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0 Abstract

In this report we will investigate the use of Implicit Differential Equation Solvers
(IDES) for solving steady-state problems of the type considered in the HR Walling-
ford CHAT software package. In particular we will perform backwater analyses
for channels and for channels with sideweirs. That is, given conditions at outlet
we calculate the flow in the rest of the channel and, in particular, at inlet. The
method solves both sub and super-critical flows and a possible treatment for the

trans-critical case will also be presented.






1 Introduction

It has been traditional to write Ordinary Differential Equations (ODEs) in the

form

y!' = f(z,y) (1.1)
where z is the independent variable and y is the solution. Solution techniques
for this type of equation are well-known and well documented, see Henrici [4] or
Lambert [5] for example. Rather less well-known, Fox & Mayers [3], are solution

techniques that deal with equations of the form

F(z,y,y1) = 0 (1.2)

or y = f(z,y,y). (1.3)

We will refer to these solution techniques as Implicit Differential Equation Solvers,
or IDES for short. Equations in the form (1.1) have obvious advantages, but there
may be situations where it is preferable to use the form represented in (1.3). The
obvious case is when the function, F' in (1.2), is just not separable due to nonlin-

earity in the term y/.

In the case of shallow water flow the equation governing steady-

state flow can, typically, be written as

Sy — 3y
1— P2

y/ (1.4)
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where y is now the depth of water in the channel or pipe etc., S is the bed-slope,
Sy is a friction term and F, is the Froude number which is a function of depth,
massflow and the channel geometry. Problems arise, though, in computations
when F, passes through unity, that is the flow changes from sub-critical flow to
super-critical flow, or indeed if F, just gets sufficiently close to 1, as in these cases
the right hand side of (1.4) becomes unbounded for computational purposes. The
division by the factor 1 — F? is rather artificial and the equation more naturally

appears as

yl = F2yr + So — S;. (1.5)

The division by 1— F} is just performed to get the equation into the form of (1.1).

The equation was first solved in the form (1.5) by Chawdhary [1]
and also appeared in Samuels & Chawdhary [7]. We shall give details of the
algorithm in the next sections and will show that the method is capable of giv-
ing accurate results for backwater analyses of both sub-critical and super-critical
flows. The results in [1] and [7] indicate that the method also deals with the
trans-critical case. Certainly this work shows that the method does not fail as
the critical point is reached but we argue that in the cases considered here an-
other boundary condition is required to give the problem a unique solution. (It
is possible that the trans-critical case was successfully solved in [1] because the
jumps were forced by changes in the bed-slope). The important point, though, is
that IDES are capable of solving sub- and super-critical backwater problems and

will not blow up as a critical point is approached.
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In the next section we describe, in detail, how to apply the problem
to a rectangular cross-section channel problem and we then follow this by solving
the rather more difficult side-weir problem. Numerical results will be given in

both sections. The work will then be summarised.

2 Channel Flow

The equations governing steady-state flow in a rectangular cross-section channel
are that the massflow, Q = uA, is a constant with u being the velocity and
A = By the cross-sectional wetted area with B the channel breadth, and that
the depth y satisfies the differential equation

_ a@?® dB

yl = WZ; + CYF,?y’ + SQ - Sf. (2.6)

The parameter o models energy loss that is sometimes included in the shallow
water equations. It will here be assumed to be a constant, usually 1, although,
again, this is no limitation on the method. The friction slope, Sy, can be pre-

scribed as desired, but here we shall typically be using Manning’s equation,

5 _ Qlen*(2y + By
T ByE

where n is some constant. The acceleration due to gravity is denoted by g.

The notation, and convention, that we will use throughout this re-

port is that z increases from left to right and we discretize the equation (2.6)
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at certain, not necessarily equi-spaced, points r,. The distance between z,, and
Tn41 is denoted by Az, 1. Without loss of generalization this will be assumed to
take a constant value Az. The solution at these points is then denoted by y™. As
we are solely concerned with backwater analyses in this report we will therefore
assume that y™*! is known and y™ is to be found. To find y" we perform an
iteration on this value and we will denote the k** approximation to y™ simply by
y*, the value of n being understood. As we are assuming that the channel only
has linearly varying breadth the term dB/dz will be replaced by the constant 8.
The bed-slope, Sy, will also be a constant for our calculations here, but this is
not a restriction of the method, [1]. Following Chawdhary [1] equation (2.6) is

now discretised, using the trapezium rule, in the form

n+1 k+1 2 n+1 k
y —Y _ BQ 1 1 & (k2 n+12) Y —Y
Az T 29 {Bg_,_ly“"'l’ B3y ) (F' +F ) Az

1
+50 — 5(87 + 57*).

