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Introduction

In recent years much effort in the area of computational
fluid dynamics, has been spent 1in approximately solving
evolutionary conservation laws where discontinuities in the
solution constitute a very important, if not the most
important, part of the problem. One of the most successful
stratagies employed on these problems has been that of the
Roe type schemes. These schemes have been designed to
provide accurate solutions away from jumps while avoiding the
difficulties faced by classical second order accurate
schemes, Lax-Wendroff for example, at discontinuities. Other
desirable properties such as entropy satisfaction and total
variation diminishing (TVD), can be ensured with the scheme.

Why then, apart from sheer esoteric folly, should we
want to try applying these schemes to atmospheric and
oceanographic flows, governed by the shallow water equations
and not normally associated with violent changes? Clearly
second order schemes are desirable to achieve accuracy on
reasonably sized grids while the shock handling capabilities
are retained to cope with the presence of fronts in the
atmosphere or tidal surges and bores in the sea for example.
Numerous papers, which include Roe et al [8,12], Sells [13],
Sweby [14] and Glaister [4,5] have demonstrated the success

of Roe type schemes in dealing with discontinuities: here we



concentrate on their ability to compete 1in the smooth
regions.

In Section 1 an introduction to the philosophy behind
the Roe approach will be given, and B functions and flux
limiters will be introduced as a path towards a variety of
methods.

In Section 2 the shallow water equations are stated and
the Roe decomposition performed in some detail to obtain the
necessary building blocks of the method.

In Section 3 the various methods that can be obtained by
this approach are applied to Grammeltvedt's problem [7] and
it is demonstrated that correct treatment of the
source/forcing term is essential. It is shown that schemes
capable of handling discontinuities can achieve the same, if
not better, accuracy than the more common second order
schemes. The experience gained on this problem is then
applied to the problem of coastal flow. Here the main source
of difficulty is the computationally open boundaries, and
their treatment will be discussed.

Finally in Section 4 we will draw some conclusions and

make some suggestions about further work that is needed.



1. Roe's Scheme

In this section we give a brief account of the
philosophy behind the Roe type schemes, largely following
Roe's original paper [8], and refer the reader to that paper
for more details.

Consider the initial-value problem for a hyperbolic

system of conservation laws

4. *+ E, = 0 (1.1)
with initial conditions
g(x,o0) = go(x), (1.2)
where F = F(g) and the Jacobian matrix A = JdF/ag has

real eigenvalues.

Introduce now the discrete representation Xy = X, + iax,
tn = to + nAt and suppose that g? approximates g(xi,tn).

If the initial data (1.2) is specialised to
g(x,0) = g (x<0) ; g(x,0) =gy (x>0) (1.3)

then we have a so-called Riemann problem which has been

studied copiously and has wavelike solutions. Godunov [6]



produced a numerical scheme for the solution of (1.1) that
treats the data as a set of constant states separated by

discontinuities at the points say, a Riemann problem

Xi+yr
then being solved in each interval, with a time-step
restriction such that the waves from one Jjump do not
interfere with those from neighbouring jumps.

With the Roe type methods a slightly different approach

is taken by considering the approximate problem

where A = A(gL,gR) is a constant matrix that is chosen to
be representative of the 1local conditions. A further

restriction is that A must satisfy the following properties

collectively called Property U:

(i) It constitutes a linear mapping from the vector
space to the vector space F.
(ii) As dg; - dg > 9, A(gL,gR) - A(g) where
A = aoF/aqg.
(iii) For any dr,dp» A(gLigR)° (qr gg) = Ep - Ep.
(iv) The eigenvectors of A are linearly independent.

~

Finding an A that satisfies Property U is not a
trivial problem. Neither of the two 'obvious' choices
A = -,*-(AL + AR) or A = A(%(gL + gR)) will in general
satisfy (iii), but in the case of (l1l.4) Roe has shown that
one can be found.

