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ABSTRACT

The technique of constructing a transformation, or régrading, of
a discrete data set such that the histogram of the transformed data matches
a given reference histogram is commonly known as histogram modification.
The technique is widely used for image enhancement and normalization.
In this paper we show that a method which we have previously defined for
producing such a regrading is "best'" in the sense that it minimizes the
error between the cumulative histogram of the transformed data and that
of the given reference function,; over-all single-valued, monotone, discrete
transformations of the data. We also examine techniques for smoothed
regrading, which provide a means of balancing the error in matchiné a
given reference histogram against the information lost with respect to a
linear transformation. The smoothed regradings are shown to optimize
certain cost functionals. Numerical algorithms for generating the smoothed
regradings, which are simple and efficient to implement, are described,
and practical applications to the processing of LANDSAT image data are

discussed.
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i.. Introduction

Histogram modification is widely used in image processing; for

‘exanple in image enhancement to improve visual contrast by histogram

"equalization," or flattemning [1],[4]1,[5], and in precision process-
ing to calibrate corrections for balancing sensor differences
("destriping')[3] . It may also be used to normalize images for

global atmospheric and scene radiance changes before multi-temperal
analysis ormosaicing. Simple systematic procedures for mapping

image data'linearly into a restricted grey scale range for colour
display or for transforming ngtandard colours' between colour monitors

may also be provided by histogram modification methods [7],[10].

)

The technique of histogram modification requires the construction
of a transformation such that the histogram of the transformed image
data matches a glven reference function. In this paper we consider
only transformations which are single- valued and monotonic, that is,
which preserve equality and order relations between grey levels. We
refer to such a transformation as a regrading. Regradings are spatially
independent of the image data and are easily_represented by simple
look-up tables. Histogram modification by regrading is therefore

rapid and efficient to implement.

The regrading obtained by matching a flat reference histogram
is well-known to have certain optimal information theoretic charac-
teristics [11] . This regrading will be called equidistributing and
has the property that any two images which differ only by a monotone

transformation of their grey levels will beceme identical after such
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a regrading. It is optimal in the sense that amongst all transforma-

tions into a fewer number of grey levels it retains maximal information.

A linear compression or stretch of the grey scale gives a re-
grading which matches a linear scaling of the original histogram.
Such a transformation will be called a linear regrading and has the
property that it causes any two images which differ only by a linear
transformation to become identical. Although not optimal in the

sense of information theory, the linear regrading preserves quantita-

<

tive relations which are often significant for interpretation.

In an earlier paper [10] we have shown that a range of smoothed
regradings between these two cases: equidistributing and linear, may
be defined. These smoothed regradings provide a means of balancing
the gains and losses of information.between the two extreme cases.
Smoothed regradings which offer a compromise between the linear
regradings and the regrading that matches a specified reference

histogram may also be determined.

In theory, for continuous image data, %here always exists a

unique monotone continuous transformation which exactly matches an
image to a reference histogram [4]. In general, a discrete-to-discrete
transformation can only give an approximation to the continuous case.
Various choices of rounding from the continuous to the discrete have
been used in the 1i£erature [2],[3],[4]. 1In this paper we show that
the explicit weighted regrading we have previously défined [10] gives
the "best" approximation to the continuous-to-continuous transformation

in the sense that it minimizes the error between the cumulative
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histograms (or equivalently, the probability distribution functions)
of the transformed images. We show also that smoothed weighted
regradings are best approximations to the continuous transformations
which minimize certain cost functions. The cost function is a
measure which balances the error in matching the reference function

against the information lost with respect to the linear regrading.

In cases where the image histogram is extremely unevenly dis-
tributed, for example, where it has large peaks, even the 'best"
discrete regrading may give only a poor appro*imation to the specified
reference histogram. The use of smoothing mollifies these difficulties
without any extra preprocessing of the data and without loss of speed

and efficiency in implementation.

A computer package for the display of regraded images has been
developed at CSIRO, Land Use Research Division. This package,
documented as PEEK [6] , incorporates the algorithms discussed here
for producing smoothed regradings. Applications and results are

described in section 6 of this paper.

In section 2 we introduce general notation and give the formulation
of the problem. In section 3 we examine algorithms for histogram matching,
and in section 4 we investigate smoothing techniques. Methods for
implementing smoothed regradings are described in section 5. The paper
concludes with a discussion of the practical use of these techniques

in processing LANDSAT image data.



2. Formulation of the Problem

In this section we introduce the necessary notation and termin-
ology. The problem is essentially to determine a transformation, say
1, of the input data - a sequence of numbers giving the grey levels
of individual pixels of the scene, into the output data - a similar
sequence of grey levels suitable for display. The input data are
assumed to be from a discrete set of grades, say {1,2,...,n}, dependent
on the instruments collecting the data; and the output data to be
from another discrete set of grades, say {1,2,..g,m} , determined
by the characteristics of the output display unit. The transformation
T is such that input level j € {1,2,...,n} becomes output level
1(j) e {1,2,...,m} , and T thus maps discrete data into discrete

data. We make the following definition:

Definition 1: T is called a regrading of n grades into m grades if

m .
T € Tn , the set of transformations such that

| 1L 1t : {1,2,...,n} — {1,2,...,m}
(ii) 1 is single-valued

(iii) 1 is monotonic, Z.e. i < j = t(i) < w(3)

Regradings thus preserve equality and order relations of the input

scale.

A regrading from n into m grades is easily represented by a

look-up-table, that is, by an n-dimensional vector T = (Tl,Tz,...,Tn)

where T = t(j) and T are integer values satisfying 1 < 1 < T e

< < m. Such a regrading may also be represented by an ordered

T
n
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set of so-called break-points Xy s k =0,1,...,m, such that
Tj =k Vj suth that X 1 <js<x

(We note that a regrading 1 is uniquely representable using integer

break-points).