With a little re-arrangement the scheme then becomes,

yO - yn+l
Az[Q? 1 1 Q2 2
k+1 .  n4l D k n+1 n+l _ k
sy 29 {Bﬁﬂy"“’ * B,?.y"z} 2 (R + 7)o )
—AzS, + %ﬁ ((S}c + 5}‘“) for £=0,1,2,.. (2.7)

The condition that ensures the iteration (2.7) converges is simply

that

k41
‘3'” <1 (2.8)

Oy*
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In principle we could calculate (2.8) exactly for the iteration (2.7), but the expres-
sion would be cumbersome. However, the terms we might wish to avoid are all
multiplied by Az. Hence they can be made as small as we wish (y # 0) by control
of the space step Az. We shall argue later that it is beneficial for other reasons
to use what computational time is available solving on a finer mesh, rather than
using the same time on a more complex iterative scheme with a coarser mesh.
The term we cannot control in this fashion is the one involving the Froude num-

ber. Hence for super-critical flow, or more generally when aF? > 1, we re-arrange

(2.6) as

1 ( BaQ?
y! e

= ] — - R
This can then be discretised in the same manner as (2.7). The Froude number is

a quantity that will need to be calculated anyway and so this approach results in

little extra computational cost.

Not too many results will be given in this section as very complete
numerical results will be included in the next section, for the harder side-weir
problem, with errors and convergence histories. Here, though, we just give some
results to demonstrate the main types of flow that occur. For all the results
Manning’s constant, n, takes a value of 0.01 and the energy loss factor, a, takes

a value of 1.

The first situation is shown in figure 1 and shows a sub-critical

flow. Figure 2 shows a super-critical flow in a similar channel. Figure 3 gives the

13



results for a trans-critical situation.

In figures 4 and 5 we see a sub-critical and super-critical flow in a

channel with an adverse slope.

The convexity of these solutions agrees with those given in Chow
[2]. The accuracy of the method will be discussed more fully in the context of

the solutions to the side-weir problem.

There are two situations where the code fails. Both cases are when
there is no physical flow along the entire channel with the given outflow condi-
tions. As the flows are unphysical it would be pointless, and wrong, to attempt
any mathematical/numerical treatment. However, as far as CHAT is concerned
something must be done to ensure that the code is robust. Firstly, and rather
obviously, these occasions must be accompanied by severe error messages as not
only is the flow in this particular channel unphysical but any calculation upstream
of this channel is also rather meaningless. The first unphysical case is that of a
flow that is super-critical at outflow but is not sufficiently ‘strong’ to reach inflow
super-critically. As the calculation proceeds the flow becomes critical in the inte-
rior of the channel. The obvious ‘fix’ is to continue the solution from this point
to inflow at the critical depth. The problem with this is that if this critical depth
is also the critical depth for the next channel then problems are likely to arise
with unphysical flows in this channel as well. Given that the flow is unphysical,

considered as a whole anyway this is perhaps not too serious. The alternative
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Solution to channel problem

0.5

ﬂ-c|||||;||
o 1 2 3 4

1l Ll

5 6 7 8 5 10
Figure 1: Depth and Froude no. for sub-critical flow in a channel. Slope =
0.01, width = 1m, 200 points. Outflow depth is 1m with inflow depth 0.8918m.

Massflow = 1m3s™1,

Solution to channel problem

0-c|||-]r||||r|||;||||1
0.0 0.2 05 0.7 1.0

Figure 2: Depth and Froude no. for super-critical flow in a channel. Slope =

0.1, width = 1m, 200 points. Outflow depth is 0.3m with inflow depth 0.34368m.

Massflow = 1m3s-1.

Solution to channel problem
5.0
25
1 A
e e e e e e e e S e |
0 1 2 3 4 5 [ 7 8 9 10

Figure 3: Depth and Froude no. for trans-critical flow in a channel. Slope = 0.04,

width = 1m, 200 points. Outflow depth is 0.8m with inflow depth 0.463784m.

Massflow = 1m3s~1,
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Solution to channel problem

1.0

05

L0 o s e S B e sy |
0 1 2 3 4 5 8 7 8 8 10
Figure 4: Depth and Froude no. for sub-critical flow in a channel. Slope = -
0.01, width = 1m, 200 points. Qutflow depth is 0.9m with inflow depth 1.0186m.

