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Abstract

A moving grid method for the solution of partial differential equa-
tions by a contour zoning method is investigated. Starting on an un-
structured triangular computational grid based upon discretised con-
tours of an initial state, these contours and hence the grid are moved
by preserving a simple equidistribution property.

In the Contour Zoning approach computational time is saved via
a reduction in the number of equations to solve for the heights of
the contours. In addition to this, the equidistribution is computed
exactly and efficiently and not only moves the grid but positions nodes
advantageously for greater efficiency and accuracy.

Applications are shown to insect dispersal models [3] involving
non-linear diffusion equations in 1 and 2 dimensions.

1 Introduction

The contour zoning method involves a reduction in the number equations
to be solved compared to more conventional numerical pde solvers, is made
by having one equation for a set of similar valued grid points [1]. These
sets can either be possibly, non-contiguous groups of points pre-determined
from an initial estimate in steady state problems, or from a previous time-
step in a non-steady state case. However the work presented here is based
upon an unstructured triangular computational grid derived from contours
of an initial state. When using such a grid, each equation now yields a
value or ’height’ for a particular contour. Sections 2 and 4 briefly outline
the derivation of the contour zoning equations and the generation of the



computational grid mentioned previously. For a more detailed and complete
derivation of the resulting equations see [2].

An equidistribution principle outlined in section 4, and in [2] incorpo-
rated only in the construction of the triangular grid, is used to shift nodes
and hence contours to more advantageous positions within the grid after each
solution update. Despite the equidistribution involving the simplest of mon-
itor functions, the ease of implementing this idea complements the reduction
in the size of the system to solve for the values of the contours involved.
Technically the algorithm involves the location and interpolation over edges
connecting adjacent contours, but further savings are achieved by retaining
connectivities between grid points throughout. This moving grid process is
introduced in 1D and then naturally extends to higher dimensions.

Section 5 presents some numerical results in one and two dimensional
versions of a non-linear diffusion problem. These results are compared to
some analytic solutions relating to insect dispersal models found in [3]. Also
included is a short note outlining a possible failure of the grid movement
process where in severe problems, a permanent discontinuity is formed from
which the solution never recovers.

Finally section 6 gives some final conclusions and some idea of possible
future work including extensions to more complex monitor functions used in
the equidistribution preservation.

2 Contour Based Grid

As mentioned earlier, all the two-dimensional work presented takes place on
unstructured triangular computational grids constructed using discretized
contours of the function u. An initial grid is generated from the contours of
the initial state of the problem in hand.

These initial grids are constructed using MATLAB in two stages. Firstly,
the nodes are found, which are quite simply points lying on an initial contour,
the heights being chosen in accordance with the monitor function used in the
equidistribution process. Equal numbers of nodes are placed on each contour
in order to retain a reasonable resolution as the solution and hence the grid
evolves.

Secondly, a triangulation is constructed between each adjacent discretised
contour. Currently the type of triangulation used is thought to be of little
significance, since the solution values of the connected nodes can only take
one of the heights of the contours in question and hence the spatial derivatives
between the contours are somewhat limited. The main triangulation used
here is by Delaunay (see [5]) although it may be necessary to remove any



triangles connecting nodes belonging to the same contour. These are not
required, since spatial gradients along contours always equal zero.

Fig 1. shows an example of such a grid. Here the grid is generated
for a radially symmetric piecewise continuous initial condition typical of the
family of solutions found in insect dispersal problems [3] which are later used
in section 5. In this relatively simple example, 21 contours are discretized
(including the maximum at (0,0)), and each contour contains 15 nodes. The
underlying monitor function is taken as M (u) = %, resulting in the heights

of the contours being equally spaced between the minimum and maximum
of u as shown in the left hand graph.
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Figure 1: Example of Contour Based Grid with associated radial cross-section

3 The Contour Zoning Equations

To demonstrate the derivation of the contour zoning equations we consider
a non- linear diffusion problem

Ou m
where m is real.

The equations are formed by considering the integral form of (1) over the
izt contour (2), applying Gauss’ theorem and then summing discretized,



semi-implicit fluxes out of some predefined control volume (see below) relat-
ing to the iz** contour. Thus we work with the form

Vi . = [ fy,, V.(u"Vu)dzdy

ot
=[5 u™Vu.dS

Where S; is the boundary of the control volume , described below.