This leads to a basic first order upwind scheme for



which ateach time-level, at each jump, we <calculate the

eigenvalues A

i the eigenvectors ey and associated

strengths oy of A(gL,gR). Then the scheme is:

hl > 0 qR
if then add - — Njase; to . (1.5)

g, +F, + G, =0 (1.6)

we can calculate A(gL,gR) & B(gB,gT) and solve separately
in the x-direction using A and in the y-direction using

B. These solutions may then be combined in various ways.]

The basic scheme, (1.5) is only first order and takes
discontinuities in its stride, by smoothing them out! It is
so diffusive as to be totally inadequate for most problems,
and in particular for our applications. The problem then is
to find a second order scheme, based on the philosophy
previously illustrated, without losing the shock handling
properties.

This is achieved by flux limiting, which is essentially done
by limiting the anti-diffusive terms 1in the second order
scheme at discontinuities, to avoid the oscillations of
classical second order schems, while retaining second order

accuracy in smooth regions of the flow, see Sweby [14,15].



Define to be the signal from the ji‘-ﬂ;1

®yri+g

eigenvalue at the jump at i+%, i.e.
¢- ) 1=—)\-(X-e.. (107)

The algorithm (1.5) then becomes:

3 Ji+1
iE then add ¢.,.., to .
A <0 ITits g5

If we now transfer an amount against the

3yri+s
direction of the flow we can achieve second order accuracy in

smooth regions by choosing

ay = é(l—lvj|) where vy is the CFL number of the

ij wave.

Define a transfer function, Baines [l1], by

Blay ivg *5,008  25,i4d-0,%3,i44-0,) T BPLR), say,
(1.8)
where °j = sign (hj). Choosing B(b,,b,;) = b, gives
Lax-Wendroff, while B(b,,b,) = 3(b,+b;) corresponds to
Fromm's algorithm. (A more comprehensive 1list of the

different B functions that can be used is given in the
Appendix.) The two schemes above are classical second order

methods and suffer from oscillations at discontinuities. We



can, however, overcome this problem by not restricting

ourselves to linear functions of b, & b,. Sweby [14, 15]
introduced a limiter function ¢(r) where r = b,/b,. The
region in (¢(xr),r) space that ensures a TVD (Total

Variation Diminishing), i.e. oscillation free scheme, can
then be plotted. This region can then be further constrained
to ensure oscillation free second order schemes (away from
extrema). Sweby [1.4] plotted the minmod, Van Leer and
Superbee limiters (see Roe & Baines [1l1l], Van Leer [16], Roe
[(91) and showed these to lie in this region.
(Two-dimensional algorithms can be constructed that are based
on these limiteres but also take into account the
dimensionality of the problem by including cross terms to

eliminate q type terms from the truncation error, see

YX
Baines [1]). These ideas will now be used in the following

sections.



2. Shallow Water Egquations

In primitive variables the 2-D shallow water equations

relevant to atmospheric flows are given by

¢t + (¢u)x + (¢v)Y =0 (2.1a)
Uy + uux + vuy + ¢x = Qv (2.1b)
Vi + uv, + vvy + ¢Y = -Qu, (2.1c)

where u & v are the X,y velocities respectively and ¢
is the geopotential (¢=gh) where h is the height of the
free surface). & 1is the Coriolis parameter which for the
atmospheric flow will be given by the wusual f-plane
approximation and for the coastal flow problem will be taken
to be a constant.

To apply Roe's scheme to these equations we need to
rewrite them in conservative form. Replacing X &YV

velocities by x & y momenta (m = u¢, n = veé) we get

¢t + mx -+ ny =0 (2.2a)
[ ] )
m2 o2 mn _

m, + . + > + i = Qn (2.2b)
| Jx JY
§ [ ]
mn n? + ¢2 - _

n, e T~ + = — = -Qm. (2.2c)

