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1. INTRODUCTION

The aim of this paper is to describe a Finite Element Method (FEM)
for solving ideal compressible inviscid fluid flows. Developing any such
method involves three parts:

a) choosing a variational principle from which flow equatlons can be

derived;

b) choosing the space of trial functlons to approximate the solutian;

c) adopting a method of solving the resulting non=-linear equations.

These three parts are not entirely independent since the choice of variatione
principle to some extent predetermines the choice of finite elements and the
method of solving the non=linear equations thus obtailned.

A non-linear set of equations may have discontinuous solutions (weak
solutions), and in general these weak solutions are not unique but depend
on the particular formulation of the equations. The solutions on either side
of a discontinuity have to be joined by Rankine-Hugoniot conditions which are
obtained by integrating the conservation laws over a slim volume containing
the discontinuity. It is clear that one particular form of equations, namely
conservation form, is most convenient., Of course, in regions where solutions
are smooth any eguivalent form of equations will produce a unique solution.

But since the conservative form of equations has to be used near discontinuities
it may as well be used in the whole region. This is the reason why most
numerical schemes for solving fluid flows use Euler's equations in conservative
form. The finite difference methods take as a starting point the differential
equations and discretise them in an appropriate manner. Hence it is natural

to discretise the equations in the conservative form. The finite element
methods differ from finite difference methods in that they require some

form of variational principle as a starting point. Now we have a choice of
variational principles: one method is to seek weak solutions by the Petrov-

Galerkin method, with as many variational principles as there are differential
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equations. The disadvantage of this method 1s that the choilce of & test
space for non-self-adjoint or non-linear equations 1s not clear.

A more satisfactory approach when it 1s possible is as follows: a
physical problem, like perfect fluid flow, has a physical varilational principle
and all the equations of motion are derivable from the one principle. These
equations are not necessarily in conservation form, but in addition to the
equations of motion the conservation laws are also derivable from the variational
principle with the aid of Noether's theorem. Thus the equations of motion
can be used in regions of smooth flow while Rankine-Hugoniot conditions
obtained from conservation laws can be used for "joining"” discontinuities.

The disadvantage of this methaod is that discontinuities have to be dealt with
separately from the rest of the solution. But, on the other hand, the
equations of motion are in a simple canonical form which should be easier to
solve than the conservative form.

In order to demonstrate the method an FEM for one-dimensional steady
flow through a pipe with varying diameter 1is described in this paper. The
main feature of the method is the use of the same equations for both supersonic

and subsonic flow without addition of any numerical viscosity.

2. VARIATIONAL PRINCIPLE

It has been shown, Detyna (1981), that the steady flow of a perfect
fluid without spin can be described by the variational principle
SA = GI d3 x L =20 (2.1)
9}
where the Lagrangian L 1is

L= p[H - §(V$ + SVA + HVB)Z - E(p,S)] : (2.2)

where H 1is the total enthalpy and E(p, S) i1s the internal energy;
p and S are mass density and entropy respectively. The functions ¢, A and

B are potentials without any particular physical meaning, but they define

the velocity



v = =(V$ + SVA + HVB). (2.3)

The equations of motion follow from (2.1) by taking variations with respect

to each variable in turn:

6p : Velpv) = 0, (2.4)
A Ve(pSv) = O, (2.5)
8B : Ve(pHv) = 0, (2.6)
8p : tv2 + h = H, (2.7)
8S vevA = T, (2.8)
8S : veyB = 0, (2.9)

where h = 3{pE)/3p and T = 3E/BS are specific enthalpy and temperature
respectively., The first three equations describe the conservation of mass,
entropy and energy.

Since the Lagrangian (2.2) is invariant with respect to translation of the

co-ordinates, the conservation of momentum is also induced, Detyna (1981):

Velpwv + Ip) = O (2.10:

where p = L 1s pressure.

The equations (2.4) to (2.9) are used in the regions of smooth flow
while conservation laws (2.4), (2.8) and (2.10) determine conditions at
discontinuities, where entropy S 1s no longer conserved; hence eguation (2.5)

is replaced by a physical requirement of non-reversibility
AS 2 0

across the discontinuity. (It should be noted that there are only five
independent physical variables p, S and Vv and hence the six conservation
equations including (2.5) are overdetermined).

