,
or p,, + (pqi),i = 0 in compact notation. (1.1)
1.2 Conservation of Momentum

For the sake of brevity, the explicit time dependence of &V and &S
is dropped henceforth.

The conservation law here is:
force on 6V = rate of change of momentum of &V,
where, force on 6V = [ T dS, where T 1is the traction.

6S
Cauchy’s relation gives T = o n in the absence of a couple, where

o 1is the stress tensor and n is the surface normal.

Therefore
force on 6V = [ g.ndS = F say,
6S
S0
F. = [ o,. n.dS
i ij
8S
= [O’.. dv
133
'
Momentum of &6V = [ pg dV = 1 say.
ov
Rate of change of momentum = 3% [ pq dV
oV

= [ (pa), v + I’ (pa) a.n ds
8V v

= 1



therefore
I, = [ (pa;). dv + [ Pa;q Ny ds
&Y 58
= [ (pa;), aV + [ (pqiqj),j dv
Y '
But, by the conservation law, ii = Fi'
Hence [ [(pqi),t + (pqiqj),j] dv = [ 553 dv
ov ov

So, again in the limit 6V - 0 we get

(pay). ¢ + (Paga; —0;35)y = O (1.2)

Now, by elasticity theory,

1
= - P5 .+ 2u(eij - 3% g 854) (1.3)

o..
ij 1]

where

= 3a, . *a ) (1.4)

is the rate of strain tensor, and P 1is the pressure.

1.3 Conservation of Energy

The conservation law for energy is:
rate of change of total energy = energy gained by surface tractions

+ energy gained by heat conduction.

Total energy = [ p(U + %qz) dv where U 1is the internal energy/unit
5V mass.
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let E = U+ %qz = total energy/unit mass.
Then total energy = [ pEAV.
oV
But, energy gained by surface tractions = I.q dS
68
= o‘ljnjqidS
6S
= (Uijqi)'j dv,
oV
and energy gained by heat conduction = kvT.n dS
5S
= v.(kvT) 4V
ov
= (K.T,i),i dv ,
6V
therefore
) 'pEdV= F(a q.). ., + (xT,.) dv
dt [ ijHif’j i ’i]
5V ov
= FpEdV: ’(pE) dv + pE q.n.dS
dt 't il
ov 6V &S
& [(PE)., + (pEq,). ;] &v.
oV
Hence

E), + (pEq.- o, .q.- kT,.),.] dv
[ [(p ). *+ (PBa;- oy 4q 3 J]
5V

1l
o

So, again in the limit &6V - O we obtain:
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(pE),t + (quj— oijqi_ kT'j)'j = 0 (1.5)
For an ideal gas U — and T = =
' (v-1)p - PR
Therefore
_ P 1 o2
pE = -1) + 5pq”. (1.6)
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2. Shock Slope Conditions for the Viscous, Conductive Limit of the

Fluid Equations for the Two-Dimensional Steady System

2.0 OQOverview

‘Initially, the fluid equations from §1 need to be reduced to those for
the two-dimensional steady system. It is then shown that these equations
can be written in a simple divergence form with the fluxes each consisting
of a viscous, inviscid and thermal component.

The shock slope theorem is then assumed and its relevant applications

to the full two-dimensional steady system are derived.

2.1 Derivation of the Two-Dimensional Steady Conservation Laws

For 2D flow, let gq = (u,v) x = (x,y). As the flow is steady, we

also have /9t = 0. So, (1.1) =

(pu).  + (pV).y = 0. (2.1)

2 —
(pu® - Uxx)'x + (puv ny)’y = 0
(1.2) =
-_— 5] + 2_ ’ = O
(pav' = @iy, & (V=2 )
1
where o = p+ 2u[u,x = §{u,x + V.y)] .
Iy T Gyx T Byt V)

Q
I

7 -p+ 2u[v.y - %{u,x + v,y)] from (1.3) and (1.4).
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Hence we obtain:

win

I3 + pu® - u[2u.x— V,y]].x + [puv - p.[u,y + v,x]].y =

win

-puv - u[u,y+ v,x]]| + [p + pv2 = u[zv,y- u,x]]’ =
[ e y

(1.5) = [pEu A Oe o = K,T,x],

X
= [pu(p + pE) - %uv[2u,x— V’y] - uv[u,y + v,x] - KT,X]

+ [pv(p + pE) - uu[u,y + v,x] . %uv[2v,y— u,x] - KT,y]

+ [pEv N axyu = Uyyv - K.T,y]

"X

y

p

(2.2)

(2.3)

Dropping the comma notation for derivatives, (2.1), (2.2) and (2.3) can now

be combined in the form:

F + G E g
X 7y
where
[ pu 1 f 0 ] [ O
P+pu? %[2ux - vy] 0
F = - K - K
puv uy + vx 0
u(p+pE) %u[2ux - vy] + v[uy + vx] T
- _— . o . ‘o
puv uy + Ve 0o
and G = - u 2 - K
P+pv?2 5[2Vy = ux] 0
2
+pE + + = = T
Rl O R R I

(2.4)

(2.5)

(2.6)
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2.2. Statement of the Shock Slope Theorem

Define the nth system, En’ by :
a) A fixed finite domain A C R?

b) A vector @ obeying
V. = 0 V x €A,
“n

and having the same boundary conditions on J8A for all n.

c) A general domain Dn C A

d) A general viscous shock centre portion Fn, in Dn' see fig. 2.

e) The set of functions C%(Dn), which are zero on 6Dn and C' in
Dn'

f) The jump function [°]n.

Suppose, as n = ®, En tends uniformly to the viscous system 3 , in
some sense. So, for consistency, assume Fn becomes a portion of inviscid
shock and [°]n tends uniformly to the jump function [-].

Suppose also that general curves Tn and functions ¢n in Cé(Dn)
can be identified as n changes.

