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1. INTRODUCTION

The possibility of harnessing tidal energy has fascinated researchers
for many years. Recently, tidal power generation schemes have attracted
s
special attention due to international pressure for the development of
"alternative” energy sources. The problem of extracting power from tidal
motion has been examined seriously in a number of countries, and in France
a tidal power generating station has been successfully established at
La Rance. In Great Britain investigation has concentrated on the pro-
duction of energy from tidal flow in the Severn estuary, and a recent
Government report [11] has concluded that a barrage across the River Severn
could be beth technically and economically feasible. As expected with
such a large engineering scheme, the arguments for and against the project
have been hotly debated. To evaluate the tidal power scheme accurately
it is necessary to calculate both the detailed component costs and the
total attainable energy output, and assessment thus poses an extremely
complicated optimization problem.

In this paper we develop global techniques which use the mathematical
theory of control to investigate strategies for maximizing average power
production from tidal schemes. In other studies [[21 (81 [11] {121 [22]
energy absorption figures for such schemes are computed primarily fram
simple linear models of one-dimensional flow in a rectangular basin.
Wilson [22] examines the optimizaticn of plant items, but does not include
dynamic effects of flow in the basin in his analysis. Count [ 8 ] derives
optimal constant controllers for maximiiing power output using a dynamic
model with and without pumping, but in his scheme the control parameters
are not allowed to vary with time. A’ describing function method is used
by Jefferys [12] and Berry [ 2] to examine time-dependent controls with
switches for a similar linear dynmamic model, but in their work it is

assumed that the flow parameters all vary harmonically with the tidal period



at a single frequency. This technique is therefore limited in not taking
full account of all harmonic effects and is difficult to generalize to
more sophisticated system models.

In the approach which we examine here, optimal control theory is
applied to the full tidal power problem, and time-dependent strategies for
maximizing energy output are determined using dynamic system models. This
technique allows both the nature of the estuarine flow and fixed data for
items of plant, such as turbines, sluices, barrier sites etc. to be taken
into account while optimizing the engineering control parameters. To
illustrate this approach we develop four models of the tidal power problem,
each of greater complexity and greater accuracy than the previous.

The first of these models was originally introduced by Dr. B. Count
for CEGB at the initial UCINA Meeting in January, 1980, and was subse-
guently investigated by Mr. N. Birkett in fulfiliment of the requirements
for the Master of Science degree at Reading University [ 3 1. This model
does not represent tidal power schemes satisfactorily, but it does provide
insight into the optimal contrel formulation of the problem and into
appropriate solution methods. The second model more realistically
describes controlled flow through a barrier but does not incorporate
dynamic effects in the estuary. The system, in this case as in the first
model, is represented by an ordinary differential eguation, and the corres-
ponding optimal control problems have a number of characteristics in common.

For the remaining two models, dynamic effects in the estuary basin
are taken into account and partial differential system equations result.

In the simpler of these cases, rectangular estuaries only are considered,

so that the system coefficients are constant, while in the more sophisticated
model, general estuary shapes with varying depth and cross-sectional area

are treated.

Numerical methods are required for the solution of the model problems,



and we discuss here the development of appropriate computational techniques
for each case. Two features are treated - thelnumerical solution of the
differential system equations and the optimization of the contpol functions.
For each model different.techniques are necessary. (
Investigation of the latter three models has been carried out at
Reading University-udrider the support of an SERC CASE award with CEGB, and
results are reported in full detail elsewhere [4 ] [ 5]. The feasibility
of a global optimal control approach to the tidal power problem is estab-
‘lished by this research, and further extensions of the techniques described
here have been, and are continuing to be made to more realistic models, with

the support of CEGB and SERC. Some preliminary results for the extended

cases are given in [6].



2. MODEL I - OSCILLATING SYSTEM

2.1 Faormulation of the Problem

As a simple model of power generation, we consider the output obtained
from a damped oscillating system. The system acts under an applied
external force which can be controlled by switching the force on or off.
The objective is to select the switching policy which maximizes the energy
produced hy the generator.

Mathematically the output y(t) of the generator is given by the
scalar second-order linear system equation

my + (n + Ky + by = glt) , (1)
where m 1is a mass associated with the system, n and k are natural
damping constants associated with friction and the application of an electri-
cal load, b is a constant associated with various "spring forces" in the
generating system, and g(t) represents the external force providing the
power. (A1l constants m, n, k and b are positive quantities and
b > (n + k)2 is assumed.) The energy E produced by the generator aover
time interval [0, T] is given by

T
E = f ky2 dt . (2)
0
The power generation problem is then defined as follows:
Given the initial state (y[O], 9(0]] of the system, determine

the partition

of the time interval [0, T] which maximizes the output energy
E, given by (2}, over all ™ (any NJ), subject to the system

equation (1) where

glt)

F, sin wt, for t e [t., t. ], j e J
0 30 geat (3)

=Q, for t e [tj' tj+1]' jéJ,



and J is any subset of the integers {0, 1, 2, ..., N-1}.
The sinusoidal form of the forcing function is choser to model the behav-
iour of a tidal flow force, but other forms for this function may be taken.

To apply optimal control theory we reformulate the problem by intro-
ducing a bounded scalar control function u = u(t) which determines the
proportion of the external force that is applied at any moment. The
differential equation (1) is then scaled and rewritten as a first order
system. For convenience the system parameters are also simplified and we

make the following definitions:

x1(t] = y(t) , ' x2(t] = y(t) ,

K = n/m = k/m, P2 = b/m . Fg/m = 1

It is assumed that P =2 K > 0.

The optimal control problem then becomes

T T
max E(u) = 3 I X Qx dt (4)
u 0
subject to
X = Ax + Bu , (5)
x(0) = *q given, (6)

where x = [x,(t], xz(t)]T and

[o o], A-= [ o 11, B=[0 ],

[o 2K P2 -2KJ [Ftt]J

with f(t) = sin wt, w < P. Admissible controls are assumed to belong to

fa]
1

the set Uad of measurable functions on [0, T] satisfying (a.e.)
ult) e @ = [0, 17 . (7)
We note that for any admissible control, the system equations (5)-(6) have

a unique continuous solution and that (4)-(7) forms a classical constrained



"linear-quadratic” optimal contreol problem.

The controlled proportion u(t) of the applied external force is
allowed to vary over the entire closed, continuous interval ro, 11. At
first sight this problem is not strictly equivalent to that initially
described. In the next Section, however, we derive necessary conditions
for the solution which show that the optimal control u*(t) maximizing the

energy E must be a "bang-bang” control, that is

u* =1 for t e [tj, vl 5 g @d

J+1

0 for t e [tj, t, .1, jé3J

J+1
with some choice of J. The solution of the optimal control problem is
therefore equivalent to that of the problem first formulated.

2.2 Necessary conditions for the Optimal

Necessary conditions for the solution of the optimal control problem
(4)-(7) can be derived using either Pontryagirs Maximum Principle or a
Lagrangian argument. We begin by applying the Maximum Principle in order
to establish the "bang-bang” nature of the optimal control. The following
theorem provides the required result [19]:

Theorem For control u with corresponding response X, satisfying (5)-(6),
to be optimal, it is necessary that there exists a non-vanishing vector

(AD’ Aﬁt]) with AO 2 0 such that if the Hamiltonian H is defined by

H(x, u, A) = Ao%ﬁTQE + ET[AE + Bu) (8)
then A(t) satisfies
A= awax = aax - ATA (8)
AlT) =0 . (10)
~and
Hix, u, ) = max H(x, v, A (a.e.) on [0, T] . 1)
vel0,1]

We note that, given wu, equations (5)-(6) and (3)-(10) together



form a 2n-dimensional linear two-point boundary value problem. The
optimal control u must satisfy the Maximum Principle embodied in (11),
that is, u must be such that

ATBU = max ATBV ’ 0<t=s<T, (12)

vel0,11

and, therefore, u takes the form

u-=[1 T 20
if A8 = Xzf[t] (13)
0 <0
The optimal control thus lies bn the boundary of the constraint set  of
admissible values and is.therefore a "bang-bang" solution as required.

An exceptional case arises if AjB = 0 over any (measurable) sub-

interval of [0, T], called a singular arc. On such a subinterval u is

not defined by (11), and the optimal control may take interior values with

0 <u <1, as determined by the condition

a

(A'8) =0 . : (14)

|

w8

t

A further necessary condition [ 7 ] requires, however, that in such a case

3 (d? . T
B -B—U(Ez[—l- B]] < 0 (15)
must also hold for E(u) to be maximized. For problem (4)-(7) it can be

shown that, provided f(t) is zero only at isolated points, then {15)
cannot be satisfied along a singular arc. We conclude for this problem
that the optimal solution contains no singular arcs, and is strictly
"bang-bang”.