Massflow = 1m?3s™1,

Solution to channel problem
4
2.5+
o-c T T T T T T frrv T
0.0 0.28 0.8 0.78 10

Figure 5: Depth and Froude no. for super-critical flow in a channel. Slope =
-0.1, width = 1m, 200 points. Qutflow depth is 0.4m with inflow depth 0.3165m.

Massflow = 1m3s™1.
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is to put the remaining values equal to the normal depth. (Note: It may be
that where friction is included this case becomes physical. The numerical scheme
is actually quite capable of calculating through the critical value and hence the
calculation of this case presents no problems.) The second case is when there is
sub-critical flow at outflow but this again reaches critical depth somewhere in the
interior and there is no physical jump, at any point of the sub-critical flow, that
produces a super-critical flow strong enough to reach inflow. In this case it would
seem most natural to include an unphysical jump down to the normal depth and

continue the solution to inflow with this value.

These comments are equally valid for channels with side-weirs.

3 Side-weirs

For a derivation of the equations governing the flow in a channel with a side-weir
the reader is again refered to Chow [2]. These equations, in which massflow is no
longer a constant and also has to be solved for, are, where we no longer assume

a channel of uniform width as in [2],

dy  So—S;—aQQ./gA* + aF?yBI/B

ot (i = aF?) ! (3.9)
and, for the massflow,
(Qweir)x . —Qx = c\/Q—g(y - 5)3/2' (310)

17



In equation (3.10) ¢ is the weir coefficient, taken to have a value of 0.9 in all our

calculations, and s is the height of the weir sill above the bed-level. In this report

1

we will take s = 5

m. Equations (3.9) and (3.10) represent the most complex situ-
ation, to be encountered in CHAT. Before proceeding to solve these equations we

can attempt a simpler problem that has an analytical solution. This is achieved

by setting

So = 0
Sy =0
and a = 1.

Assuming energy, e, to be constant in the channel, Chow [2], we can write

Il
<
=

= Q = /A22g(e—y). (3.11)

Substituting for @ and @, from (3.11) and (3.10) into equation (3.9) we get,

dy _2c/(e-y)(y~>5)’
dr B (3y—2)

(3.12)

18



Equation (3.12) is now a single ODE for a single unknown, y, and furthermore it

is separable. Writing

y = ecosz(0)+ssin2(0)

e—y = (e— s)sin*(0)

y—s = (e—s)cos’(f)

dy = —2(e— 3)sin(d)cos(6)dd

and we can then show that

(3y — 2¢) [ (3ecos®() + 3ssin®(0) — 2e)[—2(e — s)] sin(0) cos(f)
/ (e — y)V2(y — s)3/2 dy = / (e — 8)?sin(8) cos?(0) &
—2 ) , do
= — / (36 cos*(0) + 3ssin®(0) — 26) co2(8)
= e_—2s / (36 + 3stan®(0) — 2e sec2(0)) dé
_ e‘_2s [3¢6 + 3s(tan(8) — 6) — 2e tan(9)]
and hence
2%" B crsfont m e‘_zs [3(c — )8 + (35 — 2¢) tan(0)] (3.13)
where
cos(d) = Z : :

19



Although (3.13) is not quite in the form we would wish, with = being given as
a function of y rather than the other way round, this formula is quite simple to
invert given the monotonicity of the solution, Porter [6], and can be solved to any
required degree of accuracy. The constant is determined by the length of channel

and the depth and massflow (hence the energy e) at outflow.

We will now look at the accuracy of the method for the three types
of flow that can occur, sub-critical, super-critical and trans-critical. The three
test problems all consist of a 5m channel that is 1m wide. Sill height and other
parameters are selected as described before. Outflow depth is taken to be 0.7m,
that is 20cm above the sill height. The three problems can now be distinguished
by just specifying the massflow at outflow. For the first (sub-critical) problem we
take @ = 0.01m3s™1, for the second, super-critical, case we take Q = 6.0m3s!
and finally for the trans-critical case @ = 1.0m3s™. The exact solution, as calcu-
lated from equation (3.13), to problem 1 is shown in figure 6, the exact solution

to problem 2 in figure 7 and the exact solution to problem 3 in figure 8.