The shock slope theorem then states:
3([°]n) such that V I}) under certain constrictions, ¥ ¢n € Cé(Dn)

identified in a certain way (giving uniform continuity to the inviscid

system),

[@é ] .dr = O. (2.7)
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2.3. Application of the Shock Slope Theorem to the 2D Steady System

Putting n = ® in (2.7) we obtain

[ [0y9,]-dx = O.
3

[ 4]

But ¢, is C' on r,. Thus

{ $olWp]-dr = O.
r

[v4]

Then by letting ¢, be localised to an arbitrary point on I, we obtain
vEeur, , [w].b = 0, (2.8)

where v is the normal at § and U T is the union of shock portions
satisfying the constraint of the theorem.
Now, if we let @ = (an), G(n)) for some i, where an), ng)
~n i i i i
are the same fluxes as before, except that u, k, have been replaced by
Hoe Ko then, if the sequences of By and k ~are chosen suitably so that

they obey the uniformity conditions of the theorem, (2.8) gives
(F) ™1 = o

where E(w), g(m) are the inviscid conductive components of F and G.

If we then let the shock at § have slope 0,

v = *(sinB, - cosB).
Hence sinefpgm)] = cose[Ggw)]
[6$™)
i.e. tanf = ——— (2.9)

iy
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from whence the name "shock slope theorem" is taken. It will hopefully
turn out that ur, is all points on shock-waves apart from shock

interactions, kinks and tips.
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3. Further Results from the Shock Slope Conditions.

3.1 The Two-Dimensional Steady Rankine-Hugoniot .Jump Conditions.

Consider any point on a shock wave where O = 0; the shock slope

theorem then yields
[Ggm)] = 0 i=1, ...4.
Hence by considering a frame rotation to align the x-axis with the
shock tangent, we will always have
[Gi(w)] = 0 i=1, .., 4,

where Gi is the flux in the new co-ordinate system which only differs
from G Dby replacing (u,v) by (qn. qt). where n stands for normal and

t stands for tangential (see fig. 3). Thus we have

Lpa ] = 0
[pa q,] = 0
[p+pq’] =0
[a, (p*+rE)] = 0
Denoting the upstream side of the shock by the suffix o, and the

downstream side by the suffix 1,

P19,1 ~ Podpo = O (3.1)
P19¢19%1 ~ Po9todno = ©
Py * P1dny ~ (Po*Poag) = O (3:2)
a1 (P1*#P1E1) ~ apolpgtegEy) = O .

The first two equations give

th = qtl . (33)
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The last equation is (for an ideal gas)

P P
1 2 N o ,1 2
%P1 * q“1[ -1) Y 2 1% ] = 950P0 * q'nO[ 113 poqo]
using (1.6)
TniPy 1 TnoPo 1
——— = =55 = .
= -0 T 2P1%1 T G- T2 Podno (3.4)
as plqnlqi1 = poqnoq?:O from (3.1) and (3.3).
Equations (3.1),...,(3.4) we know are the one-dimensional

Rankine-Hugoniot jump conditions with velocity replaced by normal velocity
along with the condition of conservation of tangential velocity.
By suitable choice of the initial frame of reference, these conditions

could have been obtained for every point on the shock.

3.2 The Flow Speed Near the Shock Tip.

The sound speed for an ideal gas is

1
a - [m]2 | (3.5)
p
Let M = U, - the mach velocity . (3.6)

At a shock ¢ , let M= (Mn, Mt)' see fig. 3.

For one dimensional flow it is possible to show that

M(z) = ﬂp_l..ktl
27 Py 27
Mz - I+l EQ_+ v—-1 ! (3.7)
1 = 2 Py 2~

where M = qn/a ;



So for a compressive (usual) shock, p./P~ 2 1) ,
170

2
M021

2
Mlgl.

Now, for a two-dimensional flow, by the argument in Section 3.1, we

have
Mz - v+1 i + -1
n0 - 2~ Py 2y
b
2 _ a1 70 -1 A
Mn1 T 2y Py > ’ (B:8)
% = 9u

2 2
Clearly, MO 2 MnO > 1 as (p1 2p0) as before.

2 2 2
But M1 = Mn1+Mt1
P

a+1_0 ¥~ -1 2

[2’1]p1+ 2y +Mt1

Thus M? < 1 if and only if

W ¢ 1-x-1_ f[rxr1]Po
tl - 27 2~ P,
) 2 ¥+ + 1 pO
i.e. Mtl < [27 ][l - ;’T] (3.9)

If this condition is violated at a point before the shock tip, the
shock will definitely deviate from the sonic line. There is no reason
within this theory why it should not re-join the sonic line later on. A
necessary condition for the shock to remain on the sonic line is that
Mtl =0 at the shock tip. This seems to be a rather contrived and
unlikely circumstance. So the most likely behaviour is for the shock to

leave the sonic line and not re-join it, as in figure 4.
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Alternatively, for a shock to remain on the sonic line, the streamline
at the tip must be normal to the sonic line there; and at successive
positions near the tip, they may only deviate from this orthogonal

direction by an amount corresponding to (3.9) (see [3]).
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4. Results Concerning Shock Curvature

4.0 Overview

Let § Dbe the arc length measured from the tip of the shock. Let
p(€) Dbe the radius of curvature of the shock corresponding to § (see
fig 5). At this point, the jump quantities take on certain values
([u(€)]. etc.). The object of this chapter is to calculate the

asymptotic behaviour of p(§) in the form:
p(§) ~ £([a(&)] . ([va(§)] . [vva(®)] . -...) (4.1)
where f 1is some function to be determined and ~ has the meaning:
p(E) ~ £(5) e Lin BEL - 3 (4.2)
£-0
This has proved to be a somewhat recursive problem because the

asymptotic behaviour of p(f) will dictate the model required to model it.

It has been discovered that the three generic cases:

i) p(0) = O
i) 0 < |p(0)] <=
iii) [p(0)| = =,

need to be treated independently and a different model needs to be
constructed for each.

The major objective is to come up with asymptotic equations of the
form (4.1) which by virtue of their behaviour will enable one to
distinguish which of the three generic cases matches a given shock.