In order to show how the FEM can be applied to this problem, one-
dimensional flow through a pipe with varying diameter is studied. Let us

suppose the flow is in the x-direction: then the integration in (2.1)
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over y- and z-co-ordinates can be performed since no functions depend

on y or z. Furthermore, the one-dimensional flow 1is necessarily homenergic
H = H0 and the variable B can be transformed out by replacing ¢ with

¢ - HUBn

Thus the variational principle (2.1) now reads

SA = GIdx [HU - %[¢X + SAXJZ - E(p,S)JpR = O (2.11

where R = R(x) is the cross-section of the pipe at point x.
This variational principle differs from the previous one in that it is
explicitly dependent on the x-coordinate through the function RI(x]).

Consequently, the momentum is no longer conserved and we have instead an

equation
2 = -
(pRvé + Rp]x pr (2.12

which describes the rate of change of momentum with pdR/dx as its source.
The equatiore of motion can be obtained from the variational principle

{2.11) in a standard way and are not given here.

3. FINITE ELEMENTS

The Lagrangian in (2.11) depends on functions p and S and first
derivatives of ¢ and XA: hence the simplest trial functions are piecewise
constant for p and S and piecewise linear for ¢ and ). Let us divide
the computational region (xo,xN] into N elements with nodal values at
XgrXqaeeesXye The nodal values of ¢ and X are denoted by ¢, and  Aj»
i=0,1,...N; the constant values of p and S on the element i defined
as (xi—1’xi] are denoted p,., S, i=1,2,...,N.

With such trial functions the action A in (2.11) is

N b=, _a*S: A A, L)Y
= affifi-1 7171 711 N
A=1  pyRHg 2[ " E;1ay (3.1)
i=1 i
where A1 =Xy T Xy and Ri is the integral

X
-1 [
R1 = Ai I R(x) dx

X1
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The approximate equations are now obtained by minimizing action A with

respect to all nodal values ¢i‘ Ai and constants pi'Si'

9 - 1u2 - -

3, [Hy - #v2 - h IR,A, = O (3.2)
B s, -, L) - T.ATRp, =0 (3.3)
35, M7 A 181740y g
A ~ i}

2, PRIVE = PyRisqVing = 0 (3.4)
/L R.S,v, - R S v =0 (3.5)
EZVERE S St A SRS A SR RS ERAS EY .

where vy = [¢i = ¢i-1 + Si_[)\i - 11_1]]/Ai is the velocity of the fluid in

element 1i.

The equations (3.2) to (3.5) are non-linear and we propose to solve them
by iterations.

It has been noted, Buneman (1981), Detyna (1981, 1982}, that the veriables
p and ¢, pS and X are conjugate in the Hamiltonian sense. Therefore it
is natural to solve the abaove equations in appropriate pairs - (3.2) with (3.4)
and (3.3) with (3.5). Let us deal with the first pair of equations. The
eqguation (3.2) depends on a single value Py (through hi] and two values of
o, ¢i—1 and ¢y (through vi]. On the other hand, the equation (3.4) depends
on three values of ¢, $i_q0 b5 and Pi4q° and two values of density, 04
and Pisq®

Therefore, in the subsonic region, we can regard equation (3.2) as a

definition of Py» while equation (3.4} is

iRy 1 [PaRi PiaaPiar ) 1 PaedRiwn g
s va A v vl wousy/ L Sy vk M
i i 1+1 1+1
PR TyS PyaaRieaTiag5iu (3.5)
! Vi+1

an elliptic "three-point” formula for ¢i, where a superscript denotes a new

iterative valus,



In the supersonic region, the equations (3.2) and (3.4) are regarded as
equatlons for ¢ and p respectively:

i 1-1

]

8¢- = 8¢

ie1._ 1
p (Rivi/R

©
]

where equation (3.7} was obtained by assuming a new approximation for ¢i

to be ¢i = ¢i + 6¢i and linearising (3.2) with respect to 6¢i. The
equations (3.7) and (3.8) are "marching algorithms”. The two methods of
solution of equations (3.2) and (3.4) are well suited for the boundary
conditions: for subsonic flow equation (3.6) requires Dirichlet or Neumann
conditions while equations (3.7) and (3.8) for supersonic flow require Cauchy
conditions,

The second pair of equations, (3.3) and (3,5), are different in that
the only boundary conditions that can be given are the Cauchy ones, say AO
and 81. This is because it is physically inappropriate to prescribe values
of entropy at both ends of the flow. Hence the equaticns are solved by the
marching algorithm in an obvious manner. In the case of transonic flow,
equation (3.5) is replaced at the point of the shock by a formula giving the
increase of éntropy from the conservation laws.