Existence of an optimal solution to the control prablem (4)-(7) can
also be demonstrated for any continuously differentiable forcing function
flt). Since the restraint set 9 is non-empty, convex and compact, and
the system equations (5) are linear in x and u, the responses x(t)
satisfying (5)-({6) over all admissible controls ult) e Uad are uniformly

bounded, that is



max |§(t]| X <o, (16)
tel0,71]
n 1
where |x(t)} = ) x%[t] * . It follows then from [17] (Theorem 1,
1

Chapt. 1) that there exists an optimal control belonging to Uad'
To solve the optimal control problem (4)-(7) we look for a piecewise
constant éontrol U such that the two-point boundary value problem
(5)-(6), (8)-(10) together with (13) is satisfied. Solutions are
obtained by an iterative process described in the next Section. To
establish the convergence of this process the gradient behaviour of the
functional E(u) 4is required, and it is therefore instructive to examine
also the Lagrangian method of establishing necessary conditions for the
optimal.
The Lagrange functional associated with the problem (4)-(7) is
defined by
T i .
L{u) = [ X Qx + A (Ax + Bu - x) dt (17)
0
where A(t) are Lagrange multipliers. For an admissible control u to
be optimal it is necessary that the first variation §&L{u, v - u) of the
functional L 1is negative for all admissible controls v, where &L 1is

defined to be linear with respect to éu = v - u and such that

L{v) = L(u) = 8Llu, 6u) + ol|v - u]) , (18)

(see [ 91). If we denote the difference between responses of the system
(5)-(8) to controls v and u by &x(t), then taking variations and
using integration by parts we find that
T T T
L{v) - L(u) = JO A BSu + 36x Q8x dt , (19)

where A satisfies the adjoint equations (9)}-(10), and thus



i T
SL(u, 6u) = I A'B 6u dt .
0

Assuming that x(t) satisfies (5)-{6), then the first variation of L
with respect to u equals the first variation off E and we may write

8L(u, 6u) = <VE(u), 6u> , (20

)

T
where <<, *> is the inner product <p, g> = f p(t)q(t)dt and the function

0
space gradient VE(ul)(t) = AT(t]B.\ For the control u to be optimal,

then, it is necessary that
T T
<VE(u), v - uw> = [ AB(v - uldt <0 (21
0
for all admissible controls v, and therefore u must take the piecewi

constant form (13), as previously derived (see also [181).

2.3 Solution of the Optimal Control Problem

To solve the optimal control problem (4)-(7) we use an iterative

technique for determining a piecewise constant admissible control u of

form (13) with corresponding response x and adjoint A satisfying the
system and adjoint equations (5)-(6) and (9)-(101}. The iteration is
described by the following:

Algorithm 1

Step 1. Choose uO € Uad’ piecewise constant, such that J][t]: =0
v t e [0, Tl.
Set E_1: = 0.
Step 2. | For k=20, 1, 2, ... do

Step 2.1. Solve

oK K K Kk
(i) x =Ax + Bu, x (0) =

. K -
(1) 2% = -An" - o, ANm -0

)

se

or
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Step 2.2. Evaluate

.
K
E & = J 3k Tk g

step 2.3. If E° - €' <tol then goto Step 3.

0 otherwise
Step 2.5. CONTINUE
Step 3. Set u: = uk and STOP.

The algorithm generates a sequence of admissible controls {uK} for

which the functionals Ek = E(uk] are monotonically non-decreasing. It

-
is easily seen from (18) that if uk 1 is given by Step 2.4 and §F+1 is
the corresponding response, then
k+1 k T kT k+1 k k+1 KT k+1 K
E - E = A Blu - u) o+ 3(X - x 1 Qx = x)dt 20, (22)

0
since @ 1is positive semi-definite. The sequence {E%} is also bounded,

since the responses ik satisfy (16), and therefare, there exists E*

, k.
such that 1lim E(uk] = E*.  Furthermore there exists a subsequence {u 9}
, K Koo k.
of {u'} such that u J converges weakly to u* ¢ U_,, since U is
ad ad K
J

weakly compact (sequentially) (see [17], Lemma 1A, Chapter 2), and x

converges uniformly to x*, the response to u*. It follows that
E* = E(u*), and the iteration process described by the algorithm is con-
vergent.

It remains to show that the limiting control u* satisfies the
K.
necessary conditions for the optimal. From the weak convergence of u J.
K.

we have that A_J converges uniformly to A*, the adjoint corresponding

to u*, and therefore
K. k.
lim < VE(u 93, u - u J> = <WE(W*), u - u*> (23)
K =

J



(i

K+1

for all wu € Uad' But, by the definition of u and the convergence of
{Ek}. we have
k k T kT k+1 k k+1 Kk
sup <VE(u J, u - u> <= I A" B(u - uJ)dt £ E - E™ {(24)
uel 0
ad
and  lim(E*T - €%y =0 . (25)
k>0
We conclude then that
sup  <VE(u*), u - u*> =<0, (26)
uel
ad

as required. We note that the algorithm could also.be stopped when
<2Eluk], uk+1 - uk> = fT ABTB[UK+1 = uk]dt < tol , (27)
0
that is, when uK is close to satisfying the necessary conditions for ‘the
optimal.

We observe that Algorithm 1 defines a function iteration, and in
practice it is necessary to discretize the procedure in order to compute
the iterates numerically. The interval [0, T] 1is partitiomed into N
steps of length h = T/N, and solutions are determihed at the mesh points
tj = jh. A finite difference technique is used in Step 2.1 to solve the
state and adjoint systems, and a guadrature rule is used in Step 2.2 to
evaluate the functional Ek. The differential equations are approximated
on the mesh by the trapezoidal difference scheme and the functional is
approximated by the trapezium rule. The state equations are integrated

forward from x{0} = and the adjoint egquations are -then integrated

x Xg»

backward from A(T) = 0. Since the system equations are linear in X

and A, the trapezoidal scheme can be written as a one-step "explicit”

method, and, since meshes with constant step-size are used, no interpolations

between mesh point values are reguired. The discrete equations for Step 2.1

and Step 2.2 are thus given by
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Step 2.1°
(1) xpe = x(0)
k N _ _1 1 k 1 K k
X54q% * (I - 3hA) '[(I + 2hA]§_j + 2h[Bju, + B,+1uj+1]] ,
j=1,2, » N ;
. k., _
(ii) Ay =0
k. _ TN LT S Kk k
Aj"']. = (I ihA') '[{I + 3bA )A\] Z[Q‘&J g Qﬁ‘]_,])] »
j = N-1, N-2, » 1, 0 ;
Step 2.2’
N ” T
EK+1: = ih z 5& QXK >
3=0 J J
where u% 3 uk[t.], x% = xk[t.), AK = Ak(t.) and B, = B(t,). The discrete
J 0= T =0 BT S §) ] J J
values of the control are determined in Step 2.4 at each point t of the
= —=h = ]
k+1 \ k k+1 .
mesh by uj =1 if Aj B =20, and uj = 0 otherwise.

Both numericéal imtegrations (i) and (ii) are absolutely stable since
the eigenvalues ui of A are just u1’2 = -K % i/ﬁz_:—izl and therefore
Re[ui] < 0, which is sufficient for absolute stability [16]. The scheme
is only second-order, but since very little storage is required, and the
computations are simple, it is feasible to take very small step-sizes in

order to achieve high accuracy.

2.4 Numerical Results

The numerical procedures were tested for various choices of the
parameters P, K and also for different choices of the forcing function
flt). In most calculations the value of T was taken to be w, and the
initial approximation was chosen to be uU =1 on [0, T]l, so that the

result from the first iteration corresponded to the uncontrolled system.

Experiments were also performed with initial approximations containing up
to 100 switch points, in order to determine whether the converged results

were affected by the starting choice.
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In all cases tested the numerical value of the functional E(u) in-
creased at every iteration until consistent values were dbtained, and the
switch points, which essentially determine the solution, were a}so seen to
converge. These results are illustrated in Table 1 for the case P = 2,

K =1 = 0, f(t) = sin t, h = w/800. Solutions in all cases were

» X5 =0
computed for a decreasing sequence of mesh sizes h. Convergence was
observed and consistency was achieved for sufficiently small h (with a
sufficient number of iterations for convergence of the functional). Table
2 shows the converged values of E. for various meshes with N steps, to-
gether with the number of iterations required for convergence.