Problem 3 does not actually have an unique exact solution. An-
other condition, usually from inflow, is needed to make the solution unique. The
condition we have chosen here is that the jump should be the smallest possible
to produce a flow that reaches inflow physically. Although this does not preclude
shocks that jump to a value above the sill height, with the channel set up as it
is these situations invariably become unphysical before inflow is reached. Once

a shock that jumps to the sill height is produced the upstream solution is then

20



Solution to sideweir problem

00T T T T T T T T T T T T T
0 1 2 3 4 5

Figure 6: Depth for Problem 1. Inflow depth and massflow are 0.534426m and

0.962776m3s1.

Solution to sidewelr problem
5.0
zs_k
u-c|111'[l:|||||}l|11n|||||1]

Figure 7: Depth for Problem 2. Inflow depth and massflow are 2.23097m and

14.7079m3s1.

Solution to sidewsir problem

9_5: r,-v-"""

0.0
L TTI TP Ty T[T rrrrrrrrrrrrm

0 1 2 3 4 £

Figure 8: Depth for Problem 3. Inflow depth and massflow are 0.49985m and

1.22127m3s™1, Froude no. is 1.2186.

Solution to sidewaeir problem

J 11 1

U-c|||||r||||ll||||||1'||||||
0 1 2 3 4

Figure 9: Depth for Problem 3a. Inflow depth and massflow are 0.4601987m and

1.1991996m3s~1. Froude no. is 1.505637.
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given rather trivially. This is what has happened in Problem 3, figure 8, where
the smallest incoming Froude number that produces a physical flow is not 1 but
1.218. To demonstrate the non-uniqueness we search for a flow that has an in-
coming Froude number of 1.5, figure 9. This has the same outflow conditions, and
indeed the sub-critical part of the two solutions is identical, but the super-critical

part depends upon the boundary condition specified at inflow.

The calculation of the entirely sub-critical or entirely super-critical
solution from (3.13) is quite trivial. The trans-critical case requires that we insert
a jump on the sub-critical solution. The strength of the jump is determined for

given sub-critical values of the depth and energy, y2 and e; by the equations

2 _ 1 2 _
o= 2(1/1+8F,1 1) (3.14)
. (yz—y1)3
ep—ey = T (3.15)

The Froude number on the super-critical side, F,,, can be writ-
ten in terms of the energy and depth on the super-critical side, e; and y;, and
hence we have two equations in two unknowns. It is perhaps easiest to solve
(3.15) explicitly for e; and substitute this value into equation (3.14). This is
not immediately solvable for y; but a simple bisection algorithm will converge
to the solution rapidly and is very robust. Having obtained values of depth and
energy corresponding to super-critical flow, the solution procedure can then pro-
ceed using (3.13) but with the new values. In practice, then, a sub-critical flow is
calculated from outflow until we either reach inflow, in which case it is a purely
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sub-critical flow, or until it becomes critical. At this point we construct a. super-
critical flow, using (3.14) and (3.15), and attempt to reach inflow. If the flow is
not strong enough to reach inflow we take the next point back up the sub-critical
solution and find the corresponding super-critical flow. We continue doing this
until we either reach inflow (because of the monotonicity results of Porter [6]
we know this will be the smallest jump capable of doing this) or we work our
way right back to outflow being unable to find any physical jump resulting in a
super-critical flow able to reach inflow. This is then one of the unphysical flow
situations discussed at the end of the previous section. This procedure can be

mirrored exactly in the numerical calculations.

3.1 Results for the One-Equation Model

The numerical solution to (3.12) proceeds along exactly similar lines to that for
equation (1.4). Here the term 3y — 2e plays the role of 1 — F? in (1.4). The
terms that appear in the right-hand side are treated by the trapezium rule as in
the iteration defined by (2.7). In figures 10—18 we see the results to Problem 1
with 1,2,4,8,16,32,64,128 and 256 points. A large number, 256, of iterations was

performed in each test to try to eliminate this source of error.
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Solution to sidewaeir problem

i

OvcIIIl]'IIII'iilI'III['lilll
0 1 2 3

Figure 10: Depth for Problem 1 with 1 pt. Inflow depth and massflow are

0.61056m and 0.8091m3s~1.

Solution to sidewaeir problem
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(U0 h o o o e e e |
0 1 2 3 4 5

Figure 11: Depth for Problem 1 with 2 pts. Inflow depth and massflow are

0.55471m and 0.93611m3s™1,

Solution to sideweir problem

n-c|IT|||III|IllI|iIII|,llIl‘|
Figure 12: Depth for Problem 1 with 4 pts. Inflow depth and massflow are

0.53806m and 0.95863m3s~1.