X Jy




This can now be written in a vector flux form as

where
F¢1 o m - 4 n
qg = |m|, F = m__+¢2/2’ gzl'_nTI’_l_
n mn n° o+
- ® ) E, ®
0
and b = (2 n|.
-Qm
Following Roe [8] we define
parameter, vector
W, ) ® 2
1
w= |wy,| = [6%u
1
Wy o%v
and now express the vectors q, F &

intermediate vector to get

o %

an

intermediate,

in terms of

or

the



- i =

w32 (W, W, W, Wy
g = |wwy|, E= wg+ﬂ%4 r G = |WaW, .
[ 4
W,Wg WoWy wg+!i J
Using the standard notation of AX = Xp - X and
X = §(§R + §L) we proceed to calculate matrices B(w) & C(w)
such that

Ag = B(w)aw
AF = C(w)aAw.
This leads to

2w, O 0 )

B=|w, w, O
w, O w, |,

(W, W, 0 )

C = |2w,w? 2w, 0

We now find » such that

det (B - C) =0,



- 12 -

giving
- i~ = E s
zF = ¥3 - v w:, ¥1 , ¥Z + v w2
S Wy Wy Wy
which are seen to be the u,utv® characteristic speeds we
would have expected.
after

These eigenvalues give three eigenvectors which,

multiplication by B, are given by:

r -
r - - - - ~ - -
W, 0 W,
F /. 5 = e
€i12r3 = 8 |We-w,vV Wi , |O y (Wotw, vV WE P
Wq Wy Wa
| I i g .

It is noted here for future reference that, if regarded

as a 3x3 matrix, the inverse of the above is given by:-

(. _ /— - ]
wWotw, vV w? -W, 0
) T /=
2w,V w3 0 2w,V w3 (2.3)
-2 —
2w, v w?
.'(Q2'§1V W?) Qi_ 0 )

Three o's are now found such that

Ag (and by construction E aikigi = AF), 1i.e.

1

} u‘e' =
1-1

i



W, AW, ~W,AW
a, aAw, - 2 = E 1
2w,V w?

o _ W, AW, — WoAW,

J 2 - < \TJ =
1

of s, + WiBWy = WyAw,

L ) L 2w, v wi J.

A A
x?,z,s = ¥1 - v w2, ¥1 R ¥1 + v w2 with
W, W, W,
i - - - ) " o 'q‘
W, 0 W,
G _ = - -
€ir21r2 3 Wa Wy Wa i
_ = S | ; w He
| YWy - W, Vw2 0~ ‘wy, + w, vV w? /]
and
. . _ _ 1
a? AW, - wiAws_ Wa AW,
2w,V w2
<aSL = d wiAwi - WoAW, |
Wy
af Aw, + W, AW, — W,aAW, .
J 2w, v w2

These eigenvalues, eigenvectors and wave strengths are
used to decompose the problem into wave type components to

which algorithm (1.5) can then be applied.
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3. Model Problems

In this section two model problems will be discussed
that will force us to consider different aspects of the
method to ensure a worthwhile solution.

(i) The first is an atmospheric flow using the equations in
the form given in (2.2). It is Kknown as Grammeltvedt's
problem with initial conditions 1 (see Grammeltvedt [7]) and
concerns a flat bottomed channel 6000 km x 4400 km. The
north/south boundaries are taken to be rigid walls, making
the Great Wall of China look small, and the flow is assumed
peridic in the east/west direction. The initial conditions
for the height and velocity field are shown in Figures 1 & 2.

This problem is particularly useful because, aside from
calculating the actual solution, it is quite straightforward
in that the geometry is rectangular and the boundary
conditions are easy to write down. Due to the nature of the

problem the available energy, given by

AE =

&l

I{(u2 + v2 - 0) - $2} do, (3.1)

c

where y is the average value of the geopotential of the
free surface and ¢ is the domain, is conserved. Hence, by
monitoring this quantity, we can measure the success of our
efforts without knowing the exact solution to the problem.

It is worth just noting here that conserving 100% of the



- 15 -

available energy is necessary for an exact solution but it is
not a sufficient condition.

