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Abstract

Convergence is proved for the approximation generated by the second
order scheme of P. Roe to a weak solution of the non-linear scalar
wave equation for variable wave speeds.
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1. INTRODUCTION

In a recent paper Le Roux [2] proved the convergence of a

guasi-second order scheme for the non-linear scalar wave equation

U, * -F'(uJux =0
The scheme is second order accurate except in certain special
regions where it is only first order accurate. In an earlier report
[1 Jwe proved similar convergence for the scheme of P. Roe [3 ]
in the case where the non—lineér term f(u) 1s monotonic, i.e.
when the wave speed is one-signed. In the present feport we extend
this proof to more general f(u), showing that Roe's scheme converges
to a weak solution of the Caughy problem for non-monotonic f{u).
We have taken the opportunity to co-ordinate the results and simplify
the not;tion of the earlier report : as a result the present report
is self-contained.

Section 2 contains a description of the problem and the difference
scheme. Some results preliminary to the main theorem are contained

in Section 3 while the main convergence theorem itself is proved in

Section 4. Conclusions and remarks are in Section 5.
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2. THE PROBLEM AND THE DIFFERENCE SCHEME

(a) The Problem.
We consider the equation
| ug * [F[u]]x =0 (2.1)
for (x,t) infR x (0,T), T>0 and + in Cl(IR), with
‘ulx,0) = ug (x) ' (2.2)
for x in M and Ug in LM(HQJ, assumed to be of locally
bounded variation on “% and therefore satisfying,'For all
real 3§,
VR20 , r lug (x + &) - u (x) | dx s ClR) |6 (2.3)
[x] <R '
where C is an increasing function on [0, <), independent of §.
The Cauchy problem associated with (2.1) and (2.2) is to
find a bounded function u which satisfies (2.1), (2.2). A weak
solution to the Cauchy problem is a function u in LT (R x (0,T))

which satisfies an integral form of (2.1), namely,

X

Rx (0,T) R

( & %% + flu) %ﬂ ]dx dt + [uotxlwtx.O)dx =0 (2.4)

for all test functions ¢ 1in szﬂi x [0,T)) of compact support
in R x [o0.m

We consider the approximations generated by the finite difference
scheme of Roe [3] and discuss their convergence to such a weak solution
of the Cauchy problems

Let h be the spatial grid size, with 0<h<h0, and At be the

time grid size, related to h by the fixed positive number g through

q = At : (2.5)
h



In a neighbourhood of the gridpoint (kh, nAt) define the rectangle

Ik x J = ((k-3)h, (k+3)h}x ((n-3)gh, (n+i)lgh) ] (2.6)

for ke /., ne Fﬂ and n £ N = [T/gh] + 1, where [y] denotes
the integer part of .
We approach a weak solution of (2.1), (2.2) in the sense of (2.4)

by a piecewise constant function u_ defined orm“% x (0,T) by

h

_n
up (x,t) = u for (x,t) € Ik X Jn : (2.7)

k

where the initial condition (2.2) is projected onto the space of
piecewise constant functions by the restriction

o_1
U =% Iuotx] dx

Iy

(2.8)

(b) The Difference Scheme.

The values u: are calculated as follows (see [3]). For

brevity we write

n k _  n+
k » Ll e le (2-9]

whenever there 1s no danger of confusion.

Uk=U

Let V-1 be the approximation
v =g 6fk-% (2.10)
k-3 Su
k-4

to the CFL number in Ik—% where Fk-% = f(uk_%) and 6?k_% L Y
Let also

Se-3 = sgn(vk_%] = + 1 (2.11)
be the sign of V1o and define

2

L L A (2.42)

to be the flux increment or fluctuation in the cell I

k-3°
The direction indicated by (2.11) will be called the downwind.

direction.
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We obtain a first order accurate scheme when the quantity

¢k*l is added to the value of u at the downwind end of the cell over
2

the time step At. (If v

y =0, then ¢ _, = 0 so that no ambiguity
k-3 k-2

arises). This is Godunov's first order upwinded scheme, which can be

represented graphically as in Fig. 1.

