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1 Introduction

In this report we discuss the grid movement algorithm
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or, equivalently,

w1 gn Tkl (ol = 23)
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where z7 and :v;”'l are the old and the new space vectors corresponding to the
position of node j, the summation k being over the K; elements surrounding
z?, and z}; is the centroid of element k (see Fig. 1). The non-negative
weights wy, (with Zfil wy, # 0) are initially assumed to be constant although
in a later section we shall allow them to vary. On boundaries it is assumed
that «; is fixed, 1.e. that w}”’l is overwritten by z?. It is evident that :v’;"'l
lies within the convex hull of the z%; : in 1-D this implies that the ordering
of the z; is preserved but the same is not true of higher dimensions.

Let us write (1) in the matrix form

) (2)

Xni1 = CXn + b. (3)

Here x is a vector of (the space vectors) z; and C' is a matrix which, in 1-D,
takes a tridiagonal form with
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as the j’th row (where Jw = w;_1 +w;,1 #0). In 2-D C is not tridiagonal

but has the similar property that the diagonal term is ;13 and the sum of the

off-diagonal terms is 2. In d dimensions the corresponding fractions are ﬁ

and #‘id . The vector b comes from overwriting the boundary points.



2 Convergence Property

We first prove a convergence property of the iteration in the form (3).
Theorem 1: The eigenvalues of C' are real and have modulus strictly
less than 1.
Proof: Note that C = WS where W= = diag{(>w)™! } and S is a
symmetric matrix (equal to C' with the rows multiplied by >~ w) . Since

|C = M| =|Ws —Al| =|W~3

W-3SW™2 — )\I| |W%

(5)

the matrices C and W~3SW =2 have the same eigenvalues and since the
latter is symmetric the eigenvalues of both are real.

Since the w’s are non-negative, by the Gerschgorin Theorem the eigen-
values of C lie inside or on a circle, centre Tl—d and radius l—fli_—d : thus they lie
inside the unit circle except possibly for an eigenvalue at 1.

Suppose now that A = 1 is an eigenvalue of C. Then the matrix C' — 1T,
with diagonal entries 1‘—_& , is singular. But this matrix is strongly connected
and irreducibly diagonally dominant (by virtue of being strictly diagonally
dominant in the rows corresponding to the boundary points). The contradic-
tion proves that A = 1 is not an eigenvalue of C' — I and that the eigenvalues
of C therefore lie within the unit circle. #

Theorem 2: x* — (I — C)™'b as n — oo.

Proof: By Theorem 1 (I — () is non-singular. Define

x=(-C)"b (6)
i.e.
x =Cx+b. (7)
Subtracting (7) from (3) gives
x"t —x = C(x" — x). (8)
Let
e" =x" — x. (9)
Then (8) becomes
e"tl = Ce" (10)



and, since C is a constant matrix,
e" = C"e’. (11)

Hence e® — 0 and x® — x as n — oo. #

The iteration (1) or (3) is therefore convergent. The rate of convergence
may be very slow, however. In the limit x is given by (6), which can also be
written

x=(W-SW'b . (12)

The matrix W — S is symmetric and, if required, x can readily be found by
the conjugate gradient method (see also section 6).

3 Equidistribution Property

The limiting x also has equidistribution properties. Since the components of
X satisfy
Ty whTak
k=1
="K (13)
Zk:l Wk

1 1
(g +wipg)zs = Swiy(@ion +25) + qwipg (e +zj)  (14)

or
wi_1(; — 7j-1) = wi1(zjp1 — ;) (15)
we have
wj_%A:cj_% =wj+%A:Ej+%. (16)
If z is the piecewise linear interpolant of z; and w is the piecewise constant
interpolant of wy, then

x5 Ti41
/ " wdz = / ™ wdz = const., (17)
@1 2
in other words w is an equidistributing function. If w is constant then z is
equidistributed. If w = %E (or, in discrete form, AL Y then E is equidis-

tributed. Since w is assumed to be non-negative F must be chosen to be
monotonic.



The iteration in 1-D is then

or

| 1
nt+l _ 0 i 2 1”3
i =i + NG = ‘ (19)

Care is needed when computing the update if AE is very small.
In particular, E may be taken to be the arclength associated with a given
differentiable function f(z), namely

E:s:/x«/l-{-f'?dw (20)
AE = As = Azy/1 + f2. (21)

In higher dimensions there is no corresponding equidistribution principle,
but since z; then satisfies

or, discretely, as

K; K;
(Z wk) T, =D WETGh (22)
k=1 k=1

we have
K;

E wk(:ch e wj) = 0. (23)

k=1

4  Variable Weights

Now suppose that the wy in (1) depend on n (whilst remaining non-negative
with 09, wy # 0) and write (3) as

x™! = C,x" + by, (24)

where C, and b, are defined as the C and b in section 1 with wy replaced
by w}. We extend the convergence proof of section 2 to this case.
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Theorem 3: If w} — w; Yk and C, — C as n — oo then I — (' is

non-singular.