Of the three cases, the most difficult to model and to distinguish is

the first case, p(0) =0 .
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4.1 Preliminary Results

All the models in this chapter make use of the result (see 83.1)

[g:gf] = 0 , (4.3)

where § 1is the shock length parameter. If the shock is parametrised by

y = Y(x) .
then it can be shown that
e = (1 + Y'z)_%(l, Y') . (4.4)
So, in particular,
g—EEEf.vE (1 +Y'2)_%[g—x+ ' %] (4.5)
(4.3) gives immediately,
[u+Y'v] = O
= ™ B = L%%. (4.6)

Also, since (4.3) is true for all §, it may be differentiated with

respect to £ (corresponding to along the shock) to give

‘ " " 2 _
[ux +Y (uy + vx) +Y'v+Y vy] = O
[u, +Y'(u +v.)+ Y3 ]
= Y = =X Y X Y 4.7
7] (4.7)
Now, of course, §2.2 shows us that
Y' [Gi] V V.
= [Fi] Evi ,

but this result was considered too complicated to use here; it may of

course be used and differentiated as above to give Y".
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Differential geometry gives the well-known result:

R S e
- Yn .

Also, if the shock is parametrised by r = R(6), then

[R? + R'2]%
R%Z + 2R'2- RR?

p =

Taking the shock tip to be at the pole, then

R(0) = O .

The most general analysable assumption found so far is to take

(4.8)

(4.9)

(4.10)

(4.11)

R(6) = k8% + o(6P)
where o > O , B>a, k#0, a,B €R
Then,
R'(8) = k6™ ! + o(eP™!)
R"(8) = a(a-1)R6%2 + o(eP2)
So R'(0)> = o?k202(®71) 4 o(™*P2
and R(B)R"(8) = a(a-1)k202(%1) 4 o(e®*F~2y
It is necessary now to distinguish the two cases a =1 and a # 1.
Let v+ = min {2a, a + B - 2} . Since R(8)® = 0(92a),

ke @y 4 O(Ga'2(a'1))]
2022 - a(a—l)kZJez(“'l) + 0(8™)

_ 5%; e(a—l)[1 > O(ea—2(a—1))]

ke
|

a#1

(4.12)



If o=

1
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R"(8) =0 . and

So, (4.12) =

and

And  (4.13) =

Now, let

The polar-cartesian conversion equations for the shock are:

(see fig. 5).
Hence, Y' =
Thus, Y' =
Also, YY" =

k% + o(8™) 1%

2k? + 0(0")
k ¥

-] 5 + O(e ) f Y =
éig p=o for a<1)
lim o _ o & > 1
g0 P = or «a |
lim k
60 P = 3 for a=1 ]

= po[_ lim p]

de

dx
de

"
I

R(6)cosb

Y(x)

~R(6)sind

-(R'sinf + Rcosb)

R'cosB - RsinB .

_ R'sinB + Rcosf

R'cos6 - Rsinf -

dy'’

/de

R'cosB — RsinB

min{2,p-1}

!

(4.13)

(4.14)

(4.15)

(4.16)

(4.17)
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4.2 First Case: Zero Shock Tip Curvature - Po = 0o

Consistent with 84.1, assume
RO) = ke +006P), «>1.B>a, aB€ER. k#zO.
Then, as before, from (4.12),
p(e) = D14 o6%)] .

Where &6 = min {2, B - a} = &6 >0.

 kab® + k6® + 0(6%"%
ka6® ! + o[g0t(e1)]

- -Llall o + 0(e?*1] (4.18)

So (4.16) = Y°

]

(- 2y} (ol |

_ - {ar) g (1) (g 4 ey (4.19)

2
a

And (4.17) = Y"

Differential geometry also gives
) 2 V294
E = [[R($)® + R'(4)°1" a¢
o

a-1+6

0
-1
= [ { kap™ " + 0(¢" " °)} d¢
0
= k8% + 0(9a+6) ; This is correct as a-1 > O
and 6 > O from above. So
a-1+6 > O.
= ¢ = £+ 006"
1/a
= 0 = [%] + 0(8%*%)

1/a a+d
] +0L7r] (4.20)

1l
T
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a-1 a-1
ka® (e _ o ,1/a .« 2
Hence, p(§) ~ 37 [k] = 7k € (4.21)
d _ dx 8  dY &

Now d - dBET a0 Jy along the shock

— a-1 5+a-1 d a 5+a d

= {kaﬂ + 0(0 )} I {k(a+1)6 + 0(0 )} 3y (4.22)

2 2
[£(0)] = [£(0) + 0 55 f| L2 d f| + 0(6°)
6=0 2! d6® '6=0
4"
But (4.22) > — f i = 0 as a>1 (so all the 6 powers are
de 8=0 zero at 6 = 0).

Hence it is not possible to calculate Taylor expansions for Y'(6) or
Y"(6) about 6 = O from equations (4.6) and (4.7). Thus p(§) cannot be

derived asymptotically in the form (4.1).

4.3 Second Case: Finite Shock Tip Curvature - 0 < |p0| (

This case is modelled in two ways; firstly with intrinsic shock
parametrisation (§), and secondly with polar shock parametrisation (R,0).
In the first model, it was found convenient to use both a single cartesian
reference frame orientated with the shock tip and a sequence of cartesian
frames orientated at continually decreasing angles to the fixed frame of
reference. Two Taylor expansions were then instigated; one to move from
away from the shock tip to the tip, and another from the rotated frame to

the fixed frame.

The second model is altogether simpler and the model assumptions are

equivalent.
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4.3.1 The First Model - A sequence of Cartesian Frames

Let (x.,y) Dbe the fixed frame and let (x(n),y(n)) be the sequence
of rotated frames, inclined at angles Bn to (x,y)., (see Fig. 6).