Fig. 1 First Order Scheme

t + At ' ! i [
¢K" ¢k_1

t t | k {

X1 XK Xk-1 K
>

vk_% 0 vk_% <0
§ 1

Now let k = k - Sk‘%‘ Uk_% =301 - lvk_%lj

and define the quantity bk_l by
<

[Bgl=tlsy gy + s gl min Loy oyl loye

(2.13)

1 ¢KL%1} (2.14)

where élsk,_l + Sk+1| is 1 except in the special case of expansion waves
2 F

where it is zero (see § 5) and with the sign of bk—‘ equal to that of ¢k e
z -3

It bk_l is now transferred across the cell against the stream

2

we generate a scheme which is second order except at isolated points,

where the minimum selection in (2.14) changes. This scheme may a.e. be

identified as either the Lax-Wendroff scheme or the second
upwinded scheme of Warming & Beam, depending on the choice
The transfer of b

k-3 ©an be regarded as an antidiffusion

and the whole process can be represented graphically as in

order
in (2-14)-
step (see [2])

Fig. 2.
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Fig. 2 Second Order Scheme

k-3 k-3
te A o N <~ N
. @ L] ® °
be-1 b3
t t ; } }
Xk-1 XK *k-1 *K
v > <
- k-1 0 \’k_% 0

This is Roe's scheme which has been very successful in
eliminating oscillations in approximations to the solution of the

problem (2.1), (2.2). It may be written in the form

k _ _ )
u = uk + ¢k-% + bk"'% bk-% \)k_%. \)K+_12_ 2 D ;
uk =u + ¢ - b + b v v <0 )
k k+3 k+i k-3 k-4, "k+i )
)

and
uk = u v < 0, v >0 )
- Tk k-1 * Tk+d ]
k .

u = uk +¢K-% + ¢k+% §
N _ )
bk—% bk+é vk_% > 0, Vk+% <0 )

(2.15)

(2.16)
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In subsequent work it will be convenient to define two numbers

1
BK_1 and B k-1’ namely,

2

b 1
2

B _3 b k_% B' 1 = k- » [2-17]
k-3 R k-3 ———————
k-1 k- Okr-g -y
which, from the definition (2.14), have the properties
058,y <1 | B'k_%| <1 (2.18)

3. PRELIMINARIES

We now prove two lemmas and guote a theorem which will be used

in the proof of the main convergence theorem in §4.

Lemma 1

A difference scheme in the form

k B .
u wt Uk + gk_’_% ¢k+% + Ck‘% ¢k_% » [3-1]

where ¢k+% is defined by (2.12) and Ek+%’ ;K_% may be data dependent,

conserves local stability in the sense
X k . g
inf {uk_,l. U s uk+1} S u < sup {“k-'l’ U Uk+1} (3.2)

1f the following inequalities are satisfied:

<
0 = By VK- ;
0 € -8y iy §“ (3.3)
O % G ket e W ST
Proof
k

=y ¢ €k+% ¢k+% + Ck—% ¢k-%

Ugeq 18y Vg

+

e U1 % Bhay Viey 7 By V!

{-z

+u

k+1 M

k+3 k+%} (3.4)
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I+ the inequalities (3.3) are satisfied the coefficients of the

are non-negative and we obtain

ksl " . _
N {ck-% vk—%} Umax * {1 +£k+; Vet T Bk-1 Vk_%} Unax

By Vet Ynax

from which uk <u , where
max
Unax = SUP TUp,q U Upaqld
Similarly, uK 2 u , where
min
u g, = inf Tuy _4r ups Uk+1}

This completes the proof.

Lemma 2

A difference scheme in the form (3.1) conserves local bounded

variation in the sense

n+1 _  n+1 o _ 0
Dlugeq — o 1 B Ty - (3.5)
| k| | K|k +n
for all K>0 if the following inequalities are satisfied.
0 < - £k+% V-k_‘_% ;
0 r v ) :
k+i “k+i ) (3.8)
)
0 < (;k"'% = Ek""‘i]vk"'% < 1 %
Proof
k#1 _ Kk _ _ o
Y TS U T Ut Baasn $easz T ke T Bket)%keg
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k+3/2 k+q/2 Uy 43/2

e {1 - [CK+% - Ek+%]vk+%}ﬁuk+%

Taking absolute values and summing over |k|K, we obtain
k+1 k :
z lU - u l s z {I _Ek-'-% vk+%l+l 1 _[C'k+% - Ek+12] vk+%._|
I k] <K | k| <k
ey Vgl Mg -yl

* "5K+3/2 “K+3/2| IuK+2/3 B UK+%l

i Ic_K-% v—K-%I IU_K_é . u_K_S/ZIJ [3-9)

using summation by parts. If the inequalities (3.8) hold we may
remaove the modulus signs in the coefficients, obtaining

Ilufd - <]

Iklsk NES

Kl

n
k+1 ~ Yk (3.10)

Repeated application gives (3.5) as reqguired.