It was also ?ound that the initial choice wu did not affect the
final result of the iterations and that the qualitative behaviour of the
numerical solutions was as expected. In Figures 1 and 2 solution curves
are shown for different values of P and K with Ff(t) = sin t. In
the first case the optimal control contains only two switch points, but in
the second case, where P >> K, the optimal control switches on and off
at approximately the same fregquency as the natural frequency of the state
system (P/2m cycles per unit time). Similar behaviour is seen in
Figure 3, which shows solution curves for the same system with forcing
function f(t) = sin t + % sin 2t + sin 3t. This type of behaviour
agrees with the intuitive expectation that the control should exploit
resonance effects in order to obtain maximum energy.

The most significant conclusion regarding power generation that can
be reached from these results is that the energy which can be extracted from
an oscillating system of type (1) can be more than doubled with the use of
an appropriate control strategy. In Table 3 the energy from the uncon-
trolled and optimally controlled systems for various P, K and f(t) = sin t
are shown. For the simple harmonic forcing function large improvements

can be made in the maximum average energy produced; similar, but smaller
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Table 1. Convergence of Iteration

P=2, K=1, h = /800

Iteration no. E(ukl .Switch points
i i)
k =0 0.593 0 0
1 0.1011 0.0480° 2.2044
2 0.1035 0.5541 2.1306
3 ~0.1039 0.5751 2.1003
8 0.1041 0.5768 2.0711
g 0.1041 0.5746 2.0707
10 0.1041 0.5746 2.0707

Table 2. Convergence of Discretization

No. of Mesh Steps E(u*) No. of Iterations
100 0.1025 B
200 0.1034 5]
400 0.1038 8
800 0.1041 10
1600 0.1042 12

Table 3. Comparison of Energy Production

P K E uncontrolled E optimal
2 1 0.0593 0.1042
10 1 0.0002 0.0472
20 2 0.00002 0.0330

2 2 0.0515 0.0750

4 4 0.0132 0.0269

10 10 0.0013 0.0036
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improvements, are achievable for less regular forcing functions.

2.5 Generalizations

The optimal control problem (4)-(7) discussed in the previous sections
is a linear-quadratic problem with a single input, that 1is, a scalar
control. All of the theory and numerical procedures developed for this
case also apply to the general multi-input optimization problem

T T
max E(u) = %f x Qx dt , (4')
u 0

subject to system equations

8_= Ax + Bu, x(0) = Xq o ' (5')-(6")

where ( 1is positive semi-definite, B = B(t) is a continuously differen-
tiable matrix function of full rank for all t,” and u is an m-dimensional

measurable control vector (m £ n) on [0, T] such that (a.e.)

0 <u,(t) =1, i=1,2, ..., m. (7')

The necessary conditions imply that the optimal control is component-wise
"bang-bang"” in nature, aad the switches occur where the corresponding
components of VE(u) change sign. {(There are no singular arcs, provided
BTQB is singular only at isolated points.) The techniques developed are

applicable, therefore, to a wide range of general problems.
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3. MODEL II - FLAT BASIN

3.1 Formulation of the Control Problem

The oscillating system model described in §2 provides insight into the
formulation and solution of optimal control problems in power generation,
and shows that energy extraction can be greatly enhanced by the use of an
appropriate control strategy. This model does not, however, represent
satisfactorily a tidal power generating system in which energy is extracted
from flow across a barrier.

To model the tidal power problem we start with a simple one-dimensional
system consisting of aﬁ estuary with a barrier at the origin, and a basin
upstream of the barrier, as shown in Figure 4. The surface elevation
above mean height is assumed constant throughout the basin at any point in
time; that is, dynamic effects in the basin are ignored and the basin
surface is assumed to remain flat. Flow is permitted across the barrier,
through turbines only, and the influx velocity is assumed proportional to
the head difference between the tidal elevation on the seaward side of the
barrier and the surface elevation in the basin. The control determines the
proportional discharge across the available turbines.

Mathematically, then, the influx velocity u is given by

0
Uy = alt)[Ff(t) - n(t)T , (28)
where ol(t) is the influx control, which is bounded such that 0O < o < ag
for all t, n(t) 1is the basin elevation above mean and f(t) 1is the tidal

elevation above mean. By the laws of conservation we must also have

u. = n(ti/h , (29)

where £ is the length of the basin and h 1is the mean depth in the basin.
Solutions of the system equations (28)-(29) may be determined over any
interval [0, T], starting from any initial state of the system. For

the tidal problem we are specifically interested in a tidal period, however,
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where the forcing f(t) 1is a dominant harmonic of form

f(t) = F0 cos wt , w = 2n/T , : (30)

with period T = 12 x 3600s. We therefore expect to find "steady-state”
solutions to the system equations which are also periodic on [0, T1, and
we impose the boundary conditions nf{0) = n(T) on the problem.

The instantaneous power output from the turbines is assumed proportional
to the flow times the head difference, that is, « uD[f(t] - n(t)], and
the average power generated over time interval [0, T] is therefore given
by

= S (T

F - pgTJ a(t)[F(E) - n(£)12 dt , (31)

0
where S 1is the surface area of the barrier, g is gravitational accel-
eration and p is the filuid density.

The optimal control problem is then to determine the control ao(t)
which maximizes the average power P subject to the system equations and

boundary conditions. The equations may be normalized with respect to time,

and the optimization problem is then given by

f1
max E(a) = J a(t)LF(t) - n(t)12 dt , (32)
ael 0
ad
subject to
no=Kalt)[f-nl, K =hT/%, (33)
n(0) = n(1) , (34)
where Uad is the set of measurable functions a(t) on [0, 1] such that
(a.e.)
alt) ¢ 9 = [0, aD] . (35)

3.2 Conditions for the Optimal

For the control problem (32)-(35) to be well-posed, it is necessary that,

for any given admissible control function alt) € Uad‘ the system equation
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(33) together with boundary condition (34} must have a unigue solution,
continuously dependent on the data of the problem. If this can be shown,
then necessary condltions for the optimal can be derived using the Maximum
Principle or the Lagrange technigue, and the existence of an optimal control

a*(t) e Ua can be established by the same arguments as used for the

d
oscillating system in §2.
The system equation (33} is linear in the state variable n(t) and it

is easily demonstrated, therefore, that for any al(t) e Uad with

1
f o(s)ds > 0, that is a(t) Z 0, the unique solution of (33) is given by
0

oty I -1 t
nit) = ———=——— | ¢(1)¢ (s)Kal(s)flslds + ¢(t) ¢ (s)Ka(s)f(s)ds
5 | .
(36)
(t
where ¢(t) = exp(- J Kal(slds). The case o = 0 is trivial in the sense
0]

that no fluid crosses the barrier and no power is generated, and it may
thus be disregarded. From the expression (36), it follows that if the
forcing function f(t) is continuously differentiable and bounded on

(0, 11, then the response n(t) of the system (33) is uniformly bounded
over all non-trivial o € Uad (see [4 1), and a (non-trivial) optimal con-
trol belonging to the set of admissible controls exists.

From the Maximum Principle we find that a necessary condition for an
admissible contral af(t) and its response n(t) to be optimal is the
existence of an adjoint X(t) satisfying

; = Kal(t)x + 20(t)[F(t) - n(t)] ) (37)

Al0) = A1) (38)
and such that

H = alf - n]4 + AKalf - nl

is maximized with respect to a € § for t e [0, 1]. Hence the optimal

is "bang-bang"” in nature and is given by
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alt) = fa, if [f - n1Z + KALf - nl 20, (39)
0 otherwise .
The Lagrangian for problem (32)-(35) is defined by
1 -
L(a) = J alf - nl4 + AKalf - nl - n) dt (40)
0 .
and, taking variations, we find that if n(t) and A(t) satisfy the
system and adjoint equations (33}-(34) and {(37)-(38), then
1
L(B)-Llaw)= | (LF - n12 + KALF - nl)éa
0
- (20f - nl + KA)Sadn + al(8n)? + Sa(én)? dt (41)
where B is any non-trivial admissible control, 8o =B - a and &n is
the difference between the responses to controls B8 and o. The first
variation is therefore given by
1
8L = <VE(a), B - o> = J (Lf - n]2 + KAM[f - n])(B - a)dt (42)

0

which is non-positive for all B8 € Ua only if al(t) satisfies (39].

d
The optimal control must, thus, be piecewise constant with values at the
extremes of the constraint set § and switches at zeros of the function
space gradient

VE(a) = [f - nl% + KALf - nl . (43)
We note that provided the derivative of the forcing function, %[t), has
only isolated zeros, the optimal solution can contain no singular arcs,
since VE(a) = 0 over some sub-interval of [0, T] .implies that either

f=z0, or f=n and therefore, from (33) ﬁ %, on that sub-

0

interval, which contradicts the assumption on F. The existence and
general "bang-bang"” nature of the optimal control is thus established.