Let § = En. when the shock has curved through an angle Gn. Let
(u(n).v(n)) be the fluid velocity in the frame (x(n),y(n)) and let Yﬁ
be the corresponding shock slope. Define the sequence of frames so that
En is monotonic in n and En tends to the shock tip as n - «.

Under the assumption that p(§n) varies linearly and Py # 0, we

obtain

) 2
Bn = 3 + O(E n). (4.23)
o
It is also easy to show that
o) e [u]
Lv(n) n (v
arax(™| _ . [a/ax]
b/ay(“) n 0/8y | (4.24)
where
cosf -sinf
R = n n
n sinB cosf
n n {

As p(f) is frame invariant, (4.8) also holds in frame (x(n),y(n)) Vn, so

[1+y: 27
p(§) = - — — (4.25)
n

and by the construction of (x(n),y(n)) and En ,

Y)(E) = O. (4.26)
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1

Hence p(E) = - e (4.27)
o0

(4.7), (4.26) = YI(E) = - [v(n)(fn)]

So, from (4.27),
v™ (e )

p(E,) (4.28)

(n)
e

The objective now is to find an asymptotic expansion for p(fn) where
the terms written down may be assumed O(1). This is done by initially
taking the two Taylor expansions mentioned at the beginning of §4.3.

The initial result:

[a(0)] = 0 (4.29)
must hold by the definition of the shock tip.

Performing a Taylor expansion of v(n)(fn) about § = O:

(n)
av 2
V(n)(fn) — V(n)(O) + En f |§=O + O(E n).
From (4.5),
(n) - (n) (n)
- asvret [BE @ ©)
Therefore,
(n) (n)
av av
A = 2L 0),
a€ |§=0 ox (0)
(n) (n) av(™ -
and so, A4 (En) = v /(0) + En I (0) + O(¢ n). (4.30)
gu(™

Also, (4.24) =» —

3 . a _ )
ax(n) = (cos 8 3x ~ sin 6 3y ) (u cos 6, - v sin Gn)
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Bn is a constant, so
au(W)

== = cos®0 U - sin 6_ cos 6 (u_+ v ) + sin®0 v_.
ax(u) n x n n''y X ny

Now, from (4.23),

cos Gn = 1 + Q(E;)
I
sin = = a.y (En)
I .
= E) T 0(£,) since p(f ) varies linearly.
n
Therefore,
(n) E
du n
ax(n) = Y%7 p(fn) (uy 3 Vx) + O(E;) (4.31)

So, Ux(fn) is now needed. By a similar argument to that obtaining (4.30)

it is found that

w(E) = u 0) + Eu_(0) + O(E3) (4.32)
Also uxx(fn) = uxx(O) + O(fn). Hence (4.32) implies
u () = u(0) + Eu_(£) + O(E) (4.33)

By the same argument, (4.30) implies

av(M)
V(n)(fn) - v(M(o) + §n = (E) + O(E2).

X

Using (4.24) to change frames,

ey = v+ g G + o).

n ax

Taking the jump, using (4.29),

™1 = g [3E)| + o) (4.34)
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Substituting (4.33) in (4.31) at § = En

a—“(n)(f)— (0) + Eu_(E) - n (£.) + v, (£)] + O(E2)
g n’ T p(E )[ ) n

Next, it shall be proved that [ux(o)] =0

4.3) » MeEn1 = o

(4.35)

and W™ = o) + £ 0) + 0(E2).
§

but u(n)(O) = u(0) - p—n v(0) + O(E).
o]

therefore,

W) = w©) + g [0,0) - LD o),

o

o [u(o) +E_ [ux(O) - ?l] + o(Eﬁ)]

o

Dividing by En as [u(0)] = O,

[0 - X2+ o]

Letting n->o , as [v(0)] = O,
[ux(O)] = O as required.

So, taking the jump of (4.35):

(n)
du
[ (n) (§ )] = En[uxx(f ) - p(f ) [y(fn)

v (&]] + o2

(4.36)
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Combining (4.28), (4.34) and (4.36):

[V (E )]
p(E) = = + O(E )

[t E) - —p(;n) 1 (E) + vy (E)]]

Now p(fn) = 0(1) by the original assumption, so it is necessary only to

assume that [vx(fn)] = 0(1). This is equivalent to
™)1 = o) (4.37)
So, assuming (4.37)
p(EL) [T (£ - [u (E) + v (E)] = [v, (€))7 + O(E,)

> p(Ey) ~ [2v,(E) + u (E)] -
[u_(E.)]

As the choice of the sequence of frames (x(n),y(n)) is not

restricted, En may be replaced by §, giving

[2v, (€} + u ()]
p(€) ~ [0 (®)] (4.38)

- which is in the form of (4.1).

4.3.2 The Second Model - A Polar Frame

Putting a =1 1in (4.20) yields

6 = O(F). (4.39)

It has already been shown that «a must equal 1 in (4.11) in order

that p(68) = 0(1) (or O < |po| { ®), Therefore, (4.11) here is
R = k0 + 0(6P) where B>1 ., BER.

(4.13) is p=5+0(8") . =nin {2, -1}
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_ _ 28+ o(e™h

(4.16) > Y’ .
k + 0(6)
= - 20+ o008 (4.40)
-2+ 0(0"
Hence (4.17) = Y" = 4(—1)-
k + 0(8")
- - %+ o(8™) (4.41)
As in (4.22) with a =1,
a _ 1\ 8, o1l
% = {k + 0(6") } 3% * 0(0)5 (4.42)

Y"'(8) 1is required. From (4.7),

) [ux(e) + Y'(9) [uy(e) + vx(G)] + Y'(G)zvy(e)]

Y"(8)

[v(6)]
v (0) = O(v (§) = 0(1)
Y'(8) = 0(8)
Using (4.42),
u (8) = u (0) + ku_(0) + 0(6"*")
= u (0) + fku_(0) + 0(8™"")
By (4.38),

[ _(0)] = O([u_(E)]) = O(1).