A numerical scheme is deemed to have become unstable
when the available energy has risen by 10%. With some of the
results the comments '"going unstable”" or '"about to go
unstable" have been added, which indicates that although we
have not reached the 10% criterion the available energy for
that particular method had started to increase, to a greater
or lesser extent, and would, by our definition, have become
unstable very rapidly thereafter.

We use a 200 km grid (30 x 22) and take time-steps of 5
minutes. The results in Table 1 correspond to the percentage

of the available energy left after 5 days.

First Order g = 3.9%
Lax-Wendroff .= 60 % (going unstable)
2nd order fully upwinded :- 42 %
Fromm's algorithm - 43.5%
3rd order split e 45 %
Minmod g= 23 %
Superbee :- 66.3% (going unstable)
Minmod (2-D) . 32.3%

Table 1

As can be seen these results do lack a certain
something, namely rather a lot of energy. The schemes that
come out best are the more classical second order methods,

although as with all these schemes the time-step must be
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restricted because the CFL numbers are given by
uat/Aax & (u+ve)at/ax, and the u+v® values are an order of
magnitude larger than the u characteristic. The methods,
though, are explicit finite differences and so this time-step
restriction is not too much of a problem. Reducing the
time-step to stabilize the Lax-Wendroff and Superbee methods
still only leaves us with just over 50%. Using the
'genuinely two-dimensional' minmod scheme does, in this case,
do better than its 1-D version, although there are also
examples where it does fractionally worse, but it still is a
long way behind the other methods and is computationally very
much more expensive to calculate.

However, all is not yet lost. So far the right hand
side of the shallow water equations, b = (o, 2n, -Qm)T, has
been studiously ignored. For the shallow water equations, in
this context, the Coriolis force is a significant term of
equal magnitude to the (¢2/2)x & (¢2/2)Y terms, the
geostrophic approximation. The results in Table 1 were all
obtained by evaluating the Coriolis force pointwise and using
this value to update at that particular gridpoint. In the
light of the previous sentence we should perhaps not be
treating these terms so flippantly.

Roe [10] shows how to deal with source terms by
considering the simplest problem of any relevance to us, the

scalar wave equation

u, + au, = b(x) (3.2)

where a 1is a positive constant. The initial-value problem
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for (3.2) with initial data u = uo(x) has the general
solution
1 X
u(x,t) = uo(x—at) + o b(x)dx . (3.3)
X+at

In practice the integrand in (3.3) will depend on the
solution u, for which we only have information at the
previous time-level, and hence we would expect to approximate

the integral by
%(x—(x-at)) b(x-at) = tb(x-at).

Hence the source term ought to be upwinded in the same way as
the other term.

Glaister [5] has considered the 2-D Euler equations in
r,z variables with cylindrical geometry. (Here the 'source'
terms are due to the expansion of the grid in the radial
direction.) These source terms were expanded in the
eigenvectors associated with the radial direction and
upwinded according to the corresponding eigenvalue. This
procedure was found to significantly improve the results.

Our problem is slightly different in that in vector form

We have one right hand side vector but two sets of
eigenvectors in which to expand it, with no immediately clear

way of splitting b into QA + QB prior to expansion in



- 18 -

terms of the eigenvectors of A or B. One of the options

is to take
0 0
pP = [Qn] s p° = [ 0 ] (3.4)

that is expand the source term associated with the x-momentum
equation in the x-orientated eigenvectors and similarly for
Y. This sounds eminently reasonable but it is not at all
clear from the vector equation why this should be done, and
what treatment should be given to a source term in the ¢
equation which has no associated direction. Another option

is to take

(3.5)

o
Il
o
1}
(™
o

In order to expand the forcing terms in the eigenvectors
we need to Kknow weights for each eigenvector. In the

X-direction this is done by multiplying the vector to be

projected, QA , by the matrix (2.3), a similar operation
being done to _QB. This gives the weights associated with
F G

€ir2/a & €1,2,3 as

Mo (1,0,-1) & 2 (1,0,-1) (3.6)

2V w? 2V w?
for the first option, (3.4), and

. = e = = PR

— (Wg,2w,V W2,-W,) & — (W, , 2w,V W3 ,-W,)
4v w2 4 w2

(3.7)
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for the second option (3.5).