3.3 Numerical Solution of the Control Problem

To determine an admissible control ult) with corresponding response

n(t) and adjoint A(t) satisfying the necessary conditions (33)-(34),
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and (37)-(39), we again use an iterative technique similar to that defined
by Algorithm 1. If we have an approximation ak to the optimal control,
with response and adjoint nk, AK satisfying the system and adjoint equa-
tions (33)-(34) and (37)-(38), then we may choose a new approximation

RRLPR if VE(L™) = 0

(44)

0 otherwise,

where VE(a) is given by (43). This selection maximizes the first varia-

tion <VE[aK], &k+1 - aK> of the functional (32) over all possible choices

&k+1. The energy functional (32) is not now quadratic, however, and

it can be seen from (41) that E(dk+1] - E[ak] = L[dk+1

necessarily non-negative for this choice of &k+1. It can be shown, how-

. . . k+1 [ k+1 k
ever, that there does exist an admissible control o = a + 6(& - o )

for some O e [0, 1] such that E(ak+1] > E(uK] (see [101). We can there-

for

] - L[ak] is not

fore construct a sequence of controls {ak} for which the functionals

Ek = E(uk] are monotonically non-decreasing. Since the responses nK are

continuously dependent on the controls ak and are uniformly bounded for

all (non-trivial) o € U we can again show that the sequence {EK}

ad’

is bounded and convergent. As in the case of the oscillating system, there

also exists a subseguence of the controls which converges weakly to a (non-

trivial) limit a* € Uad such that
. k
Lim E = E(a*) , (45)
ko0
and
sup <VE(a*), a - a*> <0 , (46)
oel
ad

for all admissible controls o, and o* satisfies the necessary condi-
tions for the optimal.

In order to obtain periodic solutions to the state and adjoint equations
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(33) and (37) for each ak, inner iteration procedures are used. We
define the processes

m+1

@) = a1

n
o
-
-—
-
N
-
.
-

F(r™@) , m (47)

AT

ATy = (AT}, ¢

u

o
-

-—
-

N
-
-

(48)
where F(n(O]) and G(A(1]) are the solutions of the differential equa-
tions (33) and (37) with given initial data n(0) at t =0 and A(1)

at t =1, respectively. The operators F, G can be written

1
F{nt®)) = ¢t1Into) + f 0136 1 (s)als)f(s)ds , (49)
0
! -1
G(A(1)) = w(oIA(1) + f v(0)y (s)2als) (f(s) - nls))ds , (50)
0
i 1
where ¢(t) = exp(- f Ka(s)ds) and y(t) = exp(- J Ka(s]ds), and it .can
0 t
be seen that since
[FO) - Faw) | < ¢ |v - w| , 0 < ¢(1) <1, (51)
{6(v) - Gtw)| < 9@ |v -w| , 0 <y <1, (52)

the operators F and G are both contractions (see [13]). The iterations (47)

and (48), therefore, both converge to the unique fixed points Ng» A1 of

the operators, and the solutions of the equations (33), (37) with initial

data n(0) = Ny» A(1) = A1 thus also satisfy the periodic boundary condi-

tions

= n(0), A(0) = G(X,) = X, = A(1) . (53)

n(1) = F(nol = 1 1

o
The complete function iteration procedure for determining the optimal
control is described by the following:

Algorithm 2

o]

Step 1. Choose ao e U piecewise constant such that o = 0, or aO ’

ad’
v t e [0, 1].

Choose nO[D], AO[1).
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Step 2. For k: =1, 2, do
- -1
Step 2.1. Set o = o1 8(a" - o )
- -1
Step 2.2. Set #°(1): = n* @),  2%m@): = Ay
Step 2.3. For m: = 1, 2, do
Step 2.3.1. Solve &" = Koa'[f - a™, #™@) = 8" (1)
-1
Step 2.3.2.  If [8"(1) - 4" (1)] < tol then set n" = H"
and goto Step 2.4.
Step 2.3.3. CONTINUE.
Step 2.4. For m: =1, 2, gg
Step 2.4.1. Solve A" = KakAm + Zak[f - nk], A1) = Am_1(0]
Step 2.4.2.  If [A"(0) - A" (0| < tol
k _ Tm
then set A = A and goto Step 2.5.
Step 2.4.3. CONTINUE.
Step 2.5. Evaluate
vER: = e - n"32 4+ kafre - 0T
K T K
E': = a [f - n ldt .
0
Step 2.6. Set & s = (1 if VE* =0,
0 otherwise
K Lk+1 K
Step 2.7. If <VE', & - o > < tol then goto Step 3.
Step 2.8. If Ek < EK—1 then set 6: = 6/2 and goto Step 2.1.
Step 2.9. CONTINUE.
Step 3. Set a: = ak and STOP.

In practice the function iteration described by Algorithm 2 is replaced

by a discretized process.

length h
The initial val

finite differen

1/N

The interval [0, 1] 1is divided into steps of

and solutions are determined at mesh points tj = jh.

ue problems in Step 2.3.1 and Step 2.4.1 are solved by a

ce method using the trapezoidal scheme, and the functionals
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k k .k+1 Kk .
€ and <«VE, & -0 > are approximated in Step 2.5 and Step 2.7 by

the trapezium quadrature rule. The difference approximations are

given by =
~m _ ~m-1
nOJ = My ) (54)
~Mm 1 K -1 _1 Ky~m 1 k k -
nj+1 (1+5Khaj+1] [(1 thaj]nj + §Kh[aj+1fj+1+ajfj]]. J=1,2,...N
and
~m, _ m-1
AW A (55)
~m 3 -1 kyvm Kk 3 K k
A, ¢ = (1+iKh ) [(1-3Kha[)X, = Kh (f -n, +o,(f,-n, 5
-1 LU #Kha X (“3-1 3-1 "3-1) o (fy nJ))]

j = N-1,N-2,...0

and the quadrature rule gives

Ny
% =h o |f, - n?l : (56)
3=0 J J
and
N"
weR, a1 - g% o= p VovekEtt - ot {57)
120 Jd J J
J
where a?, &?, n?, A?, VE? are approximations to the values of

a, d ,n., A and VEk at the mesh point tj‘ and fj = f{tj).

The discrete values a? and a? are determined in a natural way in

Step 2.1 and Step 2.6.

The difference schemes (54} and (55) are both absolutely stable and
the iterations of Step 2.3 and Step 2.4 both converge to the solution of
discrete periodic boundary value problems which approximate the state and
adjoint systems (33}-(34) and (37)-(38). The difference schemes are
technically second-order, but since the first derivative of the state
variable n generally contains discontinuities, we cannot expect
second-order asymptotic behaviour in this case. It can be shown,
however, that the schemes for this case are at least first-order

accurate (4] and therefore are convergent as h - 0.
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3.4 Results

Solutions to the optimization problem (32)-(35) were computed

using the numerical procedures discussed in § 3.3 with data typical of

the Severn Estuary. The parameter values are given by
T = 4.32 10" S.
£ =5 x 10" m. (58)
h = 15 m.
S = 22.5 10" m2 .

With this data K 12.96 for the normalized problem, and the imposed
tidal elevation is given by f(t) = cos 2nt . The maximum discharge
across the barrier depends on ag - which is typically in the range

0.1sa, £1. The average power in watts is determined from
P = pgSFPEla) . (59)

Solutions were also obtained for other representative values of
the parameters K and a5 in order to examine the behaviour of the
numerical procedures. In all tests it was found that Algorithm 2 was
convergent and required less than twenty iterations to reduce the first
order correction to the functional £ to 1% of its value.

Frequently the choice 6 = 1 was sufficient throughout the iteration.
The soluticins were also observed to converge as the discretization
step h >0, in all examples. Typical solution curves are shown in
Figure 5 for the data (58) with 8y = 17 and h = 1/400.