Solution to sideweir problem
06
0.0 rryrr1roererrrrrrreorryrrrn ey
0 1 2 3 4 5

Figure 13: Depth for Problem 1 with 8 pts. Inflow depth and massflow are

0.535262m and 0.961845m3s-1,
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Solution to sideweir problem

 —
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Figure 14: Depth for Problem 1 with 16 pts. Inflow depth and massflow are

0.534631m and 0.962548m3s~1.

Solution to sideweir problem
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Figure 15: Depth for Problem 1 with 32 pts. Inflow depth and massflow are

0.534477m and 0.9627194m3s~1,

Solution to sidewair problam

05

1

0.0 rrrrrrrrryrrrryrrrrrrrorol

Figure 16: Depth for Problem 1 with 64 pts. Inflow depth and massflow are

0.534438m and 0.962762m3s71,

Solution to sideweir problem

L4 I 1

0.0 LASLINL S I AL E U N A I N 2 U B I R A e e et |
0 1 2 3

Figure 17: Depth for Problem 1 with 128 pts. Inflow depth and massflow are

0.534429m and 0.9627725m3s~!,
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Solution to sideweir problem

0'3 LN RN L L.
0 1 2 3 4 5
Figure 18: Depth for Problem 1 with 256 pts. Inflow depth and massflow are

0.534427m and 0.962775m3s~1.
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With just 8 points, figure 13, the solution appears, visually, to have
converged. In table i we give the errors in the depth and massflow at inflow, the
absolute value of the difference of the exact value and the value calculated by the
scheme, and a calculation to determine the order of convergence based upon the

results for depth.

No. of points | Error in depth | Error in massflow | Order of convergence
1 0.076134 0.153676 ==
2 0.020284 0.026666 1.91
4 3.634x10-3 4.146x1073 2.48
8 8.358x10~* 9.308x10~* 2.12
16 2.053x10~* 2.28x10~* 2.03
32 5.1x107° 5.66x10~° 2.01
64 1.2x10°% 1.41x10°8 2.09
128 3x10-¢ 3.5x107 2.0
256 1x107¢ 1x107 1.58

Table i: Errors for Problem 1 using the one equation model.

A similar set of results are now given for Problem 2. These are
shown in figures 19—26. There is no solution with just one point. Visually the

scheme has converged with 32 points.
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Solution to sideweir problem

25-\
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Figure 19: Depth for Problem 2 with 2 pts. Inflow depth and massflow are

2.014765m and 13.915011m3s™!.

Solution to sidewelr problem

(VAU o s o e o e S et e |

0 1 2 3 4 S

Figure 20: Depth for Problem 2 with 4 pts. Inflow depth and massflow are

2.767235m and 15.88488m3s~1.

Solution to sidewasir problem
5.0

°-c T rrryrryyrrT Ty T rrTrTr T eryvg
0 1 2 3 4 B

Figure 21: Depth for Problem 2 with 8 pts. Inflow depth and massflow are

2.9288m and 15.98409m3s~1,

Solution to sideweir problem

Figure 22: Depth for Problem 2 with 16 pts. Inflow depth and massflow are

2.327025m and 15.005198m3s71.
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Solution to sidewsir problem

0.0 LU o S e B R O S At T A A S I e |
0 1 2 3 4 S

Figure 23: Depth for Problem 2 with 32 pts. Inflow depth and massflow are

2.25188m and 14.77559m3s1.

Solution to sldeweir problem
5.0+
25_\"'~‘a—,-_
O'cITlI|ITl'l|l!l'l['l'l_ll||rl||

0 1 2 3 4

Figure 24: Depth for Problem 2 with 64 pts. Inflow depth and massflow are

2.23605m and 14.724497m3s~1.

Solution to sidewelr problem
5.0
1
R
-
2.5
-'\‘-__
7 MMMl
0.0 LANNL A JRR DY JNREL UL AN LN NN B LN AN LN NS DN N N NN BN AR D i |
0 1 2

Figure 25: Depth for Problem 2 with 128 pts. Inflow depth and massflow are

2.232234m and 14.71203m3s~ 1.

Solution to sideweir problem
5.0
2.5_\
] a1
0.0 Tr T T3 TV firT 71T rrrrrrrrr
0 1 2 3 4 5

Figure 26: Depth for Problem 2 with 256 pts. Inflow depth and massflow are

2.231287m and 14.708932m3s~1.
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The results are summarised in table ii. Note that convergence does

not take place until a certain level of refinement takes place.