For the first case we choose to average Qn by Qﬁiﬁs,
because it marginally simplifies the expressions in (3.6).
However, the schemes do not seem very sensitive to the
averaging used in the evaluation of b, Qw,w, giving the
same results. Both these options give marked increases in
accuracy but it is the first that gives the best, and the
results for this strategy are given below in Table 2 for some

of the schemes, using 4 minute time-stepping.

First Order s 72.4%
L-W = 85.9% (about to go unstable)
2nd order :- 87 % (about to go unstable)
Fromm i— 85 %
3rd order :- 85.4%
Minmod 1= 77.3%
Superbee 3- 86.9% (about to go unstable)
Minmod (2-D) - 78 %
Fromm limiter e 82 %
Van Leer $i— 80 %
Table 2

The effect of cross-terms becomes less significant as the
time-step is reduced because they are 0(at2).
Reducing the time-step to stabilize Superbee we obtain

the following results
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3 min = 87.8%
2 min 1= 90.4%
90 sec s - 92.8%

2-D Superbee with the 3 min. time-stepping gives 88%,
reinforcing the claim about the cross terms. These results
are actually better than the classical methods give us with
reduced time-stepping, but the Superbee scheme can still cope
with discontinuities. These results are a considerable
improvement over our previous table, showing the importance
of correctly dealing with source/forcing terms. Figures
3,4,5 show the height, velocity field and available energy
for the VvVan Leer 1limiter, figures 6,7,8 show the same
sequence for Fromm's scheme while figures 9,10,11 show the

results for Superbee with 2 minute time-stepping.

(ii) The second model problem is that of coastal flow.

The equations used here are

/
Fuv uz + v2 _
U, t+ouu, + vuY + gz, + = -Qv = 0 (3.8a)
\//
Fvv u2 + v2 _
Ve + uv, + vvy + ng + T + Qu =0 (3.8b)
Zy + (u(h + z))X + (v(h + z))Y =0, (3.8¢c)

where h 1is the depth of the sea bed, below some fixed level

and 2z 1is the elevation above this level i.e. total depth is
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h + z. The new term is a friction term and F is the
friction factor (0(10 3)). Our conserved variables are then
g(th + z), g(h + z)u, g(h + z)v, much as before. The only

real differences from before are the addition of a
potentially variable seabed and the addition of the friction
terms to the right hand side. The Roe decomposition goes
through as previously. The energy is no longer conserved,
due to the presence of friction, and so these equations
possess no easy guide to the success of the approximation.
We will therefore use our experience with Grammeltvedt's

problem to choose the appropriate methods.

The real problem posed by this model problem is the
treatment of the boundary conditions. We shall take as our
problem a straight stretch of coastline 50 kms long. This
presents no problems as it is treated as a rigid wall as in
Grammeltvedt's problem. Even if the various Governments of
the countries around the North Sea (particularly the
Norwegians who would have an extremely difficult task) could
be persuaded to straighten out their respective coastlines to
make a rectilinear domain of the North Sea we are still left
with the problem that we are only really interested in the
flow close to the shore and do not want the expense of
calculating the entire flow.

As our model problem, then, we take a (10 x 50) km
region with the rigid wall to the west and the southern,
eastern and northerly boundaries open. Assuming that the
flow is sub-critical we shall need one boundary condition on

outflow and two on inflow boundaries for the exact problem.
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Edwards, Please and Preston [3] have discussed stable
boundary conditions for the 1linearised shallow water
equations. A problem with many finite difference techniques
is that they require more boundary conditions than the
mathematical problem and this can cause severe problems (see
Burgess [2]. Using a scheme based on characteristics,
though, means that we only need to use the correct number of
boundary conditions, and those suggested by Edwards et al
will be used. These are (i) elevation prescribed at outflow
and (ii) elevation and tangential velocity given at inflow.
The initial conditions are taken from an exact solution

