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ABSTRACT

Necessary conditions are given for the problem of pole assignment
by state feedback in singular linear systems (descriptor systems) to have a
solution which is regular and non-defective. For a robust solution, such
that the assigned closed-loop poles are insensitive to perturbations in the system
data, the same conditions must hold. It can be shown that these conditions
are also sufficient for the existence of a feedback which assigns the maximum
possible number of finite poles with regularity. These results provide the
basis of a procedure for constructing closed-loop semi-state systems with given

poles, guaranteed regularity and maximum robustness.

Keywords: automatic control, generalized state-space, semi-state, singular
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feedback, inverse generalised eigenvalue problem.



1. INTRODUCTION

In singular, or degenerate, time-invariant multi-input linear control
systems (desciptor systems), pole assignment by feedback requires not only
that the closed loop system have prescribed poles, but also that it is
regular, and that it is robust, in the sense that its assigned poles are
as insensitive as possible to perturbations in the system data. In this paper
we give a detailed derivation of results which we have previously reported [61

on conditions for the pole assignment problem to have a regular, non-defective

solution. For the existence of a robust solution the same conditions must

hold. These results form the basis of numerical procedures for generating robust

feedback systems with prescribed poles (also reported in [6]1). The procedures

are extensions of earlier techniques which we have developed for robust pole

assignment in non-degenerate systems [5},[8] and are described in detail in [71.
Here we begin by examining open-loop singular systems, and in §2 we

derive conditions for the regularity of a non-degenerate matrix pencil. In §3

we apply these results to closed loop systems and develop the conditions

required for pole assignment with regularity. The theoretical development

is completed in §4, where conditions are derived for non-defective eigenstructure

assignment with regularity. The consequence of these results for the

computation of a robust solution to the state feedback pole assignment

problem is also discussed.



2. OPEN-LOOP REGULARITY

We first consider systems described by the dynamic equations

EDx = Ax 2.1)

where E, A € R and rank (E) = g £ n. Here D denotes the differential

operator d/dt for continuous systems, or the delay operator for discrete
systems. We are specifically interested in the singular, or degenerate,

case where g < n. The behaviour of system (2.1) is governed by the poles,

or generalised eigenvalues, of the matrix pencil A - AE, denoted by (A,E].
Solutions to the equations (2.1) which satisfy given initial conditions are unique

provided the pencil (A,E) 1is regular, that is
det (A - AE) Z O, (2.2)

(regarded as a polynomial in A). It is well-known [13] that a regular

pencil has at most g finite eigenvalues and that the number of finite
eigenvalues is given precisely by r = deg det (A - AE). Furthermore, the
pencil (E,A) then has precisely n-r zero eigenvalues. This is shown in the
following Lemma.

Lemma 1 Assume (A,E) regular. Then (E,A) bhas precisely n-r zero
eigenvalues, where r = deg det (A - AE].

Proof: We let p(A) = det (A - AE) and p(A) = det (E - AA). Then, since
1 n 1
det (A - AE) = det (-A(E - X—A]] = (-)) det (E - X—AJ »

we have pl(A) = -a)" B[%}. Moreover, (E,A) has precisely n-r zero

eigenvalues if and only if p(A) = A"T £(A) where t(0) # 0. It follows that
p(ra) = (-7 t{%} and p(A) dis of exact degree r. o

The eigenvectors of the pencil (E,A) associated with the zero eigenvalues
must belong to the null space N{E} which has dimension g. Thus it follows

from Lemma 1 that the regular pencil (A,E) has g finite eigenvalues if and



only if the zero eigenvalues of (E,A) are non-defective. We have thus

shown
Lemma 2 The pencil (A,E) is regular and has g = rank (E) finite eigenvalues
if and only if

XTE =0 and XTA B ETE for any z € " o v=0, (2.3)

or, equivalently,

Ev =0 and Av = Ez for any z € " o v = 0. (2.4)

- (=
We now derive a stronger condition which guarantees that if the pencil

(A,E) has g non-defective finite eigenvalues, then it is regular. We

write
E = [R.,0] [S..8_1" (2.5)
E’ E’ w
where RE € Rnxq’ RE is of full rank, and the matrix [SE,Sm] is orthogonal.
Then the columns of S_ and S. give orthonormal bases for v{E} and R{ET},

respectively, where N{*} denotes null space and R{+} denotes range. We
use the following simple Lemma.