Let us suppose the inflow is supersonic while outflow is subsonic
with full boundary conditions (p1, 2 and 81J at the inflow and one other
boundary condition (say v
overdetermine the flow if all the equations (3.2) to (3.5) are used. But a

careful study of the above described method of solution shows that (3.8) for

i=J, where xj is the shock point, cannot be used since the element j + 1

is already in the subsonic region and pj+1 should be calculated from eguation

(3.2) for 1 = 3 + 1. That means the mass is not conserved across the shock

unless it is moved to a new position - a procedure equivalent to a calculation

1 2 -
+ (svi + hi HO) Ai/vi (3.7)

i+1vi+1)' (3.6)

N or pN] at the outflow. These boundary conditions



of shock speed in time dependent problems. A linear approximation to a new

nodal position xj which preserves mass gives
XJ = XJ + 86T (3.9)
where
A, /v for s >0
8t = N
AJ+1/VJ+1 for s <0
and s = (p R,)

v Rj]/(o

341V 341R341 T P3Y; 3417341 7 PRy

It is seen that the equation (3.8) can be interpreted as the "movement” of
the shock with speed s in time 4&t. This interpretation is indeed justifiable
since, say equation (3.7), can be derived from time dependent upwind equations

with variable time step At, = Ai/vi as 1n (3,9). Notwithstanding the

i

interpretation, the equation (3.9) can be used either for calculation of a new
nodal position x = xY  of the shock (shock fitting) or for indieating the
element in which the shock occurs without recalculating the new nodal values

(shock capture).

4, NUMERICAL RESULTS

In order to test the method, flow in various pipes with different boundary
congitions was studied. As an example we show in detail the solution of the
flow in the pipe shown in Fig. 1 with inlet conditions v, = 1.4, Py = 1.0
and S1 = 0.0; at the outlet the one condition is Yy T 0.4 0or P, =1.7.
(The above values are in the standard units normalised to the sound velocity
at the inlet). According to the exact solution, the condition at the outlet
results from a shock at Xy = 3.8619. We note that the method requires a

boundary condition for ¢ (or velocity) at the outlet rather than pressure,

but these two values are connected through the formula
p = plHy - iv2 - E)

stating that the Lagrangian is the pressure. In order to start the iterating
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procedure the following distributions of density, velocity and entropy were

chosen:

1.0 for x, <7.,0

_ i

pi =
1.8 for xi > 7.0
1.4/piRi for i <N

vi =
0.4 for 41 =N

S, = 0.0

i

as shown in Fig. 2 together with the exact solution. Such a trial solution
ensures the shock position at the beginning of iterations is far removed
from its exact location,

The results for N = 5, 9, 17, 33, 65 are shown in Figs. 3.1 to 3.5,
It is seen that even with only 5 elements the solution is well approximated
with shock position calculated with accuracy better than 8% of the tube length.

The error in the shock position 6x = lxs-xilltube length is shown in the

following table:

N[SIS|17|33|65

8x l ,078 I .012 I . 0093 ] .0068 | .0053

The iterative procedure was carried out until the average change 6&v in

velocity
sv = filvl—v.I/N
2 i
i
was less than 10—8. The number of iterations required was of the order of

20 regardless of the number N of elements. No significant change in solutions

is noted if iterations are terminated when §v < 10—8 but their number decreases

by a quarter.
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FIGURE 1 : Cross-section R(x) of the pipe studied numerically.



2. 4

2.2

2.0

1.3

1.5 |

6.3

0.5

0.2

-
-~
-~
~
-~
rd
7
v
_________ e
|
I
S
- - -t
|
|
|
1
]
e e e e e e ——
I
|
L. e
e e
~
~
~
~
i ~
-~
\\\
\\\\\
] 1 ! 1 L 1
0 1 2 3 4 S 4 7 9 ?

FIGURE 2 : The trial and exact solutions for density p (continuous line) and

velocity

Y

(broken line).

The trial solution is the step function.
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FIGURE 3 : The approximate and exact solutions for density p (continuous line)
and velocity v (broken line). The approximate solution is the step
function. The number N of elements used is shown on each figure.
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