Let A = min {2,~}.
Hence, using (4.42)

v(0)

v(0) + kev,(0) + o(6™)

v(0) + kv _(0) + oe™!y .
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”ekuxx(e) + Y'(e)[gy(e) + vx(G)] + 0(6
[kev, (6) + o(6™1)]

[lou,  (8) = [u,(8) + v, (0)] + 0(97‘)]

A+1)]

Hence Y"(6)

1l

[kv,(6) + 0(6™] Using (4.40)
Hence from (4.41) and (4.13)
Y2(0) = -2+0(8") = - %+ 0(8")
) [5 4 (®) = [u,(0) + v, (8] + ogd™
5 )]
5 Lo - [puxx(e) - [uy(G) + vx(e)]]

p pLv,(0)]

> [v,(8)] ~ plu, (6)] - [u () + v, (6)]

[2v,(0) + u (0)]
> PO~ T

So, with (4.39),

[2v, () + u,(£)]
PE) ~ @]

which is (4.38).

4.4 Third Case: Infinite Shock Curvature - |po| =

Let Y(0) = Y!. Y'(0) = Y, .

Clearly, from (4.8),
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The cartesian frame (x,y) has been chosen such that Yé = 0. Now,

performing a Taylor expansion on (4.6),

[20) + &52 ul_g + 0(&™)]

Y'(§) =
[7(0) + E5¢ gy + O(E™)]

again treating u and v as functions of §.

By the definition of the shock tip,

[u(0)] = 0 , [v(0)] = O.

Therefore,

ad 3 2
58 uleo * 5 g vleo *+ 0]

Y'(§) =
[5F Vg0 + 0(6)]
agu = (1+Y'2)_%(ux+Y'uy)
Therefore 5§u|§ 0 = ux(O)

[u (0) + O(E)]

Therefore Y'(§) T Iv (0) + 0(§)]
X

But Y' = O
o
Hence, [ux(O)] = 0 (4.43)
62
We thus need 382 u|,§.=O
a> _ 2% 8 ., 3 2 %, 8 .8
gz U = (1+Y'%) (5§-+ Y 5;) (1 +Y'%) (5§-+ Y ay) u

(14Y'2)"

Il

(1+Y'2)7% { (5;% + Y'a—g-) (1 + Y'z)_%(ux + Y'uy)}
A { - Y'Y'(1 + Y'z)—%(ux +Yu) 4 (14 g3 =

. |
(u + Y"uy + Y'uxy) + (1 +Y'?) g Y'(uxy + Y'uyy) }
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Therefore
5?; u|,§.=0 = uxx(O) as Y'(0) = Y'(0) = O.
[u_ (0) + 0(§)]
\ _ i xx
So Y'(E) = ) [Vx(O)] (4.44)
But Y'(E) = Y(’)+§£Y'|§=O+O(§2)
aY -
o lgo = Yo = ©
Hence Y'(E) = O(§%)
, [ug (@1
So (4.44) > O(F?) = —g-[—v":m+0(§)
[u_(0)]
> o1 = °
> [uxx(O)] = 0 (4.45)

Equation (4.45) is the required condition.
It is also possible to derive a similar result to (4.21) using a <1

in (4.11), but this is less useful.

4.5 Summary and Conclusion

First case, Py = 0
R(6) = k6% + O(GB) , a>1, B>a 1is consistent and yields
5 a-1
a® 1/a . «a
p(§) ~ Zpk ¢

No equation of the form (4.1) can be produced because all Taylor

expansions fail near the shock tip.
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Second Case, 0 < |po| o Under the assumption (4.37),

™| = oy
both models give
[2v, () + u,(§)]

p(£) .
[0 (6)]
which is of the required form.
gy (1)
Other assumptions (such as = (fn) = O(En)] ) will probably yield
ax

similar results in higher derivatives of u and v.

Third Case, |po| = o It is shown that

lim

£-0 [uXX(E)] = 0.

The above assumption (4.37) is critical. If it holds, the cases ii)
and iii) are distinguishable as if p(f) = O(l) and [VX(E)] = 0(1)
then it seems reasonable to assume [2vx(§) + uy(f)] = 0(1) and

therefore from (4.38),

[uxx(f)] = 0(1), not giving [uxx(O)] = O 1in general.

Also, as Taylor expansions fail near the shock tip in case i), it

seems reasonable to propose that
lim

£-0 I[uxx(f)]| = ® for this case.

It is hoped that this critical condition (4.37) will be ratified in

the future, rather than calculating a weaker generic condition.
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5. Theory and Examples of Flux Jump Order and Tip Curvature using

Characteristics

5.0 Overview

In this section three analytical models are presented using continuous
data for a single conservation law. The over-riding heuristic is
simplicity, so only straight line characteristic base curves and simple
flux functions are considered. It is considered necessary that the flux
functions supplied as data belong to the same functional family (e.g.
linear, logarithmic etc.) without degeneracy.

As we are concerned about producing a shock, we must have meeting
characteristics. This adds further constraints to the allowable models.
Also the simple physical condition of boundedness is considered and the
geometrical qualitative structure 1is described. Furthermore, the
asymptotic flux strength and shock tip curvature are calculated, tying in

with the last chapter.

5.1 General Theory

As in 82.1, consider a single conservation law of the form
F + G = 0 (51)

where F and G are both functions of x and y, and have discontinuities

across the shock ¥ parametrised by
g y = Y(X)
It has been shown in 82.3 that

: oo L€l
(2.15):  Y' = F -
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Now let G be a function of F, and let A be its derivative with

respect to F:

G = G(F)
dc

Then the full functional-dependent form of (2.15) is

G(F(x,Y(x
Y'(x) = : 5.2
) = FEYe)] (5.2)
Let the two sides of the shock be denoted by suffixes 0 and 1 as
in 83.1. Consider two lines:
.4y
o' & = %
.4y
Fl oo = A1 .

both constrained to pass through a fixed point on the shock (x, Y(x)), and

with Ao, A1 to be determined, (see fig. 7).

dF _ OF , dy oF

Now &: & dx'(.w
ma & . dCOF
dy ~ dF day
dF
= A(F) 3y
d dF .
Hence, aﬁ- = A(F) = &= = © using (5.1)
> F = constant
> G = constant, A = constant.