This completes the proof.

Helly's Theorem

We now quote Helly's Theorem (see [4) pp. 29-30), which will be
required in §4.
Let the sequence of functions '{An[x]}: be of uniformly bounded

variation in a €< x £ b and such that
5

A ta)]| <A (h =0, 1, 2,0ueess)

for some constant A. Then there exists a set-of integers

n < < <‘llllll
o SN 0
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and a function A(x) of bounded variation in a € x £ b such
that

lim A (x) = A (x) (a £ x £ b)
1re M3

That is, given a sequence of functions which are uniformly bounded
and of uniformly bounded variation on an interval, then it. is possible

to extract a subsequence which converges to a function of bounded

variation.

4. CONVERGENCE OF THE DIFFERENCE SCHEME

We can now state and prove our main theorem.
Theorem
Suppose that u_ lies in L (R n BVlOC(ﬂ%J and that

the condition
sup[vkls 3 (4.1)
k

is satisfied. Then the family of approximations '{uh} generated by
Roe's difference scheme (2.15), (2.186) from initial data (2.8) contains
h } which converges in Lﬁoc (R x (0,T)) towards a

m
weak solution of (2.1), (2.2) as hm > 0.

a subsequence {u

The proof is in three main parts. First we show that the pilecewise
constant function (2.7) generated by Roe's scheme is uniformly bounded
and of uniformly bounded variation in space and time. Then welshow that

from the family of such functions we can extract a sequence convergent

in U [E‘ x (0,T)). Finally, we show that the limit function is in fact

loc

a weak solution of the problem.
Roe's scheme may be written in the form

k _
UUT U B e T By kg (4.2)
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where Ek+%f ck-% are given by

E 1+ (bk"'% - bk_i'] /fbk_% \)k:% > 0 ;
( )
g4 = ( 0 V-3 < 0 ) (4.3)
e T L )
( 1 - bk‘%/¢|§'% \lk+% < 0, vk'i > 0)
C it o)
E _ [ 1 - (b - b . ]/¢ 1 vV [ < 0 ]
ket = ked TR ke ki3 ) (4.4)
( 17 Bug /by Vkep € 0V > 0

1
Using the definitions of a, B, B in (2.13) and (2.17), these become

!
g 1 + (Bk+%._ BK-%]ak—% vk:% > 0 ;
( 0 vVo_; < O )
Gy = S ) @)
( 1- Bk-% otk_% \)k‘_% < 0, \)k_% > D)
( 0 Vkey 0 )
( ' )
E . ( 1+ (B _; -B .o 4 v,, < O )
k+} ( k=3 Tk+dTTkes k+4 ) (4.6)
( 1 - Bk+% LI Vkey < 0 Vk-g > a)
We have from (2.18) and (2.13) the inequalities
1
-2 < (Bki% - Bk;%ls 1 (4.7)

and

0 < 6k+% <4 (4.8)
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from which we deduce from (4.5) and (4.8) that

< -

0 £k+% vk+% ;

) (4.9)
<

0% Zk-g Vk-g )
Consider now the expression

et Vket * Bk-t Vk-d (4.10)
If vk+é are of the same sign we have (taking the positive sign as
example)

t
-Ek.',% vk"’% % CK_% \)k—% = [1 + (Bk"'% . Bk_%)ak_%]\’k_%

< [1 + Q _1]\’ _1
from (4.7) k=2""k-3

(3/2 - Ivk_%l)vk_%

=il 4.11)
by condition (4.1).

If v are of opposite sign then there are two cases to

ket Vk-}
consider.

For an expansion wave, i.e. Viet 7 0, Vg-1 < 0, then .£k+£ =Zg1 =0
so that trivially

—Ek*'% vk"'% + Ck_% vk_% < 1 [4-12]

while for a compression wave (shock), i.e. Veer S0 vy >0, (4.10) is
2 2

- gk*_% vk_'_% i ;K-% vk_ _t1-Bk+% ak"'%]vk"'% + (1-Bk-% C!k_l]\)K_%

Nl

by condition (4.1) <1 (4.13)

Consider next the expression

By ™ BirgViey | (4.14)
From (4.5), (4.8)
Top =0 1f v, < 0 ;
. (4.15)
Eay PO IF v > 0 ;
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so that using (4.11), we have