Let us consider an interior node i in the triangular mesh. As in [4], we
define a secondary mesh of irregular polygons whose vertices are alternately
the centres and the midpoints of the sides of the adjacent triangles to which
node 7 belongs, see Fig.2. Collecting together the secondary mesh elements
of nodes lying on the i** contour gives the control volume of the contour,
which has area V,. The right-hand side of equation (2) is equal to the inte-
gral around the boundary of V;, of the normal flux of the diffusing quantity
u, which is in turn equivalent to summing fluxes out of each discretized sec-
tion of V;, into adjacent control volumes. A conventional semi-implicit time
discretization deals with the left hand side of equation 2.

Figure 2: Secondary mesh element associated with an interior node
Fig. 3, shows node i with three neighbouring nodes k,j and m. The

vectors k,j and m define the connecting edges of the primary edge and the
vectors by; and byj, define two sections of the boundary of Vi,. The flux
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of material out of section b;z; is equal to the scalar product of some linear
vector gradient function from Ax; and the outward normal to by;. Similarly
with section b;jm. The sum of these two contributions can be written as

Ckuz;l_l + Cju?jl - Cmuztl + (Cm — Cj - Ck)’LLT-H_l

k24

where ujftuft! and ut! are the implicit *heights’ of the contours to

which nodes k,j and m belong. The co-efficients C,C; and Cy, can be written
in terms of the vectors defined in Fig 3 as follows.

3 bik
o, = (u;‘k_.,')”""—uik‘}fi where u;, # ug,
0 where u;, = ug,.

~

13m jm ikj k.j

= (ul )m_ﬁ:_bim — (u? .)mk'—bﬂ‘i where u;, # uj,
J 0 where u;, = u;,.

C _{ (u%m)mj;)%m- where u;, # Umy
o = .

0 where u;, = Up,.

where the vector 3 is vector j rotated clockwise by 7, lA)ikj is the outward
normal of bj; and (uf, )™ is the semi-implicit non-linear co-efficient evalu-
ated at the centre of A;;,,,. For a more detailed derivation of these definitions
and expressions see [2].

Collecting together the contributions from all section of V;,, we now have
an equation for u evaluated on the 7** contour.The limits on the first sum-
mation denote all the nodes 7 belonging to contour ¢z, while the second
summation denotes all the neighbouring nodes j of i. When re-arranged,
this leads to the N x N tri-diagonal system 2. Boundary conditions are
easily imposed on the relevant parts of the affected contours.

un+1 _

Vs —tiz = 3™ S Gt 4 Cpulf = Ol 4 (Cr — G = Ci)ulit (2)

iz
di Vi€iz J

4 Moving Contours

The movement of contours and hence the grid is motivated by the preserva-
tion of an easily enforced equidistribution principle. After each time step the
nodes are moved such that they are equidistributed, that is they satisfy

Lit1

M(u) = constant Vi=1,N (3)

Jz;



Figure 3: Nodes 7,7 and associated vectors.

whre M (u) is some Monitor function
Now let us take M(u) such that

M(u) = |Vul.

It can be shown that for a monotonically decreasing function u, the values
of u at the newly equidistributed points will be equally spaced between the
minimum and maximum values of u, so that for N nodes,

ui:um_(i_l)w Vii=1N

To illustrate the algorithm, Fig. 4 shows the three main stages in a
complete time step. Starting with a freshly equidistributed set of nodes
and values in Fig. 4 (i), the diffusion equation (1) is solved for the next time
level using the contour zoning equations (2), the new values of u being shown
in Fig. 4 (ii), whre no node movement has taken place yet. From this new
solution profile, the new equidistributed contour ’heights’ are computed from
(4), then via interpolation over the profile shown in Fig. 4 (ii) the positions
of the new nodes can be found. The newly equidistributed solution is shown
in Fig. 4 (iii) ready for the next computation.
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0.1 = (1) Starting positlons of nodes (Equldistributed)

[~ (1) Uprekatod solution

0.9

0.1} () New positions of nodes (Re—equldistributed)

Figure 4: The three stages of node movement

0.9




In two dimensions, the algorithm is unchanged, although an interpola-
tion process is now needed to find a set of nodes to represent a contour,
rather than to locate a single point. Fig.5 shows two contours 7 and j with
newly computed values, or *heights’ w5 and u;‘z‘" 1. Now let us suppose that
a newly equidistributed contour level ut! lies between these two heights.
Linear interpolation takes place along all edges of the grid connecting nodes
belonging to contours i and j. We now have a discretization of the newly
placed contour denoted by the broken line. However it is noticed that the
new contour is defined at nearly twice as many nodes as contours  and j. So
that the new contours has the correct number of nodes such that connectivi-
ties throughout the mesh remain constant, we have to interpolate again, this
time along u™'!, which is done in such a way that nodes are again equally

spaced over the contour.