The optimal constant control for the problem (32)-(35) is
derived by Count [B81]1 as alt) = 2r/K in the case ay = 1 . This
choice of oal(t) was taken as the initial approximation for the
iteration procedure, and the average power output for this case and

for the time-dependent optimal solution could be compared. With the

Severn data (58), for the constant controller we obtained



FIG. 5 MODEL II - Turbines only
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E(a) = 0.1212, and for the optimal controller E (a) = 0.2276.
Using the optimal time-dependent control strategy thus gives an

estimated improvement in the average power output from 7000 MW. to

12000 MW. with a tidal amplitude EU = Sm. For other choices of the
data similar increases in power output were observed.

3.5 Generalizations

In practice the flow through a tidal barrier is controlled not
only through turbines but also through sluices. Flow through the
sluices contributes nothing to the instantaneous power developed but
can be used to control the head difference across the barrier and so
increase the average power output. To model the tidal power problem
with- both turbines and sluices we introduce two independent control
functions a1[t] and az(t] which determine the proportionate

discharge across turbines and sluices, respectively, and are bounded

such that

0 s a1(t] < a, s 0 < az(t] < a, - (60)
The influx velocity is then given by

Up = [a1[t] + az(t)][f(t] - nlt)] . {61)

Making the same assumptions as in the case of turbines only, the

normalized power optimization problem becomes

1
max Ela) = J a1(t) [f(t) - n(t)la3dt , (62)
U
LA ad .
subject to
n = [a1 + aZ)K[F - nl , (63)
n(0) = n(1) , (64)
where Uad is now the set of measurable two-dimensional vector

functions o = [a1, aZ]T satisfying (60) (a.e.).

The results of §3.2 are easily extended to the problem (682)-(64),
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and it can be shown that for any non-trivial o € Uad' there is a
unigue solution satisfying the system equations (863)-(64), that the
responses n to (63)-(64) are uniformly bounded for all non-trivial

o e Uyy, and that an optimal control o* € Uad exists. The gradient
function VE(a) 1is now given by

VE(a) = [(f - m)2 + AK(F - n), AK(F - m1, (65)
where the response satisfies the system equations (63)-(64) and the
adjoint A satisfies

A= Loy +oa,] KA+ 20,0 -0, (66)

Alo) = A1) . (67)
Necessary conditions for the optimal are then

a; = |a; if {Zﬁ(g)}i 20, (68)

0 otherwise,
and the control is again "bang-bang” in nature.

In order to find numerical solutions to problem (B3)-(68),
Algorithm 2 is used with appropriate modifications to the state and
adjoint systems and to the definitions of uk, &k, and VEK, which
are now vector functions. The trapezoidal difference schemes and
trapezium quadrature rules are applied to obtain the discretized
algorithm, and the procedure remains stable and convergent.

Typical solution curves for the tidal power problem with both sluices

= 0.2, a, =1.0 and

and turbines are shown in Figure 6. Here a 2

1
K = 12.96. It may be abserved that for optimal power output the sluices
are opened while the turbines are still operating, at the end of the power
generation cycle. This result was not originally predicted. The
average power output obtained is P = 0.1244 péSFﬁ , Wwhich compares to

P = 0.0894 pgSFS obtained with turbines only, assuming a corresponding

value ay = 0.2 for the control constraint. We see that with the more sophi-

sticated dual control system the energy generated can be further increased.



FIG. B8 MODEL II - Turbines and Sluices
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FIG. 7 MODEL II - Ebb Generation
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An additional modification to the tidal power problem can be made
in order to model ebb-generation only schemes. Reversible turbines are
in general less efficient and more expensive than one-way turbines, and
it is arguable that power generation only during ebb tide periods may be
more cost-effective than two-way generation. In the ebb generation only
case, the influx velocity is defined by

u. = o, H(f - n) + az[f -nl, . (69)

1

'8

H(s) = [s if s ¢ 0 .,
h (70)
0 if s

[\
o
-

"

and then the average power is proportional to
¢

E(a) = a, H(f - n) [f - n] dt . (71)

Using the conservation law as before, the optimal control problem is to
maximize E{a) given by (71) subject to n = KuD and n{0) = n(1).
Numerical results using an appropriate modification of Algorithm 2

for the ebb generation only scheme with both turbine and sluice controls

= 0.2, a, = 1.0 and K = 12.96.

are shown in Figure 7. Here a >

1
The average energy developed by the ebb scheme 1is P = 0.0968 pgSFB )
which compares to P = 0.1244 pgSFE from the two-way scheme. The

two-way scheme thus produces about 25% more power than the ebb scheme.

We observe also that for the ebb scheme the sluices are operated

essentially in isolation from the turbines.

3.6 Conclusions

We conclude that the optimal control theory technique developed for
the linear-quadratic power generation problem associated with the
oscillatory system of §2 can be extended to the more general non-linear
tidal power problem and can be applied to a number of different models

representing different energy production schemes. The results indicate
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that large increases in average power output can be achieved by using
the optimal time-dependent control strategies to regulate flow through
the tidal barrier. Estuarine dynamics have not been included in the
models, however, and for realistic estimates of power output from
various schemes, it is necessary to consider the effect of flow in the
tidal basin on head differences at the barrier. In the next section
we consider the application of optimal comtrol theory to more general

models incorporating dynamical behaviour in the basin.
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4. MODELS III-IV - DYNAMIC SYSTEMS

4.1. The Model Equations

The energy generated by a tidal power station is directly dependent
on the head difference between the water elevation on the seaward side of
the tidal barrier and the surface elevation in the basin at the barrier.
The latter is obviously influenced by the behaviour of the flow in the
basin itself, and in order to obtain realistic estimates of pawer output
from a tidal scheme, it is necessary to take into account the effect of
dynamics in the basin. Mathematically the flow is treated as a function
of both time and spatial position, and the system is described by a set
of partial differential equations.

If we assume that the tidal basin is long relative to its depth,
then the simplest one-space-dimensional model of flow in the basin is
given by the linearized shallow water equations [21]:

b(x]nt E —[A(x]u)x
x € [0,2] (72)

C
nn

¢ -gn, - pu/h{x)

where b(x) > 0, A(x) > 0, h{x) > 0 are the mean breadth, mean vertical
cross-sectional area and mean height of the channel, respectively,
2 »>» h(x) 1is the length of the channel, g » 0, p > 0 are gravitational
acceleration and linear friction constants, respectively, n(x,t) 1is the
water elevation above mean height and u(x,t) 1is the horizontal
component of fluid velocity.

As in Model II (§3), we assume that the flow across the barrier (at
x = 0) is controlled through turpines only, and that the influx
velocity is proportional to the head difference between the surface
elevation in the basin, n(0,t), and the tidal elevation, f(t), which
is imposed on the seaward side of the barrier and is taken to be

periodic with period T. At the upstream end of the basin (at x = ]
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zero flow is assumed, and the boundary conditions are thus given as

ulo,t) = alt) [f(t) - nlo,t)] ,
(73)
ulf,t) =0,
where the control function of(t) is bounded such that
0 £o(t) £a_, v te [0,T] . (74)

We also require that the functions n, u are periodic in time with
period T, such that
n(x,0) = n(x,7T) , ulx,0) = ulx, T) . (75)

The average power generated by the flow is now given by

alt) [f(t) - nlo,t)]1? dt, (78)

under the same assumpticns as in the flat basin model (Model II).

The optimization problem is, as before, to find o(t) to maximize
" the average power P , subject to the system equations (72) and boundary
conditions (73) and (75). If we scale‘the variables with respect to

time and space in order to obtain dimensionless quantities, then the

optimal control problem may be written

1
max El(a) = J alt)[f(t) - nlo,t)]1% dt (77}
o U 0
ad
subject to
b(x]nt = -{A(x)u)
X
x ¢ (0,11, t e [0,1] ., (78)
u, = -gn - pu/h(x)
ulo,t) = alt)(flt) - nlo,t)] , ul1,t) =0, (79)
and
ulx,0) = ulx,1) , n(x,0) = n(x,1) , (80)

where the system coefficients p, g, b{x}, Alx), hi{x) and the forcing
function f(t) now represent the normalized system data.

The choice of admissible controls must be considered with some care
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here. If the (non-trivial) function al(t) is sufficiently smooth, then
for all sufficiently smooth initial data

nix,0) = g1(x), ulx,0) = gz(x], (81)
the differential equations (78) with boundary conditions (78) have a
unique continuous, differentiable solution, and we can show that the
system (78)-{80) with periodic conditions, is well-posed (see §4.3).

For less smooth control functions a(t), the initial value problem for
equations (78)-(79) may possess only a weak solution and the necessary theory
for the control problem is difficult to establish. We expect, however,
that the optimal control must contain discontinuities, as in the simpler
flat basin model of §3. Therefore, if we restrict the set Uyg to
control functions sufficiently smooth to guarantee genuine solutions to
the problem (78)-{80), then an optimal control maximizing E(a) and
belonging to U,4q may not exist. On the other hand, if an optimal
control exists which contains only a finite number of finite jump
discontinuities, then we may approximate it as accurately as required

by a smooth control function. We restrict our discussion, therefore, to
bounded control functions which satisfy (74) and are "sufficiently smooth"”
for the initial value problem (78)-(79) and (81) to be well-posed. We
consider as admissible controls only those functions which satisfy these
conditions, or which are limits (in the L2—sense] of such functions.