Lemma 3 If Xq € mnxq, where g = rank (E), then the conditions

(1) rank [Xq] = q, rank (EXqJ = q
(ii) rank ([Xq,Sm]) =n
LV
(iii) rank [SEXqJ = q
are all equivalent.

Proof: Since .the matrix [SE,Sw] is orthogonal we may write

: [T
s'x I
*q
and it follows that XE = ngq is non-singular <=>[Xq,8w] is non-singular

<=> R_X_ = EX and X have full rank.
g g a

EE



We next give a necessary condition for a regular pencil to have
precisely g = rank (E) non-defective finite eigenvalues (multiple or simple).
Lemma 4 If the pencil (A,E) is regular and there exists Xq € mnxq with

rank (Xq] = g = rank (E) such that

AX = EX A , A= {x 2,2} {(2.7)
q q49 g t 1°72 q

where Aj €C Vj, then rank (EXqJ = q, or, equivalently, mank ([Xq,Sm]] = n.

Proof: The first part follows by contradiction. If rank (Xq] = g and

rank [EXqJ < g, then there exists w # 0 such that v = Xqﬂ #0 and Ev = 0.

Then +for 2 E Xquﬂ we have

Av = AX w = EX A w = Ez (2.8)

and the condition of Lemma 2 is violated. The last part follows from Lemma 3.

]
This lemma implies that if the regular pencil (A,E) has g dindependent
eigenvectors, then these eigenvectors must remain independent under the
application of E, or equivalently, no linear combination of them lies in

the null space of E. This lemma also gives, therefore, a necessary condition

for a regular pencil to have g rank (E) distinct (simple) finite eigenvalues.
We now give the main result of this section.

Theorem 1 If there exists Xq € mnxq such that [Xq,Sw] is non-singular

and Xq satisfies (2.7), then the pencil (A,E) is regular if and only if

rank (E + ASmSlJ = n. (2.9)
Proof: From Lemma 3, we find that rank [[Xq,Sw]J= n dimplies XE = S;Xq is
invertible, and then from (2.7) we obtain
A - AE = (E + AS SIIS.,8 1 [ x.A x_'- a1 0] ts_,s 1", (2.10)
o 00’ "OE T Eq E EAek
sTx x_! 1

qu



To demonstrate this result we observe that

(A - AE)IS..S,] = [(A - AE)Sg, AS,1, (2.11)
(E + AS_SLIIS.,S,] = [ES.AS,] (2.12)
and, since & ST =I-98 ST and ES ST = E, we have
’ E°E 000 E%E ~ B

-1 Ty -1
ESg (Xgh Xg = AI) - AS,S.X Xz =

-1
(EXqu . AXqJXE + (A XE)SE i (2.13)

The equation (2.10) then follows directly from (2.7), (2.11) and (2.12).

It is clear from (2.10) that rank (A - AE) = n for X # Aj if and only if
{2.9) holds and the theorem is proved. -
In the next section we apply Theorem 1 to obtain conditions for the
existence of regular solutions to the problem of pole assignment in singular

systems.

3. POLE ASSIGNMENT IN SINGULAR SYSTEMS

We now consider singular control systems governed by the open loop

equations

EDi

AX + Bu (3.1)

where E, A€ R™", Be R™, rank (E) =g <n and rank (B) = m.
(Here D again denotes either the continucus differential or the discrete
delay operator). The poles, or generalised eigenvalues of the pencil (A,E)
govern the behaviour of the system and may be modified by state feedback.

The pole assignment problem is specified as follows.



Problem 1 Given real matrices E, A, B, where E, A € Rnxn’ BE& R 5
rank (E} = g <n, and rank (B) = m, and an arbitrary set of g self-conjugate

complex numbers L = {Aq,x ,..lq}, find F € R™" such that

2
det (A + BF - AE) = O, YA €L , (3.2)
and such that
det (A + BF - AE) # 0 YA € L . (3.3)
o

The equation (3.2) implies that Aj € L dis a generalised eigenvalue of the
pencil (M,E), where M = A + BF, and equation (3.3) guarantees that the
pencil is regular.

The following two conditions are easily shown to be necessary for the pole
assignment problem, Problem 1, to have a solution for any arbitrary self-conjugate
set L of g eigenvalues.

T T T

HV'E and v B =20, then v = 0.

Condition C2 : If vE=0, vB=0 and v'A =z'E, then v = 0.