Figure 5: Defining a new contour in Two-Dimensions



5 Numerical Results

Taking advantage of reference solutions in one and two dimensions from [3],
we are able to asses our approximated solutions to equation (1). The test
problems are based on insect dispersal models. The contour zoning solutions
take an initial state from one of these solutions at an early arbitrary time
tstart.

5.1 Omne-Dimension

In one dimension equation 1 reduces to
0u_ 00,
ot Oz Oz’
and has solution

1

u(z, ) :{ sl — {5 % lal < ro(t)

o 1m) o QF(#-FQ) . r2m .
where A(t) = (%) @™ py = W_%W-:l) and ty = 2(72—_'_2), I' is the gamma

function and () is the quantity of material,(or insects) released initially at
the origin.

The solution (5.1), represents a kind of wave with the front at z = z; =
roA(t). The derivative of u is discontinuous here. Neumann boundary condi-
tions are imposed at z = 0 and also at the foot of the front. The wave 'front’
which is defined as the point where u = 0, propagates very quickly initially,
and slows down with time until % —0ast— oo.

Since the conservation of the amount ) drives the solution (5.1), Neu-
mann boundary conditions are implemented at x = 0 and at a fixed contour
at £ = 1. The contour zoning solution is then generated with ) = 1,m =3
and tstart = 0.01. Also included in the contour zoning algorithm is a variable
time step dt. The length of time step is chosen so that the solution will decay
at its maximum by a pre-determined constant amount, dc. The step length
is computed by taking a implicit version of the contour zoning equations (2)
at the maximum value of u, and then substituting in de = wtl — o .
Finally a maximum is imposed on dt such that dt < dtmaz = 0.01 to ensure
that too large a time step is not taken as the movement of the front slows

down. So we have

d (:Vm.rr. 2z

it =
( lqjmrr..1:|
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Figure 6: Approximate Solution (Left) and Reference Solution (Right) at
times t = 0,0.1,0.2,0.3,0.4, 0.5
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Figure 7: Trajectories of Nodes
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where Viar = Z\ﬁeiz E; Cku;:z + CJU?Z - Cm,u”rnlmz + (Cm - CJ - Ck)uzmzz

The left-hand side graph in Fig. 6 shows the contour zoning solution
for various times, whilst the right-hand side shows the associated reference
solutions according to [3]. Generally the solution seems to be good, although
there are small flaws. The solution has almost formed a ’shallow ramp’ at
the front and maybe because of this and the conservation of mass, the height
of the maximum of u at z = 0 differs slightly from the analytic solution. Fig.
7 shows the trajectories of the nodes with time, and it is clear that the nodes
at the foot of the front have clustered and seemed to ’stick’ together to form
the steep front noticed in Fig. 6. These results, in one-dimension, only really
demonstrate the effectiveness of the node movement and not the efficiency
of the contour zoning formulation, since in 1D the equations become similar
to a conventional finite-difference method and hence there is no reduction in
the number of equations to solve.

5.2 Two-Dimensions

We now compare a two-dimensional contour zoning solution to the corre-
sponding plane radially symmetric problem, which has solution

1
)= { = I 2ok
0 r > 'f‘o)\(t)
1
where A(t) = (%)m, r2 = %(1 + L) and tp = T'WTLZT)' Again @ is the
number of insects or amount of material initially at » = 0.

Considering a quarter section of the whole domain, and using a maximum
radius of » = 1 an initial grid is generated from the contours of the solution
above at tstart = 0.01. Fig. 8, shows the grid along with a 3-D plot of
the the corresponding initial state. The Neumann boundary conditions are
imposed at the contour of maximum radius, so the generated solution will
become invalid as the propagating front moves past this final contour. The
grids contain 51 contours, each being discretised by 20 nodes (except for the
maximum at [0, 0]). Setting the variable time step parameter dc to be equal to
0.01, @ = 1, and running the solution until ¢ = 0.5, the solution completed
511 time steps (each including solution update and grid movement) at an
average time of 0.0705 secs per time step on a SUN ULTRA 5 workstation.