to the 2-D wave equation, namely

u=29 (3.93.)
v = A9 sin Z_g(_L - t) (3.9b)
v gh v gh
z = A sin 2% Y - t)] (3.9¢c)
v gh

where A = 1.0 m 1is the tidal amplitude and P = 12.42 hrs
is the tidal period. The initial values are plotted 1in
Figure 12. Formulae 3.9 are not only used to give the
initial conditions but are also used to prescribe the
boundary conditions as well. Unfortunately the solution
described by equations 3.9 rapidly lost touch with reality at
the seaward boundary and so the region was extended to
0<x<20, =-25<y<75km and the boundary conditions applied on
these boundaries to try to minimize their effect on the

region of interest.
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Figure 13 shows the solution generated by using the
first order method with 30 second time-stepping and Figure 14
shows the solution given by Superbee with 10 second
time-stepping, plotted after six hours. These show gquite
similar results and demonstrate the stability of the Superbee

algorithm in this situation.
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4., Conclusion

It is well known that the Roe type flux limited schemes
provide a very powerful tool for resolving flows where
discontinuities form a major part. In this paper smooth
flows with forcing terms have been concentrated upon and the
methods have been shown to be, if anything, even more
accurate than the more classical second order schemes. The
ease of applying boundary conditions is another advantage
over non-characteristic based schemes. This would imply that
the methods may be useful for flows where discontinuities are
only a possibility rather than the be-all and end-all of the
calculation.

Further work now being done is to reformulate Roe's
scheme to apply to non-rectangular domains, a very necessary
step for physical 2-D calculations, and to produce a method
that is not as limited in CFL number so as to offset the

extra expense of the decomposition.



- 25 -

5. Acknowledgements

The author wishes to thank Dr. M.J. Baines for
supervising this work and to P. Glaister for many useful
discussions. The financial support of the SERC is gratefully

acknowledged.



6.
(1]

(2]

(3]

(4]

[5]

[6]

[7]

(8]

(9]

(10]

[11]

References
Baines, M.J., "Numerical Algorithms for the Non-linear
Scalar Wave Equation". University of Reading,

Numerical Analysis Report 1/83 (1983).

Burgess, N.A., "The Stability of an Approximation to
the 1-D Shallow Water Equations" 0.U.C.L. Report
Number 86/8 (1986).

Edwards, N.A., Please, C.P., Preston, R.W., "Some
Observations on Boundary Conditions for the
Shallow-water Equations in Two Space Dimensions",
IMA Journal of Applied Mathematics, 30 (1983).

Glaister, P., "Flux Difference Splitting Techniques
for the Euler Equations in Non-Cartesian
Geometry", University of Reading. Numerical
Analysis Report 8/85 (1985).

Glaister, P., "Second Order Difference Schemes for
Hyperbolic Conservation Laws with Source Terms'",
University of Reading. Numerical Analysis Report
6/87 (1987).

Godunov,S.K., "A Finite Difference Method for the
Numerical Computation of Discontinuous Solutions
of the Equations of Gas Dynamics, Mat Sb. 47
(1959).

Grammeltvedt, A., "A Survey of Finite-Difference
Schemes for the primitive equations for a
Barotropic Fluid", Monthly Weather Review Vol.
97, No. 5 (1969).

Roe, P.L., '"Approximate Riemann Solvers, Parameter
Vectors, and Difference Schemes'", Journal of
Computational Physics, 43 (1981).

Roe, P.L., "Some Contributions to the Modelling of
Discontinuous Flows, "L.ectures in Applied
Mathematics, 22, part 2. Am. Math. Soc. (1985).

Roe, P.L., "Upwind Differencing Schemes for Hyperbolic
Conservation Laws with Source Terms", Proc. 1lst
Int. Congress on Hyperbolic Problems, St. Etienne
(1986).

Roe, P.L. and Baines, M.J., "Algorithms for Advection
and Shock Problems", Proc. 4th GAMM Conf. on
Numerical Methods in Fluid Mechanics, (Ed. H.
Viviand), Vieweg (1982).