So F,G and A are all constant on FO and on Fl (not necessarily

having the same values on both). TO and Fl are called

"characteristics".
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Data is supplied along characteristic base curves which may be curves
or lines, single or multiple (see fig. 8).

It is required to find [F] and [G] along ¥ as a function of ¢§, the
arc length. A quantity needs to be constructed which is
orientation-invariant and is a measure of shock strength.

For a fixed point on the shock let X be parallel to the tangent and
y perpendicular to x. Let the rotation from (x.,y) to (X,y) be 6

(see fig. 9). Then,

X _ cosf sinB X
~ - -sinB cos6 y
y

S & dy

cosb 8 sinb 8

ax ay

Hence, (5.1) =

cose_g._ sine_g F + sinﬂ_g__ cose_g G = 0
Ix dy ax dy
=>'IE:~+’éN = 0,
X y
where
F = FcosB + Gsin®
and G = GcosB - Fsin® .

~ ~~

Let y = Y(z) also parametrise the shock. By the construction, for this

fixed point,

Hence (5.2) = [6] = 0 ;
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Therefore, a good invariant measure of shock strength is

[F] = [Fcos® + Gsin6].
' G
But Y' = tanf = %F% , SO
[F] = ((F)° + [61%)* (5.3)
= J(§). say.
At the shock tip, § = E* say and J(E*) = 0. It is required to find
J(ES + 88),

as an expansion in 6&f, where the t sign is chosen so that J 1is real and

non—zZero.

5.2 First Model: Single Straight Characteristic Base Curve with Quadratic

Data.

Without loss of generality, the characteristic base curve may be taken

as the y-axis.

Let F(0,y) = F(y)
G(0.y) = G(y)
Let FO , Fl start from x =0, y = Yo » ¥q- respectively. Hence
" (5.4)
le y = yl + A(F(yl))x

Gy, (%)) - €(yy(x))
Also, (5.2) = Y'(x) = (5.5)

F(y,(x)) - F(yy(x))

For this model, let

dy® + ey + f

Q>
]
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aG aG
Now dG = T + 5§dy
JF dF
dF = a{dx + gy—dy
dG dG 5
Therefore, T = EFI - FXI
x=0 dx=0 y x=0
_ dG/dy
dF/dy
_ 2dy + e
= Zay + b from (5.6)
= A(y) .

So (5.4) gives Y'Y, as the roots of

_ 2dy + e
Y = y + [m]x B (5'7)

since FO'Fl coincide at (x.,Y).

d(yO+ yl) - €

Also, (5.5 C I
( ) a(Yo"' yl) -b

(5.8)

Hence, it is not necessary to solve (5.7) here, only to express it in the

normal form for a quadratic equation:

(5.7 > (y-Y)(2ay +b) + (2dy +e)x = O

2 2ay® + {b-2aY + 2dx}y + ex - bY = O (5.9)
2aY - b - 2dx b + 2dx
Therefore, Yo * ¥, = 5 = Y - 5 (5.10)

d(2aY - b - 2dx) - 2ae
a(2aY - b - 2dx) - 2ab

I

So (5.8) > Y

2
_ 2adY - 2d°x — bd - 2ae (5.11)

2a%Y - 2adx - 3ab
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It is possible to integrate (5.11) once by a suitable change of

variable, but this is not necessary for calculating J(Eo + 6F).

JE) = ([F? + [€1»)%

]

Iyl - yOl {(d(yO + yl) - e)2 + (a(yO + yl) - b)z}%

Hence, J(f) =0 & § =¢F¢ = Yo = ¥q» OF

[ d(yO + yl) -e = 0 and a(yO + yl) -b =0 ]

But this latter condition generates the following condition between the

coefficients:
e _ b
d a’

A

which in turn implies that A 1is constant, which implies (5.4) only has
one root everywhere. So this case is disallowed. The other case, Yo = V1
%

implies (5.9) is a perfect square. If x and Y are the values of «x

and Y when J(E) = O, we may complete the square in (5.9) and obtain a

relationship between them:

s 1 [ 1f .\
(6.9) => y° + §;‘{b 2aY+2bc} y + ia-{ex bY} = 0
5>y - L(2av-b-2ax)} + =L (ex-bY) - —Lp(2aY-b-2dx)> = 0
4a 2a 16a ’

So, from the above argument,

ex’ - bY* - ZH{2ar"b-2a")? = 0. (5.12)
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Note, the condition Yo = Y3 also implies that the shock tip must coincide

with this point, i.e.

x =0 (5.13)
»
Y =793 =%
k3 a*z
(5.12), (5.13) 3 =-bY -5Y = 0
> Y = 0 o HZ‘?
Also (5.10) > off - Y-
so (5. = 5
> Y = - 52- . so this root is consistent. (5.14)
Substituting in (5.11):
»*' l* T _2bd_2ae
o= T) = T3
ae + bd
= T2ab (5.15)

%
Now, consider a linear approximation to the shock near its tip (x ,Y ):

x=x*+6dx
Y = Y+ Y 8x + 0(6x%)
Now, (5.9) =
y = = Ly~ oay + 2dx + 1L J b - 2aY + 2dx g 8a(ex - bY)
4a 4a
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%
1 2
So |Y1 - Yol = 5 [{2aY -b- 2dx} - 8a(ex - bY)]
Therefore, near the shock tip,
1 ae+bd 2 b2
|Y1 *YOI = 5 [{—b+;bléx—b—2d5x}— 8a(e6x+£—

%
{aethd) 5y) + 0(6x2)]

5&- 4b2 + 4b(d - %anx - 4b? - Saedx + 4(ae+bd)dx

+ O(6x2)]%

%

Z} [(4bd - 4ae - Sae + 4ae + 4bd)bx + 0(6x?)