In practice the solution of the system equations (78)-(80) can be
simplified considerably if it is assumed that the tidal basin is
rectangular with constant mean depth h and breadth b. It is natural,
therefore, to investigate first the model control problem (78)-(80) with
constant coefficients (Model III) and then to examine the more difficult
prablem with variable coefficients (Model IV). The analysis of the
optimization problem is essentially the same for both models, however, and

we describe here the theory for the most general case.
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4.2 Analysis of the Model

For any given "sufficiently smooth"” (non-trivial) admissible control
a(t), the system equations (78) together with boundary conditions (79)
and (80) must have a unique solution, continuously dependent on the data,
in order for the control problem to be well-posed. To show this it is
necessary to demonstrate that the boundary conditions (78) are consistent
with the hyperbolic system equations (78) and that the time periodic
conditions (80) are natural to impose.

For consistency it is necessary that the boundary conditions provide
a unique transfer of values from incoming to outgoing characteristics
of the hyperbolic system at each boundary (see [14]). The characteristics

for system (78) are given by

dx/dt = + c(x) = + YgA(x)/b(x) , (82)
where c(x) represents the local wave speed, and the solutions of (78)
are given by

n = (v + w]//g-, u= (v -w/ YA/b , (83)
where the "canonical” variables v = v(x,t), w = wix,t) satisfy

{locally)l,along the characteristic lines, the equations

dv/dt +c(x) , (84)

-plv - w)/2h(x), along x

I

dw/dt = plv - w)/2h(x), along x = -c(x)
(Here we have assumed dA/dx, db/dx are small compared to A,b and have

neglected higher order terms locally). The values of v, w are therefore

carried into and out from the boundaries along characteristic lines

of positive and negative slope, respectively, and it is sufficient

to show consistency of the boundary conditions (79) in terms of

the canonical variables. The boundary condition at x = 1 1is simply

a reflection condition equivalent to w(1,t) = v(1,t), and the boundary

condition at x = 0 implies

v(0,t) = ((1-00u[t)]w(0,t] + oo/gd(t)f(t))/[1+ooa(t]1,
where o = YA(Q)/gb(0) . The values of
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v(0,t) and w(1,t) are therefore uniquely determined by the values of
v(1,t) and w(0,t), for all t, as required.

The time periodic conditions (80) effectively replace the narmal
initial conditions associated with a hyperbolic system. To demonstrate
that these conditions are natural to impose,in the sense that, in the
limit as t =+ «, the solution of the system equations (78), with
any given initial state, converges to a unique "steady-state” periodic
solution satisfying conditions (73), we use an iterative process
similar to process (47) for computing solutions to the periodic
ordinary differential problem describing the flat basin model (Model II).
The iteration is given by

ET+?G)

where z(t)

2"1) = 6z2"0) , (85)

T
[n(x,t), wulx,t)] 1is the solution of the problem (78}-(79)

]

with initial date 2z = EIO] at t = 0. If the operator G is a
contraction, that is,

|{sz(0) - Gzt0)||_ s K[[z(0) - z(@)|]_, OsK <1, (86)
where H.||s is a suitable norm on L2 {0,1], {(see {151), then
iteration (85) converges to a unique fixed point z* such that the
solution of problem (78)-(79) with initial data z(0) = z* satisfies
z(1) = Gz* = z* and is the required periodic solution satisfying (80).

To show that G 1is a contraction, for any given "sufficiently smooth”
{(non-trivial) admissible control o(t), we denote the difference between
solutions to the initial-boundary value problem by 6z(t) = z(t) - éﬁt)
and define

1
[z(e) 12 = J (bOIn?0x.t) + ALIUP(x,t)/g + k (x)In(x,t))dx, (87)
0

where Ka(X] > 0 has certain properties. [IF b'(x) £ 0 and has zeroes

only at isolated points, then the choice ka= e b(x), where

1 t
e £ min { min YA(x)/gb(x) , 4A(0) J alt)dt/(gb(0) + A(Q) J altldt)} is
X 0

0
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sufficient.) We then obtain. the inequality

d% [loztd] |2 s - a llzte) ]2 + o, ct) (88)

1
where QO > 0 and jD Q1tt]dt £ 0, and it follows that

||agm||;ge'%||55m]||; ; (89)

and, since G 1s linear, the condition (87) is satisfied with

We conclude that for all sufficiently smooth data the model system
equations (78)-(80) are well-posed and we may sensibly look for a
solution to the optimal control problem.

4.3 Necessary Conditions for the Optimal

Necessary conditions for the solution of the optimal control problem
(77)-(80) are derived by the Lagrange technigque. Pontryagin's
Maximum Principle is not directly applicable to problems of this form with
partial differential system equations. With sufficient smoothness
conditions, however, the Lagrangian approach holds no difficulties.

The Lagrange functional associlated with problem (77)-(80) is

defined by

1
Lla) = J a(t) [F(t)-n(0,t)1% + vy(t) (ulo,t)-alt) [F(t)-nl0,t)])dt (90)
0

t1¢1
+ JDJOA(x,t][—bnt—[Au]X] + u(x,t)[—ut—gnx—pu/h] dx dt

Taking variations and using integration by parts, we can show now that the

first variation of the Lagrangian is given by

1
SL(a,8a) = <VE(a), Sa) = J [[F[t]—n[O,t)]2 + A(0IA(O,t) [F(t)-n(0,t)]|8alt)dt,
0
(381)
provided the state variables n(x,t) , ulx,t) satisfy the system

equations (78)-(80) and the adjoint variables A(x,t}, ulx,t) satisfy

the equations:
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b(x]kt = ~8u ’
X x € (0,11, t e [0,1] (92)
ut =+ 'A}\x + p}_—l/h »
with boundary conditions
gu(0,t) - alt)A(C)A{(O,t) = 2a(t)IFf(t) - n{0,E)] , w(1,t) =0, (93)
and
Ax,0) = A(x,1) , p(x,0) = ulx,1) . (94)

(We note that the adjoint equations are well-posed and solutions can be
generated by an iterative process analogous to (85) (i.e. equivalent to
(48) for Model II) using repeated backward integration.)
The higher order variations of the Lagrangian contain terms of order
0(8adn), 0(adn®) and 0(8adn?) and, as in the case of Model II,
cannot be guaranteed to be of only one sign.

For the first variation to be non-positive for all admissible
variations 6o, the optimal control «(t) must satisfy

[£(t) - n(0,t)])2 +

alt) = aO if VE{a)
ATB)IA(O,E)[Ff{t)-n(0,t)] > O ,

0 otherwise , (95)

and the control is expected to contain jump discontinuities at zeros of the
function gradient VE(a). Unlike the system of Model II, we can no
longer guarantee that the optimal solution does not contain singular
arcs, and in practice we find that there exist subintervals in time over
which VE(a) = 0 and the optimal control aof(t) takes interior values
in the constraint set [O,aO].

Existence of an optimal controcl cannot now be easily proved, as
indicated in §4.1. An iterative process for determining a control
which satisfies the necessary conditions can be constructed and shown

to converge, however, as in the case of Model II.
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4.4. Solution of the Optimal Control Problem

To determine an admissible control o with corresponding responses
and adjoints satisfying the necessary conditions (78)-(80) and
(82)-(85), we use first an iteration procedure equivalent to Algorithm 2
for the ordinary differential system of Model II. Given an approximation

ak to the optimal, this method produces a new approximation

I e K ¢ 10.1]

=q + 6°( o), where 6 and

K +1 aO K 20,
o = if VE(a') (96)
0 <0

The selected control ak+1 is piecewise constant and is essentially

"bang-bang” in nature. It can be shown theoretically that for some
selection of the parameters ek this procedure converges, and, in
practice, it is found that a discretized form of the algorithm does
converge, although slowly, provided the parameters ek are small

enough. A sample of the results for a case with constant system
coefficients is shown in Figure 8 . Considerable high frequency
oscillation can be observed in the controls and in the responses. These
arise principally because the required control is not, in fact,
"bang-bang”, but is continuous and lies on the interior of the constraint
set over a proportionof the time interval. The gradient VE(a) should
be identically zero on this subinterval, but the algorithm approximates

it by a sequence of rapid and rather large oscillations about zero. This
algorithm is not suitable, therefare, for the partial differential boundary
control praoblem of Models III and IV, and a modified approach is required.