[Ck+% - 5k+%]Vk+§ < 1 (4.16)

Now from (4.9}, (4.11), (4.12), (4.13) we see that the conditions

of Lemma 1 of § 3. are satisfied, and hence
K .
inf {u _4» upo Ugpqt € U< sup {u 40 Uy Ugeqd (4.17)

By induction we may readily deduce that

| “k"[dtn%x ro,m)° ludl & (R > (4.18)

Also from (4.8) and (4.16) the conditions of Lemma 2 of §3

are met and hence

+1 n+1
hl | ”Q+1 “u |s hp Ju

IKISK IKIS K+n.

a]

kl (4.19)

° -
k+1
for all K> 0.

Choose R > 0 and set K =[R/h] : then, using (2.3), (4.19)

becomes

1
hj IUE:1 - uEI < luotx + D) - u (x,t)]dx

|k]=k |x]< R+t/q

< C(R + T/qlh

< C(R + T/q]h0 (4.20)

where C (R + T) is a constant depending only on the region Qg

q
defined by

QR = (-R,R) x (0,T) (4.21)

Summarizing, we have shown that Roe's scheme generates the family of

functions {uh(x,t)} (see 2.7)) with the following properties:-

_n
a) uh[x,t) = U

b) u,(x,t) is uniformly bounded by ||u0||

in the rectangle((k-3)h, (k+i)h)x((n-3)gh, n+})gh).
L°(R ) from (4.18)
c) uh[x.t] is of uniformly bounded variation in the x co-ordinate,

from (4.20)
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d) ul(x,t) is of uniformly bounded variation in the time co-ordinate,

since, from (2.14), (2.15) and (2.18),

n+1
k

n

|u K

- UE | < max {u . uEI.IuE - u2_1|}. (4.22)

so that, from (b) there i1s also a bound on the time variation

Now, following Oleinik [57, let t=tm (m=1,2,....) be a countable

everywhere dense set on the segment [0,T] in @ By Helly's theorem,

RI
(see § 3), on any straight line t = constant > 0 we can extract from

‘{uh} a subsequence, converging at every point of this straight line for

h =+ 0.

H?nce on the 1line t = t1 we extract a sequence '{uh1}
from {u }, then on the line t = t, we extract from '{uh1} a
subsequence {uhz} and so on. Then, by means of the diagonal process

(see [6] pp. 301), which consists of taking the 1*th element of the i'th sequence
we can extract a sequence {ui} ='{dﬁ} (i#», h+> 0) which converges at every
i

point of the family of straight lines t = tm (m=1,2,...) for i =+ =,

We now show that '{ui} is Cauchy in L1[QR] for any t € (0,T)

i.e. tj Iui(x.t) - uﬂ[x,tl | dx dt > 0 as i, J > ®, h > 0, Vx,¢t (4.23)

i

Since u, 1is constant on ((k-3)h, (k+3)h) x ((n-31)gh, (n+3)gh) we
have uh[x,t] = uh(x, ngh), where n = [t/gh + ] and [y] again
denotes the integer part of .
Since the set t = tm(m= 1,2,..9+.) 18 everywhere dense we can choose
from it a sequence {tm } converging to t for mg > .

t s
m
Setting n =[-Ji— + %]. we have

s gh
i i i
I Iuh(x.t] - uﬂ(x,t] | dx dt < I |uh[x.nqh] - uh(x,nsthldx dt
QR QR
J o J i -
+ fl uh[x.nth uh(x.nsthl dx dt + II uh(x,nsqh] qh[x,nsthldx dt
Q. Q
R R (4.24)
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The first term on the right hand side of (4.24) is bounded by

i n
f hy | lug - u S lat
T Ik
since K = [%], which in turn is bounded by
T nz-ﬁ
+1 n
f h Lot - uplat (4.25)
ofk[sK n=n, '
writing Ngs Ny for the minimum and maximum of n, ng respectively.
Now from (4.22) ny-1 ny=1
+1
h z E | uE - uﬁ[s 2h 2 2 IUQ+1 - uEl
[k[sK n, n, |k[sk
ng~1

< 2) CR+ T/g)h
n

1
from (4.20)

< 2[n2 - n1] C(R + T/qglh
= (2/q) |t-tm|C(R + T/q)
Ly

+ 0 ast >t (4.26)
e

Thus the first term on the right hand side of (4.24) tends to 0 as

tm + t and the same is true for the second term.
s

Since the sequence tm has been chosen from the set t =t
S

(m=1, 2,.....) and since the sequence {u-} is convergent on each
h

m

line t = tm it is also convergent on t = tm and thus is Cauchy
s

on t = tm . Hence the last term in (4.24) - 0 as 1 +>® j 2>, Thus
s

we have proved (4.23) and shown that the sequence '{uﬁ} converges to a
function u(x,t) in Ll[QR].