[12]

(13]

[14]

[15]

(16]

- 27 -

Roe, P.L. and Pike, J., "Efficient Construction and
Utilisation of Approximate Riemann Solutions",
Computing Methods in Applied Science and
Engineering, VI, 499 (1984).

Sells, C.C.L., "Solution of the Euler Equations for
Transonic Flow Past a Lifting Aerofoil", R.A.E.
Technical Report 80065 (1980).

Sweby, P.K., "High Resolution Schemes using Flux
Limiters for Hyperbolic Conservation Laws", SIAM
Journal of Numerical Analysis, Vol. 21, No. 5
(1984).

Sweby, P.K., "High Resolution TVD Schemes Using Flux
Limiters", Lectures in Applied Mathematics, Vol.
22 (1985).

Van Leer, B., "Towards the Ultimate Conservative
Difference Scheme II. Monotonicity and
Conservation combined in a Second Order Scheme".
J. Computational Physics, 32 (1974).



Appendix B function

First Order
Lax-Wendroff

Second Order Fully
upwinded

Fromm's algorithm

Third Order

Minmod

Fromm based limiter

Van Leer limiter

Superbee

B(b, ,b,) = ¢

- 28 -

B(b,,b,) =
B(b, ,b,) =
B(b, ,b,) =

B(b, ,b,) =
B(b, ,b;) =

B(b, ,b,) =

B(b, ,b,)

B(b, ,b,) =

b, 1
b
2b >2
. Et-
2b >2
L7t 5?‘
if b,b,>0

0 otherwise

b,
b,

(b, + b,)

3((2-v)b, + (1+v)b,)
(v is the CFL no.)
b, if [b,|<|b, |

b2 if lb1l>|b2|

1 Db
$(b,+b <3
E( 4 2) g Bt

2 minmod (b, ,b,)
otherwise

if b,b,>0
and zero otherwise

J%ETE%;T b,b,>0
| o

otherwise



Hyperbee

Ultrabee

14.10.1987
k.h.b.

- 29 -

b, 15§§52+%§_

b, 1<§%52+31%251
Blbyb2) = 9242V, %—22+2‘ju

2+2(1 u)b Bz>2+2(l V)

if b,b, > 0

0 otherwise.

2r v(l-r) + r(1-r?)
vil-v) (1-r2)
B(b,b,) = bye(r) if b,b,>0

o(r) =

0 otherwise.



GRAMMELTVEDT 'S PROBLEM

Solution, caiculated by the Superbee scheme using
0 time-steps with Dt = 0.00 and Dx = 200 km, .

Initial conditions 1 were used.

The maximum height is 2214, 1 metres at % and the minimum height Is 1785.9 metres ot i

Contour Key
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Figure 1
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CRAMMELTVEDT 'S PROBLEM

Solution, calculated by the Superbee scheme using

0 time-steps with Ot = 0.00 and Dx =

200 km. .

Initial conditions 1 were used.

The maximum wind speed is 43.206 metres per second.

96,65 mp.h..)
Rigid well
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Winds after 0. 000 days.

Figure 2

Asepunoq 2ipojJay



GRAMMELTVEDT 'S _ PROBLEM

Solution, caleulated by a Van-Leer (imlted scheme using
1800 time-steps with Dt = 240.00 and Dx = 200 km..
Initial condttions 1 were used.

The transfer function, B(bl,b2), ts given by B = 2. Oxbixb2/ (b1+b2).

The maximum helght ts 2214.7 metres at g end the mintmum height Is 1784.5 metres at I

4 Rigid wall

Adepunoq 2|poidJey

reight after 5.000 days. i

Figure 3
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CRAMMELTVEDT “S _ PROBLEM

Solution, calculated by a Van-Leer (im!ted scheme using
1800 time-steps with Dt = 240.00 and Dx = 200 km..

Initial conditions 1 were used.