No. of points | Error in depth | Error in massflow | Order of convergence
1 Iteration diverged —
2 0.216205 0.792889 —
4 0.536265 1.17698 —
8 0.69783 1.27619 =
16 0.096055 0.297298 2.86
32 0.02091 0.06769 2.19
64 5.08x10°3 0.016597 2.04
128 1.264x10™3 4.13x1073 2.0
256 3.17x10™4 1.032x10°3 2.0

Table ii: Errors for Problem 2 using the one equation model.

Finally we look at the trans-critical problem, Problem 3. The re-
sults for this are shown in figures 27—35. Here 64 points, figure 33, are needed

for visual convergence. A compendium of the results is also given in table iii.
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Solution to sideweir problem
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Figure 27: Depth for Problem 3 with 1 pt. Inflow depth and massflow are

0.2934634m and 1.0m3s71.

Solution to sideweir problem
1
0.0 rrryrfrrrryrrryrryryrrrrrrrrrr
0 1 2 3 4 5

Figure 28: Depth for Problem 3 with 2 pts. Inflow depth and massflow are

0.2934634m and 1.0m3s!.

Solution to sideweir problem

0.0 TTITr Tl orrrL o

Figure 29: Depth for Problem 3 with 4 pts. Inflow depth and massflow are

0.2934634m and 1.0m3s~1,

Solution to sideweir problem

D-c-l-ll||l|I|JIII|lIII|IrlI|
Figure 30: Depth for Problem 3 with 8 pts. Inflow depth and massflow are

0.4191594m and 1.164498m3s1.
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Solution to sidewaeir problem
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0 1 2 3 4 5

Figure 31: Depth for Problem 3 with 16 pts. Inflow depth and massflow are

0.478354m and 1.210861m3s~1.

Solution to sideweir problem
O.S—W
o'c lll||IIII|T"II|IIII||1'|"F_|

0 1 2 3 4 S

Figure 32: Depth for Problem 3 with 32 pts. Inflow depth and massflow are

0.47917657m and 1.2113295m3s~1.

Solution to sidewelr problem

0.0 rrrrrrTryrryrrrrrryrrygrrrm
0 1 2 3 4 5

Figure 33: Depth for Problem 3 with 64 pts. Inflow depth and massflow are

0.493434m and 1.2185766m3s™1.

Solution to sideweir problem

Figure 34: Depth for Problem 3 with 128 pts. Inflow depth and massflow are

0.4934964m and 1.218604m3s~1.
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Solutlon to sidewsir problem

\

0.5

O'GIIII]!’FII|I!tI|IlII|IIII]
0 1 2 3 4 5

Figure 35: Depth for Problem 3 with 256 pts. Inflow depth and massflow are

0.4971m and 1.2201566m3s~1.
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No. of points

Error in depth

Error in massflow

Order of convergence

1 0.2063866 0.22127 =
2 0.2063866 0.22127 —
4 0.2063866 0.22127 —
8 0.0806906 0.056772 1.35
16 0.021496 0.010409 1.91
32 0.02067343 9.9405x10~3 0.06
64 6.416x10~3 2.6934x1073 1.69
128 6.3536x10~3 2.666x1073 0.01
256 2.75%1073 1.1134x1073 1.21

Table iii: Errors for Problem 3 using the one equation model.

The scheme shows a definite 2" order convergence in the case of
entirely sub-critical or entirely super-critical flow, tables i and ii. In the trans-
critical case, table iii, the convergence is now only first order. This is to be

expected because the approximation to the jump position is only first order and

this dominates the error in Problem 3.

We now look at the convergence rate of the iteration. For this we

consider Problem 2 with 64 points. The solutions with different numbers of iter-

ations are shown in figures 36—43.

Table iv shows the errors and convergence of the sequence of solu-

tions.
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Solution to sideweir problem
5.0

2.5+

E Rk aa T TS aRyy
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0 1 2 3 4

Figure 36: Depth for Problem 2 with 1 iteration. Inflow depth and massflow are

1.102355m and 8.927252m>s~!,

Solution to sideweir problem
5.0-_'|'
zs_\
[** ¢ 4rap
c-c||sn|||||||a|||lrr1||!(|]
0 1 2 3 4 5

Figure 37: Depth for Problem 2 with 2 iterations. Inflow depth and massflow are

1.498345m and 11.3935138m3s71.