We consider now the gradient projection algorithm, in which the

new approximation to the control is chosen as ak+1= P(ak + GVE[aK]),
where P is the L2 projection operator onto Uad' The operator P

is characterized by the property
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MODEL III - Algorithm 2
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¢CPv-v, Pv-v>=min<a-v, o-vV>, (97)
o €U
ad
or equivalently [18]
¢v-Pv, a-Pv>s0, VaeU,g- (98)

For the selected control ak+1, we have, therefore,

k+1_ Kk

o >z %—lla (99)

¢ VE(®), @ 5 e ak||§ "

and it can be shown that for some choice of 6, E [ak+4J 2 E[uk] £101]
If the initial approximation ao[t] is continuous, then the algorithm
generates a sequence of continuous controls ak for which the
functionals EK = E(ak] are monotonically non-decreasing, and provided
an optimal solution exists amongst the admissible controls, the process
converges and the limiting control satisfies the necessary conditions.
The complete algorithm is described as follows:

Algorithm 3

Step 1. Choose aU(t] continuous and such that

0sa’(t) sa;, Vte (0,11
Choose 6 ¢ {0,1].
Set EO: =0, VED: =0
Step 2. For k:=20,1, 2, ... do
Step 2.1. Set o7 : = 2" it of + ove® 2 ag -
0, y " 0 ,
ak+ BVEK, otherwise
Step 2.2. Solve the state system (78)-{80) with o : = ak+1
Step 2.3. Solve the adjoint system (92)-(94) with o : = ak+1
step 2.4. set EXT: = BT using (77
vek* s - vee® Musing (951
and 81 @ = < VE[ak], AN ,
where P a, if e 20,

0 otherwise
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K+1

Step Z2.5. If s < tol then goto Step 3.
K+1 K _
Step 2.6. If E £E then set © : = 6/2 and goto Step 2.1.

Step 2.7. CONTINUE

Step 3. Set o : = of' and STOP.

4.5 Numerical Approximations

The numerical solution of the periodic-boundary value problem for the
state system (78)-(80) in Step 2.2 of Algorithm 3 is obtained by a
discrete analogue of the iteration process (85) described in §4.2.

With discrete initial data given at points xj = jAx, 3 = 0,1,..N, for

t =0 and t = At , the system is integrated forward by a finite
difference method (using steps of size At) to obtain solutions at t = 1
and t = 1 + At. The integration is then repeated using these solutions
as initial data. The process is continued until the difference between
the initial and final solutions at t =0 and t =1 is within same
tolerance. The solution of the periodic adjoint system (92)-(94) in
Step 2.3 is obtained by a similar iteration, using backward integration
from discrete intial data given at t =1 and t = 1 - At.

For Model III - the constant coefficient case - the method of
characteristics is used to construct the finite difference approximations.
The characteristics of the state system equations, given by (82), are
straight lines in this case, and the canonical equations (84) can be
integrated discretely by the trapezium method along the characteristics.
If values for the canonical variables v and w are known at points
(x.,tn] and [xj+Ax,tn], then integration along the characteristics
through these points gives expressions for the solutions at the point

i i =] N 1 =
(xj+2Ax, tn+1] on the new time level tn+1 tniijfx where c = vgA/b

is the wave speed, in terms of the known values at time tn' These

L]
expressions are solved together with (83) to give explicit finite



38

difference approximations for the discrete values of n, u at each new
time level, in terms of values at the previous time. {See [ 1) or [20].)
Since the boundary conditions are consistent, the scheme simply transfers
solutions directly from outgoing to incoming characteristics at the
boundaries, and the numerical procedure is stable. For the adjoint
system the characteristics are given by the same equations (82) as for
the state system, and the same technigque is used to give difference
approximations for the discrete values of A, p at time level

t =t - 1Ax, in terms of values at the time ¢t

n n+1 Zc

integration procedure is also stable, and the complete scheme gives a

oy The backward
second-order accurate method.

For Model IV - the variable coefficient case - the method of
characteristics is unsatisfactory as the characteristic lines are now
curved, giving a non-uniform difference mesh which is inefficient for
computation. In this case we use instead a modified version of the
Leap-frog method [20] to integrate the state and adjoint systems (78)-(80)
and 1{92)-(94) on a uniform, staggered mesh. Straightforward application
of the Leap-frog method leads to an unstable scheme due to the friction term
(-pu/h) in the momentum equation, but stability is restored by taking a
time average of this term. Using a staggered mesh avoids certain
difficulties in determining extra boundary conditions, but care must
still be taken in approximating the conditions {73) and {(93) in order to
maintain stability of the procedure.

The difference approximations for the state system (78)-(80) are

then given by

n+1 n-1 n n

b.(n, -n, }=-vA, ,u, -A,u,), j=0,1,..N-1,
i " J*¥173+1 373 J : ]
100

n+1 -1 n n n+1 n-1
u - u, = - vgln, - n, ,) - pAt{u, + u, )/h,,
J J BNy T Ny-1 . J J
j=1,2,..N-1,

with boundary approximations
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+nn J) s u & D . (101)

The difference approximations for the adjoint system (82)}-(94) are

similarly given by

n+1 n-1 n n
b.()\. —)\. ] = =V ( f - .] » =OI1I N_1!
Jd J S S .
(102)
n+1 n n n+1 n-1
. = = = A, [X, - X, ,) + pAt(y, +u, JY/h,,
My u : -1 pAt (n, My
j=1,2,...N-1,
with boundary conditions
gu” - o™ M ATy = 2 - ™ e M), W = o (103)
0 0 N
0 0 0
Here o approximates o at point t = tn' ng, Ag approximate

nix,t), Alx,t) at points x =x, ,, t = tn’ and ug, ug approximate

t =t (i.e. the finite difference

ulx,t), ulx,t) at points x i :

1]
x

meshes are staggered in the space dimension). The values of the system
parameters are given by b, = b(x, ), A, = Alx.,), h, = h(x,), and

J J*s J J J J
o= f(tn). The difference mesh is defined such that ><j = jAx,
j=0,1,2,..N, where Ax = 1/N. The time levels are defined by
tn =nAt, n=20,1,..., where At 1is chosen such that the parameter

v = 2At/Ax satisfies

v < min {b,/gA.} . (104)
: J J
J
The difference schemes (100)-(101) and (102)-(103) can be written in

completely explicit form. Stability for values of the parameter v up

to the Courant-Friedrichs-Lewy 1limit of

v < min {1/c(x)} = min {Vb(x)/gA(x)}

X X

is established by considering discrete "energy” norms analogous to the
continuous norm (87) (with Ka[x] z 0). Convergence of the iterative
processes for determining the periodic solutions of the state and adjoint

equations is similarly proved for the discrete problems with the same
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parameter value. A detailed analysis of the stability and convergence
of the numerical procedures is given in [ 41].

The remaining steps, Step 2.1 and Step 2.4, in Algorithm 3 are

discretized as in Algorithm 2 for the flat basin Model (Model II).

The discrete approximations are all second-order accurate, and as the
data and the solutions are all assumed to be smooth, we expect the
discrete solutions to the optimization problem to converge asymptotically,
with order two, as the mesh size Ax »+- 0, with v = 2At/Ax constant.

4.6 Results

The numerical procedures were tested with various data, in order to
examine the bahaviour of the discrete algorithm. It was found that the
iteration process converged reasonably rapidly and produced smooth
solutions to the problem. If a suitable initial choice of 6 was
made, then © generally remained constant throughout. The solutions
were also found to converge as Ax >~ 0 in all cases.

In order to make comparisons with the results of the flat basin
model {Model II), and also the results of Count [ 8], data typical of the
Severn Estuary was used with both the constant coefficient model {Model III),
representing a rectangular channel of uniform depth, and the variable
coefficient model (Model IV), representing an estuary with variable

cross-section. The data for the constant coefficient case is given by:

b = 1.5104 m
h = 15.0 m
A = bh m?
P - 0.0025 ms (105)
T = 43200.0 s
2 = 5104 m
a = 1.0
(]
flt) =

FO cos(2nt/T).
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Typical solution curves are shown in Figure 9.

The estimated average power output is now P = 0.194 pgA(O]FB
which compares to P = 0.228 pgA[D)FS, obtained with the optimal time-
dependent control in the simple flat basin model, and
P = 0.121 pgA(OJFS, obtained with the optimal constant contreller in the
simple model. The predicted average in the more realistic model is
reduced in comparison with the simple model, but still indicates that
considerable improvements can be obtained by an appropriate control
strategy.