Condition C1 : If

<
>
I

If Condition C1 does not hold then there exists a vector v such that
XT[A + BF) = “XT for any choice of matrix F, and hence both (3.2} and (3.3)
cannot be satisfied unless W € L and the problem cannot be solved for arbitrary
L, Similarly, if C2 is not satisfied then there exists X_% 0 and vector z
such that XTE = 0 and XT[A + BF) = ETE for any choice of F, and, by
Lemma 2, a regular solution to the feedback preblem cannot exist.

The conditions C1 and CZ are thus necessary for the existence of a solution
to the pole assignment problem, Problem 1 (see also [11, [21, [3], [9], [121,(14]1).
According to Fletcher [3], these two conditions are also sufficient for the
existence of a feedback which assigns precisely g = rank (E) given finite
eigenvalues with regularity. Fletcher [3] also points out that when condition

C1 holds but C2 does not hold it is still possible to assign fewer than

g = rank (E) finite eigenvalues with regularity.



We now derive new conditions (as originally reported in [B1), which are
necessary and sufficient for arbitrary pole assignment of g = rank E finite
eigenvalues with regularity. We define

Condition €3 : If V' (E + AS_S1) = 0 and v'g = 0, then v = O.

The following theorem then gives the result.

Theorem 2 The pole assignment problem, Probiem 1, has a solution for an
arbitrary self-conjugate set of poles L if and only if Conditions C1 and C3

hold.

Proof: The necessity of condition C1 has already been established. If C3

does not hold, then there exists v # 0 such that XT(E + (A+BFJSwSlJ =0

for all choices of F and hence E + MSwSl, where M = A + BF, is singular
for all matrices F. By Theorem 1 we cannot, therefore, assign g finite
non-defective eigenvalues with regularity, and, in particular, we cannot

assign g = rank (E) distinct eigenvalues with regularity. Furthermore, since

v # 0, XTE = 0, XTB = 0 and XTA = ETE implies that XT[E + ASmSl) =

z ES_S_ = 0, then condition C3 implies C2Z and by [3] condition C3 together with

C1 is also sufficient. O

We remark that conditions C1 and C3 are equivalent, respectively, to the
conditions .

Condition C1' : rank ([B, A - XE]1) = n, YA €C .

Condition C3t : rank ([B, E + ASwSl]] = Ny

Condition C1 (or C1') corresponds to the "controllability” condition of [11].
Condition C3 (or C3!')} implies the "infinite controllability” condition C2,

also given by [11,[2],[8],(12] but it is not eguivalent to C2. The condition C3
is a stronger condition than C2 and essentially guarantees regularity. At the

same time, C3 1s necessary for the assignment of g = rank (E) finite non-defective

elgenvectors (with regularity). These results are demonstrated in the next



section. We remark that systems which are defective are well-known [14], [13]
to be less robust than those which are not, in the sense that the poles of
defective systems are more sensitive to perturbations in the system data

than those of non-defective systems. In practice, therefore, we are interested
in constructing feedback matrices which give non-defective, as well as regular,

closed-loop matrix pencils.

4. EIGENSTRUCTURE ASSIGNMENT IN SINGULAR SYSTEMS

In non-singular systems, pole assignment by state feedback can be
achieved by assigning the eigenvectors associated with the assigned eigenvalues
of the closed loop system. The selected eigenvectors then uniguely determine
the required feedback matrix [8], [10]. In singular systems eigenvalue-
eigenvector assignment alone is not sufficient to determine the feedback.
Furthermore to obtain regularity of the closed loop pencil, certain restrictions
on the eigenstructure must be satisfied, as shown in §83. For robustness we
also require the eigenstructure to be non-defective. In this section we
derive conditions for determining a feedback such that the closed loop system
has a specified non-defective eigenstructure and is regular.

We first give two necessary conditions for non-defective eigenstructure
assignment with regularity. From the proof of Theorem 2 we have immediately

Lemma 5 If there exists F € R™" , such that the pencil (A + BF,E) is

nxg

.

regular, and Xq ¢ C » such that rank [Xq) = n and

A+ BFIX_ =EXA , A ={A A ... ’ 4.1
(A + BFIX, = EX AL, A = (hdg,end ) (4.1)

where Aj € C, Vj, then condition C3 (equivalently, C3') holds.

From Lemma 4 we obtain directly
Lemma 6 If the conditions of Lemma 5 are met, then the matrix [Xq,Sw]

(equivalently, EXq] is of full rank.



The main result is then as follows.