I’é 1
-(%)- [2(bd - ae)]é + O(Bx%)

ae + bd

b b d 2
(5.10) > VotV = —355¢t S5ah 6x—z—;5x+0(6x)
_ _ b (ae - bd) 2
= 5+ 525 6x + 0(6x%)
2
»* 1 % db d
Thus, J(E + 68) = . [2(bd - ae) 6x] { [— == & —(2bae - bd)ox - e]

2

+ [- b + §%(ae - bd)éx - b] + 0(6x?) } + 0(6x")

2(bd - ae)éx]* { Faagikélz + 4p2 } + 0(86x%) .

Also, &F Y'2)% 5x + 0(6x3)

+

(1
.2]%

(14 v%) o + 0(6x3)

[(ae + bd)? + 4a%b27]"
%ab

5x + 0(8x%).
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2ab b5F

So, &x = iz + O(8£2)
[(ae+bd)? + 4a®b?]
! 2
Hence, J(E™+ 6£) = i { 4ab(bd-ae)5E %} { (ae+bd)? + 4b%a } + o |se[%)
[(ae+bd)? + 4a®b?] a®

— [(ae+bd)? + 4a%b?]"* [4ab(bd-ae)oET* + o(|oE [*)

a

....(5.16)

So, for this model, the shock only exists on one side of the characteristic
1

base curve (as [4ab(bd - ae)6§]A is only real for one of

(88 < 0),(6F > 0) ) and

JE + 68) = o(|sEl%). (5.16)

It is also possible to calculate the tip curvature. Let

OISR T oral W

*

*'
Provided Y # O, the tip curvature is

*v2 %
% 1+Y
p(§) = - " (see (4.8)).
Y
Now  Y' = Y +6xY + 0(6x3)
= LEE:EQ)_+ Y ox + 0(6x?)
2ab
Also Y = Y +6x Y + 0(6x3)

b ae+bd
= z + %l ox + 0(6){2)
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So, from (5.11):
a -1
[ - ab + B{ae+bd)5x - 2ad 6x - 3ab + 0(&x%) ]

-1
= [ bd + ae - §%{ae—bd)6x + 0(6x?) ].[ 2ab - 5X(ae-bd)6x + 0(6x”) ]

- ) [ g o oo | [0 2 o oo
ae 4b>

2.2 122 _ _
_ gag;gd! [ 1+ 2° b“d 2bd(ae~bd) bx + O(6x2) ]
4b®(ae+bd)

ae + bd B

. 2
5ah [@e=hd) 5x + 0(6x%)

8ab”

> Y*" _ !ae—bd!2

8ab”
%

Hence, p(f*) - ~8ab’ [(ae+bd)® + 4a®b?]

(ae-bd)? 8a°p°

2 2, 2%
- _ [(ae+tbd)” + 4a™b"] i
a’®(ae-bd)?

5.3  Second Model:  Single Straight Characteristic Base Curve with

Logarithmic Data.
As in 85.2, the first model, let the characteristic base curve be the

y—axis and let F and G be the intitial data for F and G.

>
I

-k (5.18)

Q>
]

a In(y+b) + ¢ }

d In(y+e) + f



Then, 8| . dddy
x=0 dF/dy %=0
- d(y+b) _

~ a(yte)

So Yor ¥, are the roots of
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A(y) as before

d(y+b)
Y y + (y7e) x (5.19)
Define the shock tip by (x*.Y*) as before, and let §=E* there.
Now,
[F] = {a In(y;+b) + ¢} - { a In(yy*tb) + c }
Fy1+bﬂ
= a ln ; and
Yo * )
Fy1+e\
[G] = d1n [yo s similarly
%
Thus, J(§) = {[F]" + [G] }
+b [ vyt e 2 14
= N +d2 In rs
L 0
% —y1+b yl+e
E=¢F e JE) =0 & alny+b = 0 and dlny+e = 0
0 0
. *
Assuming a,d #0 , £ = =
¥yt b = Yo t b and ¥y te = ygte
1.e., yo 3 yl
So, again we have
X* = 0
- 5.20
Y = yo =] yl ( )
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Y is found by completing the square in (5.19):

a(y-Y)(y+e) + d(y+b)x = O
> ay’ + {ae + dx - aY} y + bdx —aey = O
2 _yy-e-4 4% - N
>y {Y - e N X}y + N bx —eY = O
Ll etz Ly ez g ey =

> (y 5 {Y-e 5 x}) 3 {Y-e 5 x}° + 5 bx - eY = O.

So Yo = ¥4 when
ce-952 - 44y - -

{Y - e 3 x} 4(a bx - eY) = O.
It is also known that x = O here; hence

(Y-e)> +4eY = O
> (Y+e)2=0
> Y = -e (5.21)

This model is therefore "unphysical” as G is not bounded at the

shock tip (even though [G] - 0).

It can, however, been shown that

2 Y% %
I o) = 20+ Sy |2 v o). (5.22)

the argument is rather lengthy and tedious, so is not produced here,
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and  p(E) = 0 . as (5.23)

Y (E + 6E) = O(8E2)

5.4 Third Model Two Straight Characteristic Base Curves with Linear Data

Without loss of generality, define the intersection point of the
characteristic base curves to be the origin, let one of the curves be the
y—axis and the other to be inclined at an angle 6 to the y-axis. Let o
be the length parameter on the latter curve (see fig. 10).

Then, on the latter curve,

y = x cotf,
and
o = y cosb + x sinf
On the first curve, let F = ﬁ. G=0G
On the second curve, let F =F, G = @
Let F(ly) = ay+b
G(y) = cy+d
f(a) = eo + f
a(a) = go+h
Then A = g%- = Qzﬁﬂz_ = g = A, say
x=0 dF/dt
and, similarly, A = Q% = dS/dU = % = u, say.
y=xcot8 dF/do
Let the y-axis characteristic base curve give the 0 suffix

information to the shock. Then
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I
o

[G] 1 - GO

and

1l
R

[F] 1 - FO

= eo, + f - (ayo + b).