Solution to sideweir problem
5.0

25

0.0 rrrrprrrrTrrTrrrryrrrrrrrrroag
0 1 2

Figure 38: Depth for Problem 2 with 4 iterations. Inflow depth and massflow are

1.9567117m and 13.6743m3s™1.

Solution to sideweir problem
5.0+
25*\*’%.%_
U.G LI B B | | L '[ ¥ LI L | LI A B | |
0 1 2 3 4 5

Figure 39: Depth for Problem 2 with 8 iterations. Inflow depth and massflow are

2.185106m and 14.55374m3s!.
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Solution to sideweir problem
5.0

0.0 TIrIrrrrrrrrrrrrrrrrrrrrrrg

0 1 2 3 4 5

Figure 40: Depth for Problem 2 with 16 iterations. Inflow depth and massflow

are 2.232427m and 14.712664m3s"1.

Solution to sideweir problem

D

o-cIlII|11II|IlTl|ITII]|TTT]

0 1 2 3 4 5

Figure 41: Depth for Problem 2 with 32 iterations. Inflow depth and massflow

are 2.236011m and 14.724362m3s~1.

Solution to sidewelr problem
5-0_
25H\“M
00rrrrrrrrrrrr o T T
0 1 2 3 4 5

Figure 42: Depth for Problem 2 with 64 iterations. Inflow depth and massflow

are 2.236053m and 14.724497m3s~1,

Solution to sideweir problem
5.0+
25_\"\"‘%__
uc llIlllrllfillllllfllll'll]
0 1 2 k] 4 5

Figure 43: Depth for Problem 2 with 128 iterations. Inflow depth and massflow

are 2.236053m and 14.724497m3s™1,
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No. of iterations | Error in depth | Error in massflow | Order of convergence
1 1.133698 5.797245 —
2 0.737708 3.3309832 0.62
4 0.2793413 1.050197 1.40
8 0.050947 0.170757 2.45
16 3.626x1073 0.011833 3.81
32 4.2x107° 1.35x10~* 6.43
64 0.0 0.0 =
128 0.0 0.0 —

Table iv: Errors for Problem 2 using the one equation model.

From these results it is very difficult to give any firm conclusions
as to the order of the iteration. It does, however, seem to start as a low order

convergence and then rapidly accelerates as the exact answer is approached.

Clearly it is best to use as many space steps and as many iterations
as one can, but as a rough guide it would seem that between 40 and 50 space
steps are needed per metre to give robust results. This gives excessive accuracy
for the sub-critical case, more than adequate accuracy for the super-critical case
and ‘robust’ accuracy for the trans-critical case. Around 10 iterations seems also
to lead to robust accuracy. These observations also hold for the two-equation
model. Since the emphasis is on having a robust code it is better to refine in the
spacial step, rather than the number of iterations, because this then guarantees

better accuracy in the trans-critical case.
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3.2 Results for the Two-Equation Model

We have now seen that the IDES technique can solve side-weir problems governed
by (3.12) for all flow regimes. For the purposes of CHAT, though, we cannot as-
sume zero slope together with the other assumptions, in particular zero friction,
used to derive (3.12). This means that we will need to solve equations (3.9) and
(3.10) as a system . Equation (3.9) is discretised in an identical manner to that
described for (3.12) and (2.6) before. At the same time we discretise (3.10) using
the trapezium rule with the implicit terms on the right-hand side again lagged,
that is, using the previous iteration value, to give an explicit expression for the
new value Q*+!. We have updated (3.10) first and then used the latest value of
Q**! to update y*+! from the discretisation of (3.9). This choice seems to have
no effect on the scheme. To validate this approach Problem 2 is again solved but
this time with the two-equation model, that is without assuming constant energy.

These results are shown in figures 44—49. Errors, as before, are shown in table v.

The order of the scheme is again definitely shown to be 2. Compar-
ing with the results in table ii we see that the errors are very comparable, being
slightly better for the depth and slightly worse for the massflow. Although it does
not show up clearly in figures 44 to 49, the energy is no longer constant, as we
would expect since this is no longer enforced. Also we are not able to calculate a

solution on some of the coarser meshes.
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No. of points | Error in depth | Error in massflow | Order of convergence
8 0.3470903 1.694867 —
16 0.0610075 0.3181655 2.51
32 0.014248 0.076558 2.10
64 3.5011x10-3 0.01904 2.02
128 8.72x10* 4.757x1073 2.01
256 2.18x1074 1.19x1073 2.00

Table v: Errors for Problem 2 using the two equation model.