The transfer function, B(b1,b2), s glven by B = 2, 0xb1xb2/ (b1+b2),
The maximum wind speed Is 23.301 metres per second.

(52,12 m.p.h..)

Rigtd wall

AJepunoq dipc|Jaay

Winds after 5,000 days.

Figure 4
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GRAMMELTVEDT S PROBLEM

Solutton, calculated by the split Fromm algorithm using
1800 time-steps with Dt = 240,00 and Dx = 200 km. .
Initial conditions 1 were used.

The transfer function, B(bt,b2), Is g!ven by B8 = 0.5% (b1 + b2)

The maximum height ts 2234.6 metres at ¢ end the minimum height s 1745.2 metres at .

4 Rigid well

|
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—

Helght sfter 5,000 days. E

Figure 6
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GRAMMELTVEDT S PROBLEM

Solutton, caleulated by the eplit Fromm algorithm using
1800 time-steps with Dt = 240.00 and Dx = 200 knm..

Initial conditions 1 were used.

The transfer function, B(b1,b2), Is glven by B = 0.5% (b1 + b2)

The maximum wind speed Is 24. 293 metres per second.

(54,34 m.p.h..)
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Winds after 5. 000 days.

Figure 7
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CRAMMELTVEDT’S PROBLEM
Solution, caloulsted by the Superbee scheme using

3600 time—steps vith Dt = 120.00 end Dx = 200 km..
Initiel conditions 1 vere used.

The maxiaum height 18 2225, 4 metree ot gk and the minimum height 1e 1767.2 metres ot f.
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GRAMMELTVEDT°S  PROBLEM
Solution, cslouleted by the Superbee scheme using

3600 time—steps vith Dt = 120.00 end Dx = 200 km..
Inittel conditions 1 vere used

The mexisum vind speed 1e 26. 414 metres per second.

(59.09 m.p.h.)
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Figure 12

First order scheme. Dt = 0.00.

0 time-steps used.

Final time Is 0.000 days.

Dx 1s 1.05 kms.. Dy is 2.27 kms..

The meximum helght Is 0.5 metres at ok .
The minimum height ts 0.0 metres at # .
The meximum veloclity Is 0,337

metres per second.

€0.75 m.p.h..)

Tidel period is 12,42 hours.

Tidel amplitude Is 1.0 metres.

At outflow elevation prescribed.

At Inflow elevetion end tangent!al

velocity prescribed.

Contour Kay
1 +-0.8
2 +»-0.6
345 -0.3
4 5 -0.1
Ss 0.1
6+ 0.3
7 0.6
8+ 0.8
9+ 1.0
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Figure 13

First order scheme. Dt = 30.00.

720 time-steps used.
Final time is 0.250 deys.
Dx te 1.05 kms.. Dy is 2.27 kms..
The meximum height 1s-0.1 metres et k.
The minimum hetght is-0.5 metres at .
The meximum velocity is 0.146

metres per second.

( 0.33 m.p.h..}
Tidal period is 12. 42 hours.
Tidel emplitude Is 1.0 metres.
At outflow elevation prescribed.
At Inflow elevation end tangentlal
velocity prescribed.

Maximum CFL no. at output Is 0,410,

Contour Kev
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2 s -0.6
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4 5 -0, 1
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. Superbee limiter used, Dt = 10, 00.

7/@2/2/} 2160 time-steps used.
I Final time Is 0.250 days,
/ % Dx 1s 1.05 kms.. Dy Is 2,27 kms..
\ The maximum height is-0.1 metres at o .
[ The minimum helght 1s-0.5 metres at f.
I The maximum velocity Is 0,122
| metres per second.
// /0,27 mpih

,: Tidal period is 12. 42 hours.
///l/ | Tidal emplitude is 1.0 metres.
l / /// / At outflow elevation prescribed,
/
|

j J //// At inflow elevation and tangent | al
|

veloclity prescribed.

-—

J j / j /X Maximum CFL no. at output is 0. 161,

\ llLlLlj//*
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