Proof: Since the w} are non-negative, then so are the wy and, by Theo-

rem 1, it follows that I — C' is non-singular. #

Theorem 4: Under the conditions of Theorem 3, if b, — b as n — oo,

then x, — (I — C)~'b as n — oo.
Proof: Define
x=(I-C)'b,

1e.

x=Cx+b
as in Theorem 2. Subtracting (26) from (24) gives

xt _x=Cx"-Cx+b,—b

=C(x"-x)+(C, —C)x"+b,—b

or
e"t! =Ce" 4z,

where

zn = (Cr — C)x™ + b, — b.

Observe that, since x, is bounded,
z, — 0 as n — oo.

Now, from (28),
n—1
e" = Cme® + Z Ctz,,,
m=0
where

p=n—m—1.

Since C = W15,

cr = (W™19)P
=W 3 (W iSW2)PW3,
so that
7|l < |wE| [w-isw|” |w
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< 4w

P

where p < 1 is the spectral radius of the symmetric matrix W-3SW-3.

Now write (30) as

mi n—1
e" = (Cme’ + Z C"z, + Z Ctz,,
m=0

m=mi+1

where my is an integer to be chosen.

(33)

(34)

Since z, — 0 as n — oo , then given ¢ we can find an integer such
that ||z || < € if n is larger than this integer, which we choose as m;. Then,

considering the norms of each term of (34) in turn: first

Jore) < 4 = <
if n > myg say, since p < 1 ; next
mi i . m1
p < H = 3 m
mZQOC Zm| < W72 |W?| max IIZmIIEOP
1— mi+2
- ”W‘% W2 || max ||Zm || p"“ml—l———( P ) <e€

m<my 1— P

if n > my say, since p =n —m — 1 and p < 1; finally

S o< T WAl
m=mi+1 m=mi+1
<[wd||wie 3 o
m=m3+1
- Wil (25
< |w3| W] e - o)

provided that n > m; and p < 1. Hence, if n > max(mo, m1,ms),

lenl < (2+ W] |[W3 | (1 —p) ") e
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and it follows that € — 0 and that x™ — x as n — oo.#

In the limit the same equidistribution property (17) as in section 3 holds,
as well as (23).

Using this result the algorithm still converges when combined with a
sequence of variable non-negative weights wj which tends to a limit as n —
co. In particular, the algorithm may be combined with a sequence of w's
coming from, for example, either the evaluation of a given function on the
n’th grid or from an entirely separate (convergent) iteration for w™. Some
illustrations are given in Figs. 3-5, taken from references [1] and [2]. In
Figs. 3-4 the underlying functions are tanh{20{z+y—1)} and tanh{20(z?+
y2 — (0.5)2)} , respectively, on the unit square. Fig. 5 shows the result
of interleaving the iteration with a multidimensional upwinding scheme for
the circular advection of a square wave profile with velocity (y, —x) on the
domain [—1,1] x [0,1].

5 Properties of the Limit in Higher Dimen-
sions

We have seen that the iteration

K.
w1 _ Th wh(oly — 2)

K . o (39)
L Tidy wh
converges to a limit z; satisfying
K
Z wk(ka — a:j) = 0. (40)
k=1

Taking the inner product with a unit vector ¥ in an arbitrary direction gives
the displacement
Srott = ————Zﬁ}(@zwﬂ (41)
2p=1 Wi
in that direction (see Fig. 2), a weighted sum of the projections or%,, of
zer — «; onto the line through node j parallel to 7.

Now consider the weight w} in relation to a monitor function E(z,y),
say. Suppose first that ¥ is in the direction of VE. Then, with w = |VE|,
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the displacement 677+ gives the same form as in (15) with the sum extended
over all surrounding elements. In the limit

SO |VE|§rar =0 (42)
which represents a generalised discrete form of the 1-D property
Ak AEj
Av; (2 — @j1) + B (zj —zj41) =0 (43)
2 2

(cf. (15) and (19) in the direction of T. Now suppose that ¥ is perpendicular
to VE. Then, with w = |VE| again, the displacement is once again (41) but
this time the weights are evenly spread either side of the line through 7 in
the direction of 7, more closely resembling the w = const. situation, which
gives equal spacing in 1-D.

Thus the choice w = |VE| tends to give equidistribution of E in the
direction of VE and equal spacing perpendicular to VE.