Now, o can be found as a function of y and 6:

o = YycosO + xsinf
X = ytanf
> o = y(cosB + sinOtanb)
= ysecf
Hence,
(F] = gylsece + h - (cyO + d)
(5.24)
[G] = eylsece + f - (a,y0 + b)
And the equations for A, A give
Y = yo + }\X
(5.25)
Y = y +mx
ey,secO + f —ay, - b
(5.24) > y = L& _ 1 9 . (5.26)
[F] gylsece + h - Yy - d
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At the shock tip, [F] =0 and [G] = 0. Let Yo = Yo ¥y = yT at

the tip. Then, (5.24) 3

gyTsecB + h = cy; + d
(56.27)
eyTsecB + f = ayg +b
1 * 1 b
So, py {gylsece + h - d} = a-{eylsece + f - b} s
(assuming non-degeneracy throughout)
. e gl * _ h-d _£f-b
giving, La c]ylsece = p .
* cosB
> yl = Eg— {a(h—d) = c(f—b)} (5-28)
Also, (5.27) =
1 »* 1,
g{cyo +d-h) = ;{ayo +b - f)
a c| » d-h b-
> -t = e
¥ - e(d-h) + g(b-f)
= Yo = ce - ag (5.29)
Now, (5.25) =
yO + Ax = yl T ux
Y, 7Y
1 0
N S T
_aely;- yp)
- ce - ag
% %
% ae(Yl - YO)
> X = _—

ce — ag



So, (5.28),
%
X
Also, (5.25)
>
Y =
Y*' is
(5.26) will
[G] = [F]
Y' =
yo =
Y1 =
Clearly

cancel, so
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(5.29) =
ae{g-ccosB)(f-b) - (e-acosf)(h-d)} (5.30)
(ce-ay)*
s % T°W
A - B
H(Y‘Yo) = 7\(Y_yl)
> Y(Ap) = Ay -y
Ay, -y
1 0
> Y= =X
cey, —ag y
1 0 -
> Y = —o=ag s&ivimg
* 2
ce y; ~agyg,
ce - ag
(£-b) (gce-c®ecosh) - (h-d)(age-a’gcosh) (5.31)
(ce - ag)®
also required before J(§*+ 6€) may be evalued. Clearly,
not yield Y from a straight substitution at (x*.Y*), a
= 0. A Taylor expansion is therefore necessary:
Y+ 0(6x) when x = x + ox
»* '
Vo + Yo Ox + 0(6x?)
yT + Y] &x + 0(6x?)
, the 0(1) terms in the right hand side of (5.26) must



YO+ 0(ex) = ——
gy, ~ ¢ + 0(6x)
, _ , _ *‘ 3 *l _

Yo = Y A2 Yo = Y A
Similarly, yl* = Y* - K
Hence,

, 3" B B '
¢ 4 0(6x) = eY : g — aY +lc + 0(6x)

gY - g%/e - cY . + c2/a + O(6x)
So, again assuming, non-degeneracy, the O0(6x) terms may be removed:

] ] 2 2 '
Y {(g—c)Y* ke S } = (ea)Y +c-g

Let z = Y* , then

_a(g®-e?) - e(c®a?) , _1 (o)
So, ==k Frnryee — 3z 0) J[ 4(ge)”

a2(g2_e2)2 _ %e(gZ_eZ)(cz_aZ) + ez(cz_az)z]

a%e®

(5.32)

This gives Y: and Yf - the two roots, generally not equal.
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Now, [F] = [F']+ [F ]6x + 0(6x?)
[C]1 = [C] + [CF 16x + O(8x?),
where = denotes evaluation at § = E*
[F*] . gyT secO - cy: - Y (gsec® ~ c) - (AgsecB - uc)
[G*] = eyT secH - ayg - Y (esecf - a) - (AesecB - pa)
Hence,
J(§*+ 6f) 1is not O0(6x) when
2 2
{z(gsece—c)—(kgsecﬁ—uc)} + {z(esecﬂ—a)—(xesece—ua)} = 0

- which is another degenerate case.

Otherwise,

J(§*+ 68) = J[ {z(gsece -c) + E% - 5%-secﬂ}2 * {z(esece - a) + 5% -

2
% sece} ]6x + 0(6x%?), (5.33)

where z 1is one of the roots of (5.32).

It has not been attempted to find p(f*) as, presumably, Y* is even

*.
more complicated than Y .

5.5 Summmary
The single base curve models both had
JE* 58) = o(lel*).
with the shock tip coincident with the base curve and a "single" shock tip
being present (see fig. 11).

The double base curve model had

J(E'+ 88) = 0(88),
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with the shock tip not coincident with the base curve and a "double™” shock
tip being present (see fig. 12), containing a kink due to the two roots of
(5.32).

It was not possible to find any other consistent models for the single
base curve case with the data for F and G of the same analytic
(continuous) function from. Formally, this can be expressed by
considering

H € C[R,R] - the continuous functions from R to R .
Let (M) = {¢(a.*) € C[R.R], « € R® with 3 a € R® such that
H(:) = ¢(a. -)}
then f and 6 are said to have the same functional form if

%(ﬁ) B y(&) with no degeneracy.

Note that the zero radius of curvature at the shock tip in the second

model occurred with infinite fluxes.
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6. Conclusion

This report as a whole yields significant advances in a number of
different approaches to the problem of the theoretical analysis of the
shock tip. The first two chapters provide the background and groundwork to
the analysis of the jump conditions in the presence of limiting viscousity.
Chapter three summarises the pertinent inviscid implications from these
conditions. Chapter four gives an account of quantity (as opposed to
system) perturbations relevant to the shock tip. The final chapter
provides the basis for a theory of shock-waves modelled by a single
divergence equation and having analytic data.

It is hoped that these approaches will be synthesised and extended in

further work with a view to giving a complete theoretical picture of this

problem.
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