To illustrate the grid movement and in particular how the contours have
positioned themselves onto the front, the final grid and its 3D plot are shown
in Fig. 9.

Fig. 10 shows cross-sections of the approximate and exact solutions at
various times. The excessively steep front formation which was noticed in the
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one-dimensional approximate solution have not formed as extensively here,
a possible explanation for which being that in this case the same quantity of
insects/amount of material is released over a larger space and hence the fluxes
involved are not as severe. What is noticeable is the error in the solution
at the very bottom of the front, since the equidistribution process used will
always produce this shallow ramp’ where the solution in these areas should
be flat. Apart from these discrepencies the solutions seem to match quite
well.

To see the impact of the grid movement used with the adaptive time
stepping, we can compare the solution to a solution computed on the same
initial grid but with the grid staying stationary throughout. Although the
contour zoning equations have been shown to give adequate results on less
severe problems (see [2]), the advantages of a moving grid are clear when
considering the problem with m = 3. Fig. (11) shows the cross-section of the
solution generated with no grid movement, for comparison with the solution
with grid movement included see the left hand side of Fig. 10. It is clear
that the moving grid actually allows the solution to not only form but also
to help move the propagating front outwards.

5.3 Permanent Front Formation

Although good results have been shown above, it has been noted, especially in
the 1D work, that unless the adaptive time-stepping parameter dc is chosen
to be small enough the moving contours can become stuck, resulting in a
sharp discontinuity where all the moving contours are very densely packed
into a very small interval based around or on the forming discontinuity. Fig
12 gives a brief explanation as to how the contours or nodes become stuck
in this way.The left hand graph shows an initial state with equidistributed
nodes, the middle graphs shows the updated solution at the current nodes
while finally the right-hand side shows the re-equidistributed nodal positions
of the updated state. As can be seen more and more of the nodes have been
’sucked’ into the front at z ~ 0.4. If this process was continued then all nodes
except those at £ = 0 and z = 1 would be clustered very tightly around this
position and a sharp discontinuity would form from which the solution never
recovers. However it has also been noted that by choosing a very small value
for dc this negative property can be avoided and overcome.

12



Figure 8: Initial Grid (Left) and its corresponding 3D plot (Right)
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Figure 9: Final Grid (Left) and its corresponding 3D plot
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6 Conclusions and Further Work

It has been shown that the introduction of moving contours greatly improves
the accuracy of the contour zoning method. The preservation of the equidis-
tribution principle allows the solution to accurately resolve and track the
moving fronts involved in the problems attempted. Moreover the computa-
tional effort involved when using such a simple monitor function compliments
the reduction in work from the formulation of the contour zoning equations.

However small problems such as the shallow ramp (a data representation
problem (see Fig 10)) and the ’permanent front’ formation both seem to stem
from the simple nature of the underlying monitor function. It can be shown
that by using a more sophisticated function, these problem can be remedied
and the solutions and hence method be enhanced further. As an example we
consider the Modified Fisher Equation.

ou 0, Ou

rrie 8—3:(“%) +u(l —u) (4)
Fig 13 shows two sets of contour zoning results. On the left-hand side, the
moving contour zoning method as before with the monitor function M(u) =
%. Here it can be seen that the shallow ramp at the the foot of the initial
state has been reacted upon and hence driven the foot of the front upwards
so that the solution finally becomes fully reacted everywhere. The right-hand
side of Fig. 13 however, shows results from the same problem but uses the
arc-length monitor (see [6]). In this case there is now no ’shallow ramp’ and
hence the reaction only takes place behind the wave front as required. It is
also noted that the results shown on the right-hand side of Fig 13 compare
favourably with the numerical results presented in [7].

Other planned work for the future includes the inclusion of an indepen-
dently moving 'last’ contour. In the work presented above there was always
a fixed ’last’ or minimum valued contour at which the boundary conditions
were implemented. This meant that when the front moved beyond this point
or contour the solution became invalid. It is hoped that by moving this final
contour with time the boundary condition may be imposed directly at the
foot of the moving front and hence improve the solution further.
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Figure 11: Cross section of approximate solution with m = 3 with no grid
movement. Solutions are at ¢t =0,0.1,0.2,0.3,0.4,0.5
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Figure 12: Formation of a 'permanent’ front
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Figure 13: Moving Contour Zoning results to equation 4 for times ¢
0,2.5,5,7.5,10
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