If we take the component of (40) in the direction of VE, we have

L VE
VE|(zar — ;) - e = 0, 44
1.e.
K;
Z VE- (wG’k - :Ej) =0 (45)
k=1

so that, if the function E is assumed to be piecewise linear,

Z_J:(EGk - E;)=0 (46)

or
L,

> (B —Ej)=0 (47)
=1
where [ = 1,2, ..., L; runs over the corners of the elements surrounding the
node j. This is precisely the condition (see [1]) that the piecewise constant

function
1 &
E=——-+-)>Y E 48
(1+d)§. * “8)

9



is the best fit with variable nodes to the piecewise linear function F in the

discrete norm
K N.

lgll =>_>_ 9" (49)

k=1c=1

where ¢ = 1,2, ..., N, runs over the corners of the k'th element (out of K).
Similar arguments apply in higher dimensions.

Given a function f(z,y) we may take |VE| to be [V f| or \/1+ V£,
corresponding to arclength in the direction of V f), amongst others. In 1-D
a monitor which takes both first and second derivatives into account is

\/I_|_ af/Z + ﬂfuz (50)

where o and 3 are parameters to be chosen (see [2]), and this generalises to

J1+ |Vl + B[V (51)

in the case of higher dimensions.

6 Continuous Analogues
Observe that (23) is a discretisation of
V.(wVX)=0 (52)

where X is any one of the components of the space vector z and that (2) is
a relaxed Jacobi iteration for its solution. The latter can also be regarded as
a discretisation of the PDE

%mT = V.(wVX) (53)
where 7 = (Sw)™! (cf. [3]).

The PDEs need boundary conditions, of course, which, for the compo-
nent X(¢,7) in 2-D may be taken (on a computational grid £, on the unit
square) to be X = 0,X =1on {=0,{ =1, respectively, with corresponding
conditions for the other component. Rather than choosing the finite differ-
ence approximation (23) and the iteration (2), the PDE may be solved by

10



any convenient approximate method, for example by finite elements in which
the functional

/ w(VX)2d0) (54)
is minimised.
Likewise, the iteration (2) is a discretisation of

X, = V.(wVX) (55)

with the same boundary conditions and a suitable initial condition (e.g. a
uniform grid).

The quasi-equidistribution property of the last section can also be written
(in 2-D) as a discretisation of

9 9 0°N
5 (|VE|%N> + S =0 (56)

where N is a coordinate measured in the direction of VE and v, 0 are carte-
sian reference coordinates measured along and perpendicular to the direction
of VE, respectively.

From this point of view the algorithm (2) or (23) can be replaced by any
discretisation of the nonlinear elliptic or parabolic equations (52) or (54) and
once again combined if desired with any w coming {rom say the evaluation of
a function or another different iteration. Illustrations are given in Figs. 6-8.

In figures 6-7 the former procedure is used with functions

(a) tanh{200(z +y — 1)} — tanh{200(z —y + 1)} and

(b) tanh(200(z? + y* — (0:5)*)}, respectively.

In Fig. 8 a Poisson problem with suitable load and boundary conditions
for a solution u = tanh{200((z — 0.5)% + (y — 0.5)% — (0.25)*)} was solved on
each grid before passing on to the next grid iteration. Convergence of the
double iteration in this case required the use of under-relaxation.

There is another interpretation of the grid adapter in the case of the

monitor /1 + |V f|>. Suppose that the aim is to have a uniform grid on a

monitor surface. Consider

Vix =0 (57)
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where y is any coordinate in the monitor surface. A discretisation of (57)
should lead to a uniform grid. Taking & (in 2-D) to be the vector of orthog-
onal coordinates (o, ) on the monitor surface (corresponding to coordinates
(v,0) on the zy plane), we have

VY =JVY (58)
where 8(0,7)
)= 50,0 (59)

and Y is the vector (v,8). With o in the direction of Vf we have (for a
piecewise linear f)

S(ED-(F) e

0 1 0 1

Now, bearing in mind the argument in section 3, discretise

V.(JVY) =0 (61)

in the manner of (23), giving

Z (W)k (zgr —zj) =0 (62)

for the vector z at each point j. An iteration for the solution of (62) is

L Z(\!1+ |vf|2)k(ka—$j) '
3 R Z(\/W)k )

as in the algorithm considered in this report. At convergence we achieve a
uniform grid on the monitor surface.

Given this interpretation it is not so surprising that the grids shown in
figs. 6-7 have such strong convex properties; they are the projection onto the
zy plane of a regular grid drawn on the surface manifold of f. As long as f
is single-valued the projected grid cannot be tangled.

The monitor function does not have to be f but could be a combination

of f and |V ]|, for example (see (51).

(63)
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7 Conclusions

We have seen that the iteration (1) and its continuous analogue is a powerful
tool for generating equidistributed and quasi-equidistributed grids. Its con-
vergence and other properties allow it to be used as a useful grid generator
or grid adapter for steady problems. Further work is under way to apply the
algorithm to time-dependent problems.
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