Theorem 3 Given A = {X ,X D W A, €L , and matrix Xq such that

q 1772 g J
[Xq,Sm] is non-singular, then there exists F satisfying (4.1) and such

that the pencil (A + BF, E) is regular if and only if

T
U, (AX - EX A =0,
1" g q q)
and

UJ(E + AS_S]) has full rank,

B ot [UOJU,I] Z 3
0

with U = [UO‘U1] orthogonal and Z non-singular. Then F 1is given

where

explicitly by

1.7 ~ -1
F =2 U (EX A - AX ], W X ,S
(U (EX A, = AX ), WD X .S,

where W 1is any matrix such that

rank ( E + ASwSl + UOWSLJ = n

Proof: The assumption that B 1s of full rank implies the existence of

decomposition (4.4). From (4.1} F must satisfy

BFX = EX A - AX ,
q q g q

and pre-multiplication by UT gives

]
ZFX = U EX A - A
q = Yo (BXghq — A%

and
)
0=U, (EXA - AX)
1 gq 8|

from which (4.2) follows.

(4

(4

(4.

(4

(4

(4.

(4

(4

.2)

.3)

4)

.5)

.6)

7)

.8)

.9)
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From Theorem 1, the pencil (A + BF,E) is regular, under the given

conditions, if and only if the matrix E + (A + BF]SwQI has full rank, or
equivalently E + ASwSl + UDWSl has full rank, where
ZFS_ = W. (4.10)

This condition holds if and only if W can be chosen such that the
matrix
UT(E + AS S1) + ws!
0 00 o]
(4.11)
uT(E + As s1)
1 o
has full rank. Clearly condition (4.3) is necessary and sufficient for this
to be possible. The expression (4.5) for the feedback matrix F then follows
directly from (4.8)and (4.10), and if W is chosen to satisfy (4.6), the pencil
(A + BF,E) has the given finite eigenvalues and is regular. O
The significance of this theorem for the construction of a feedback which
achieves pole assignment with regularity is considerable. Condition (4.3) of
the theorem holds if and only if Condition C3' holds. This follows since
we have C3' if and only if the matrix
[- T T
UT[B, E + ASmST] z UD(E + ASwa;]
T
1

0 U, (E ¢+ Asmsllj

has full rank, which holds if and only if (4.3) holds. Condition (4.3)
can be tested independently of any choice of F, and if it is not satisfied

then a feedback assigning g finite eigenvalues and giving a regular non-defective

closed loop pencil cannot be found. Conversely if a set of g independent
eigenvectors corresponding to the reguired closed-loop poles can be selected
such that [Xq,Sw] is non-singular, then condition (4.3), and hence C3,
guarantees that a feedback F can be found such that the pencil (A + BF,E)

is regular.
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Furthermore, from condition (4.2) of Theorem 3 the eigenvectors
corresponding to a distinct closed-loop eigenvalue Aj must belong to the

space

8. = N{UT[A - A.E)} . (4.12)
J 1 J

(This, together with the requirement that a closed-loop finite pole must be
non-defective, implies a minor restriction on the multiplicity of Aj]. It
follows that, given set L = {Aj}, if we select g independent vectors Ej’
such that Ej € Sj, and Efj are independent, j = 1,2,...,0q,
and a matrix W such that (4.6) holds, then the feedback matrix F given
by (4.5) with Xq = [54,52,...,§q], solves the pole assignment problem,
Problem 1, and regularity of the closed-loop pencil is guaranteed.
Moreoever, since the robustness of the closed loop system depends on
the selected eigenvectors, we may select the set {éj} such as to optimize
robustness. In [7] we describe a measure of robustness and give an explicit
algorithm for selecting the set {zj} and the matrix W such as to obtain a
robust feedback solution to the pole assignment problem.
We remark that Theorem 3 gives conditions for assigning a maximum number

of finite poles, g = rank (E), with regularity. In the case where fewer finite

poles can be assigned with regularity, similar results hold (see [4]1).

5. CONCLUSIONS

Novel necessary conditions for the solution of the pole assignment problem
by state feedback in singular systems are given in this paper. These conditions
must be satisfied in order to assign the maximum possible number of
finite poles by feedback and also obtain a closed-loop system pencil which is

regular and non-defective. It can be shown that these conditions are also

sufficient for the existence of a feedback which assigns g finite poles with

regularity. The prime significance of these results is that they provide
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conditions for the construction of a feedback which assigns given poles with

guaranteed regularity, and such that the closed-loop system is robust, in

the sense that its poles are insensitive to perturbations in the system data.
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