For the variable cross section model, the same data is used,
except that the basin is assumed to become narrower and shallower
upstream of the barrier. The constants b and h are replaced by

b(x) = 1.5(1 - 0.8x), * m, h(x) = 1501 - 0.8x) m. (1086)

The volume in the estuary basin is now reduced, and as expected, the
average power output drops to P = 0.120 pgA(DJFé. Solution curves

are similar to those for the rectangular channel.

4.7 Generalizations

As for the flat basin model of §3, we may generalize the partial
differential model to include dual control of both turbines and sluices,
and to simulate ebb tide generation only.

For the dual control problem two independent bounded control functions
a1(t], az[t] are again introduced, which determine the proportionate
discharge across turbines and sluices, respectively,. The optimal control
problem becomes

1
max E(a) = J a, (t)[f(t) - n(0,t)1? dt , (107)
= 1
[ > Uad 0

subject to differential equations (78), periodic conditions (80) and
modified boundary conditions

ulo,t) = (on,](t] + az(t])[ﬂt) - nl0,t)1, ul1,t) = 0. (108)
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The admissible controls o = [a1, ale are again assumed to be
"sufficiently smooth” for solutions to the system equations to exist, and

are required to satisfy

0= a1(t] < a, 0 < az[t] a5 . (109)
The results of §84.2-4.5 are easily extended to the modified
problem. The gradient function VE(a) now becomes
VE(a) = [[f(t) - n(0,t)1%+ A(D,t)A(D)[F(t) - n(O,t)] (110)
A{0)a(o,t)IFf(t)- nlo,t)]
where n, u satisfy the system equations (78), (80), (108), and A, u
satisfy the adjoint equations (92), (94) and
gu(0,t) - {a, (t) + o, (t))AIAD,E) = 20, (£I[F(L) - nlo,t)],
u(1,t) =0 . (111)

Necessary conditions for the optimal then require that ai(t] takes
values 0 or a; depending on the sign of {YE(Q)}i, i=1,2,
except along singular arcs where the controls may take interior values on
the constraint sets. Algorithm 3 1s easily modified to solve the
extended problem numerically.

for ebb generation only the average power is assumed to be
proportional to

1
Ela) =J a, (LIH(F(E) - n(0,t)] dt, (112)
0

and the influx velocity at the barrier is assumed to satisfy

uld,t) = o, (£) H{FE) - n(0,£)) + a,(£) [F(t) - nl(0,t)] , (113)
where the function H(s) = s if s <0 and H(s) =0 if s z 0.
Certain theoretical problems arise in reproducing the results of
§84.2-4.5 now, since the function H(s) is not smooth at s = 0, and
solutions to the adjoint system cannot be guaranteed to exist. However,
H(s) may be replaced in practice by a smooth approximation which is as

close to H as required for accurate numerical solutions.
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Numerical results for the two-way and ebb generation dual control
schemes are shown in Figures 10-11 for the rectangular channel with data
(105) (Model III). The average power generated is shown in Table 4
for the two-way and ebb schemes, and also for the corresponding turbines
only model. The two-way scheme again produces about 25% more power than
the ebb scheme, and the dual control scheme, with turbines and sluices,
is clearly more effective than the turbines only scheme. Also shown in
Table 4 are the results from Model II, the flat basin model, for the same
three schemes. It can be seen that the results from the simple model
are remarkably close to those of the dynamic model, differing in all
cases by less than 10%. For Model IV, the variable coefficient case,
the predicted average power outputs, given also in Table 4, are
consistently lower than for the Constént coefficient case, as
expected. However, the same general conclusions can be drawn from the

results.

Table 4 Average Power Production

Scheme 1 Scheme 2 Scheme 3

Turbines only Two-way/Dual Control Ebb/Dual Control
Model II 0.088 0.124 0.097
Model IIT 0.082 0.115 0.082

Model IV 0.070 0.086 0.067
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FIG.-10 MODEL III - Turbines and Sluices

oD
-0
9‘. ]
A
a Nlo,)
& .
f Q.—m.v Q.ATU
6 \
-, O 3 5 ) -
¢l'm 0.10 0.20 9.21) 0,0 oM . 0.t 0.73
M\m r ]
h
il
[ :
e _ _~?¢ )
a, = 0.2 a.=1.0
Q 1 2
gt £ = 50000.0 m L/
T = 43200.0 s
0 ~ ‘
A h = 15.00 m
b = 0.0025 ms |
Ax = 1/20
E = 0.1146




-0

FIG.

11

MODEL III - Ebb

Generation

L8 (P
or
a
m-
Al
[
n}
f
tlm
1
“w -
= I
_' )
m\_ . D-N mN = 1.0 m_
m £ = 50000.0 m
T = 43200.0 s :
U h =15.00m
p = 0.0025 ms ]
Ax = 1/20
E =0.1146




45

5l CONCLUSIONS

We examine here four general models of power generation schemes and
develop techniques for determining the maximal -average energy butput of
the schemes using optimal control theory. The first model provides a
simple test example in which power is extracted from an oscillating system.
The remaining models simulate tidal power generation from flow across a
tidal barrage, with increasing degrees of sophistication. The second
model, thus, treats only flow through the barrier, while the third and
fourth models incorporate dynamics in the tidal basin, represented first
as a simple rectangular channel, and then as a channel of variable cross-
section.

The power generation problems are formulated as problems in optimal
control, necessary conditions for the optimum are given, and numerical methods
for computing solutions are developed. For the first model, which
gives a classical constrained linear-quadratic control probiem, a complete
theory is derived,establishing the existence and "bang-bang" nature of
the optimal and guaranteeing the stability and convergence of a fairly .
simple numerical procedure. The same theory is derived for the second
model, but with greater difficulty. It is necessary first to establish
that the system equations are mathematically well-posed, and, since the
cost functional is no longer quadratic, a modification must be made to
the numerical iteration scheme in order to obtain convergence. Inner
iterations are also introduced in order to compute periodic selutions to
the state and adjoint equations at each step of the procedure.

For these first two models the systems are represented by ordinary
differential equations, and "bang-bang"” controls with discontinuous
switches are treated within the framework of the analysis. For the
two remaining dynamic models, the systems are represented by a set of

hyperbolic partial differential equations, and the behaviour of the system
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responses to discontinuous centrols is difficult to predict. With
sufficient smoothness assumptions it is shown that the system equations
are well-posed, and necessary conditions for the optimal are derived.
The optimal is not necessarily "bang-bang” now and may contain "singular
arcs” . Existence of a smooth optimal cannot be shown, but, providing a
piecewise continuous optimal exists, the convergence of numerical
schemes to a solution satisfying the necessary conditions as accurately
as required is established. Modifications of the original numerical
procedure, corresponding to that used for the second model, are needed
to avoid oscillations in the control and system responses which now arise
along the singular arcs.

Generalizations of all the models to systems with multiple controls
are introduced and it is demonstrated that the theoretical and numerical
techniques developed can be extended to a wide class of problems.

Various power generation schemes are simulated, including both two-

way and ebb tide generation schemes and schemes with dual controls for
sluices and turbines in a tidal barrier. The principal conclusion

reached is that with an appropriate control strategy the average power
extracted from the generating source can be vastly increased. For the
tidal power schemes, the introduction of both turbines and sluices gives

an increase in power over schemes with turbines only, and two-way schemes
give approximately 25% greater average energy output than ebb generation
schemes (not accounting for loss of turbine efficiency). The incorporation
of dynamics in the model reduces the predicted power production, but the
estimates obtained from the simple model are reasonably close (within 10%)
of those given by the dynamic model. The predicted optimal strategies are
not altogether obvious, especially in the dual control case, and the
results of the simulations also give valuable information concerning the

control policies to be adopted.
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We .conclude that the optimal control approach to the tidal power
generation problem is a feasible and attractive method for systematically
computing flow control strategies, even for quite complicated dynamical
models. Further studies are now being made using refined models with
more accurate data in order to obtain more realistic power output
predictions. Results have already been obtained for models which
incorporate dynamics in the full estuary, eliminating the assumption that
the elevation on the seaward side of the barrier is unperturbed by the
flow across the barrier. Non-linear head-flow properties have also been
incorporated. Details are given in [B]. To improve the model further,
non-linear effects in the dynamic equations and two-dimensional
phenomena must be taken into account. Extensions to these more realistic
cases are now being made under the joint support of C.E.G.B. and S.E.R.C.,

and it is expected that a global optimization technigue for the complete

tidal power problem can be achieved by this approach.
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