Solution to sideweir problem
5.0

\\-;

u-‘n-'Il!l[llll'[lIl![|!l(|l||||

0 1 2 3 4 5

Figure 44: Depth and energy for Problem 2 with 8 pts. Inflow depth and massflow

are 2.5780623m and 16.402767m3s~1. Two equation model.

Solution to sideweir problem
5.0+

0WO—T—rrrrrrrr1rrrTrTrT T T T T T
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Figure 45: Depth and energy for Problem 2 with 16 pts. Inflow depth and

massflow are 2.2919795m and 15.0260655m3s~!. Two equation model.
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Solution to sidewsir problem

Figure 46: Depth and energy for Problem 2 with 32 pts. Inflow depth and

massflow are 2.24522m and 14.784458m3s~!. Two equation model.

Solution to sidewelr problem
5.0
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0.0 rr1ropreyrerrpr e rrrtTiTrTrrerrry
0 1 2 3 4 5

Figure 47: Depth and energy for Problem 2 with 64 pts. Inflow depth and

massflow are 2.2344731m and 14.72694m3s~!. Two equation model.

Solution to sideweir problem
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Figure 48: Depth and energy for Problem 2 with 128 pts. Inflow depth and

massflow are 2.231844m and 14.712657m3s~!. Two equation model.

Solution to sideweir problem

5.0+

2,55\

{00 B o s o e e e e e |
0 1 2 3 4 5

Figure 49: Depth and energy for Problem 2 with 256 pts. Inflow depth and

massflow are 2.23119m and 14.70909m3s~1. Two equation model.
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The main advantage of the two-equation model is that we are not
constrained by the assumptions needed to create (3.12). We now look at some
more complicated examples to demonstrate this. All these examples have the
same parameters as for Problem 1 except that there is now a bed-slope of 0.02. In
Problem 4, figure 50, there is a constant breadth of 0.75m. The inflow depth and
massflow are 0.447m and 0.58083m3s~!. For Problem 5, figure 51, the breadth
now varies from 0.5m at inflow to 1m at outflow. The inflow depth and massflow
for this case are 0.43736m and 0.533m3s~1. Finally in Problem 6, figure 52, the

breadth varies from 1m at inflow to 0.5m at outflow.

Results have also been obtained for non-zero friction, o # 1, and
for channels with more than one side-weir. (This just involves multiplying the
right-hand side of (3.10) by the number of side-weirs.) All the results were as to

be expected.
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Solution to sideweir problem

Figure 50: Depth and energy for Problem 4 with 128 pts. and 10 iterations.

Solution to sideweir problem
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0 1 2 3 4 §

Figure 51: Depth and energy for Problem 5 with 128 pts. and 10 iterations.

Solution to sidewaeir problem

T
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Figure 52: Depth and energy for Problem 6 with 128 pts. and 10 iterations.
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4 Conclusions

We have shown the IDES method to be quite capable of solving the type of
channel flows and side-weir flows to be encountered in CHAT. Sub-critical and
super-critical flows can be solved to second-order accuracy and a procedure for
obtaining one of the physical solutions in the trans-critical case has been ex-
plained and shown to be effective. Possible procedures for dealing with the two
types of unphysical flow to be encountered have also been discussed. Bed-slopes,
varying widths, etc. can all be included in the scheme and it has been shown to

work with these extra terms also included.

Equation (3.10) is the discharge law for a side-weir. However, the
methodology is not reliant upon this form of law and others may be used. For
example, the case of a channel with a rack in the bed could be solved using the

same code with a changed discharge law.

Perhaps one flaw with this work is the number of space-steps needed
to guarantee robust results. Although entirely sub-critical and entirely super-
critical flows can be resolved with rather few points the number has to be kept
sufficiently large in order that the trans-critical case is resolved accurately. The
scheme 1is still fairly quick but there is hope for future improvements in its effi-
ciency by using grid adaption. One pointer to the fact that this may be possible
is the fact that in Problem 3 results of the right kind were obtained on very
coarse meshes, figures 27—30; they were just rather inaccurate. Whether the

logic required to implement an adaptive scheme will be that much quicker than
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just using a finer fixed mesh is an open question. It is also worth noting that
the discontinuous nature of the solution was picked up on the coarse grids and it
must be remembered that these solutions are just as valid physically as the one
we were aiming for, which was the one with the smallest jump. If there is no
strong reason for choosing this particular solution then the coarse grid results are
just as physically valid and the number of points per metre can be reduced to,

say, between 10 and 15.
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