So we have obtained a sequence '{uﬁ'} from {uh} converging in
R .
LI(QR], and similarly we may obtain from {ui } a sequence {uﬁ );
R R+1

converging in LI(QR+1) and so on. Then by the diagonal process (see
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above) we may obtain a sequence ‘{UE'.K} extracted from ' {u,}
’ - R+m B
lacde (0,T)) to ulx,t). It is evident

that ulx,t) € L(Rx (0,7

which is convergent in L}

It remains to show that u is a weak solution of (2.1),
(2.2), i.e. to show that it satisfies (2.4). We introduce a test
function ¢(x,t) ¢ C2([R x [0,T)) with compact support. The L2
projection of ¢ onto the space of functions constant on each set

Ik X Jn is given by

wh[x.t] = wE = —17-I f;(x.t] dx dt, (4.27)
gh
Ikan

where (x,t) ¢ IK X Jn.

o

We now write Roe's scheme (2.15), (2.16) in the form

Ut s Ut Ay byt 1 - Ak+%]¢k+%t (bk+% - by-y) (4.28)
where
= 1 =
AK'% 301+ S'k'%] E 0 vk'% < 0 _

Multiplying (4.28) by ¢ﬁ, taking absolute values and summing by
parts gives

_1 ~
| T ITuRbg =g+ af RO,y iy = My v+ U gay) vk

kn
n n- : o ' n n
S SCR SIS "3RS L IR KON E N AN I PR ) (4.30)
k kn
From (2.14) and (4.1) we have
|by,yls178) mixluk+1 -y (4.31)

and using the Mean Value Theorem and (4.18) we obtain

e d ,
DT Dol NS T 120§ B, - 2
k n : L (ﬂ?x(O.T)]Ikl<K+n

(4.32)
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which = 0 as h = 0.

Consider now the expression

e _ N n n _.n, _.n n_,n

LR ORI I C /PR T8 BRI (Sl PR D P (4.33)
As h > 0 we obtain

(1 +A" - A‘)¢x . (4.34)

where A+, A~ are limits taken from the right, left , respectively,
and are equal except on a set of measure zero (i.e. at isolated points).
Hence as h - 0 the inequality (4.30) becomes the equality ‘
(2.4) and u 1is a weak solution of the problem (2.1), (2.2).
The proof of the theorem is complete.

iy

5.  CONCLUSIONS

We have proved that the approximation generated by Roe's scheme
(2.15),(2.16) converges to a weak solution of the problem in § 2,

Note that equation (4.17) demonstrates the important propérty of
monotonicity preservation in which monotone data remains monotone after
a time step. It is this property of Roe’s scheme which has been found
particularly valuable in eliminating unwanted oscillations in shock
problems, and it is here proved generally for the first time for variable

v (see also [71).

k-3
Two further remarks need to be made concerning minor variations
in the implementation of Roe's scheme.
First, although the restriction ssplvk_%]s% in (4.1) is
required to obtain the inequality (4.13), it is needed only for that

isolated case. Otherwise the theorem in § 4 would be true for

igplvk_%ls 1 (5.1)
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We have not yet been able to prove the theorem under the less
restrictive condition [5.1] but it is known tﬂat, in p;actice. Roe's
scheme is highly successful for a great variety of data so long as (5.1
holds.

Secondly, there is a minor difference between the scheme as
stated in § 2 and as used elsewhere. In the original scheme the
factor %[sk_% + Sk'-%' in (2.14) is absent but in the version treated
in this report we have found it necessary to include it in order to
obtain the inequality (4.12) for an expansion wave in the presence of

certain data. The factor has the effect of making b = 0 but only

k-3
in the special cases where Sc-1 = “Sgr-y’ i.e. 1n the two cells
adjacent to an expansion. We have not been able to prove the convergence
theorem in § 4 without this change and indeed it is known that Roe's
original scheme fails to treat expansion fans correctly under certain
conditions and that modifications are needed in this area. The present

modification however simply reduces the order of accuracy to one at

isolated points and does not resolve the difficulty.
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