For a given scene, we denote the histogram of the input data by

the n-dimensional vector f = (fl,fz,...,fn), where fj equals the

number of pixels with grey level j in the scene, and f. 2 0. The

J
histogram of the output data under transformation T € T? is denoted
1

A

by t© ®f and is defined as the m-dimensional vector = ®”£ = (fl,

2 5 . R *k

f2,...,fm) with £ = ) —kfj . (Equivalently f = -_2 fj R
JBTj- J—Xk_1+1

where X, are the integer break-points defining t1). Clearly %k equals

the number of pixels in the output data with grey level k, and

£ =
1k

B £ = g .

13
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k
The discrete histogram modification problem is then expressed
as follows: given input histogram f and reference g, find 7t € Tﬁ

such that 1 ® f = g . i

Two examples are the equidistributing regrading and the linear

regrading described in the introduction. The equidistributing regrading

is obtained by matching the input histogram f to a flat histogram
g= (gl,gz,...,gm) ‘where g, =¢ Vi, and c is a positive constant.
The linear regrading is obtained by matching f to a linear scaling of
jtself in such a way that the original n grades are distributed.as

equally as possible into the new m grades.



We observe that, in general, the discrete histogram modification
problem cannot be solved exactly. In practice, it may even happen that
the reference histogram g arises from data defined on q grades where

q # m, and the problem is then not clearly defined.

To make the problem more precise, we use the cumlative histogram-
of the data: given histogram f (of dimension n), we define Df as the

continuous piecewise-linear function on [0,1] such that

D' (x) = nf,/|£] Vx e ((3-1)/n, j/n)

Then Df e D where D is the set of functions D such that

(i) D : [0,1] +— [0,1]
(ii) pO) =0 , D() =1
(iii) D' exists a.e.

(iv) pl e D exists.

(Remark: 1If D' = 0 on a subinterval of [0,1] , then D_1 is not uniquely
defined on that subinterval. In order that such functions are included

in D, we explicitly define D! such that
D'l(K) = max {x | D(x) = K} .)

The function Df may be regarded as a continuous (scaled) rep-

resentation of the cumulative histogram of the input data, and

= Nt
df_D£,

resentation of the histogram £. If we make the assumption that the

jts derivative, as a piecewise continuous (scaled) rep-

discrete image data arise from a continuous image where the grey levels
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in the continuous range [j-1,j] are equally distributed over each pixel
having grey level j, then Df is just the probability distribution

function of the continuous image data, and df is the corresponding

probability density function.
The discrete histogram modification problem then becomes:

Problem 1: Given input histogram f and reference histogram g, find

T € Tﬂ such that DT@E_: ?&.

(We observe that with this definition of the‘problem g may be of any

dimension.)

The exact solution to this problem may not exist, however, due to the
discrete nature of transformation t. We therefore must choose a regrading
T which gives the 'best" approximation to the solution in some sense.

In the next section we give the definition of a weighted regrading of

f into g (as in [10]) and show that it minimizes the difference between

D and D in a certain measure.
®f g .
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3. Algorithms for histogram modification

For continuous image data it may be shown that there always exists.
a unique monotonic continuous transformation which matches an image
histogram to a reference histogram. We have, precisely, the following

theorem.

Theorem 1:  Given any Df, Dg e D then there exists a unique T e D

.(i.e. a unique single-valued, monotonic transformation from [0,1] into

[0,1]) such that . Df(s) e Dg(T(s)), and T is given explicitly by

-1
T=D oD .

In other words, given cumulative histograms (or probability

distribution functions) Df(s), and Dg(s'), there exists a continuous

transformation T of the continuous data s into s' such that the cumulative
histogram (probability distribution) of the transformed data s' takes

given form Dg

For histograms f and g, if a discrete regrading T exists such that

D exactly equals Dg’ then for all k = 1,2,...,m, there exists an

®f

integer jk e {1,2,...,n} such that Df(jk/n) = Dg(k/m); that is, letting

T = Dg-1° D¢ be the exact continuous transform matching D. to Dg’ then

jk = nT-l(k/m) is an integer belonging to [0,n] and the solution to
Problem 1 is given exactly by

Tj =k Vj such that o <3 < Jy -

In general, however, X = nT-l(k/m) is not an integer, and somé "'rounding"

procedure is required to define the discrete transformation.

Procedures used widely in the literature for obtaining a discrete
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regrading involve "bin-filling" ([21,13],[4]), and generally work from
"left to right". The algorithm defining the transformation in this

case is given by

j k
T % min{k | % fi = Z gi}
i=1 i=1 (1)
= min{k | Df(j/n) < Dg(k/m)}
Using the definition T = Dg—lo Dg and the monotonicity properties
of Df, Dg and T , (1) is equivalent to the algorithm

HI p— . L] 13

Ty = k Vj such that x 4 <] < X (2)

! where X = nT_l(k/m). This algorithm produces the exact regrading

matching D o to Dg when it exists.

The complementary 'right-to-left' technique

k-1 j-1
T = max{k | izlgi < iz fi}
(3)
| = max{k | Dg((k—l)/m) < Df((j—l)/n)}
% has this same property, and is equivalent to the algorithm
|
? T = k Vj such that x ;< j-1 < x (4)

where x_ = nT ! (k /m)

Regradings (2) and (4) are representable by integer break-points
jk’ k =1,2,...,m, where, in case (2) jk is the largest integer such

that < X s and in case (4) jk is the smallest integer such that

Jp <
Xy < jk' These algorithms thus consistently round the continuous

-

transform up (or down) to obtain the discrete regrading. Such "one-way"

algorithms tend to give poor results, especially when the input
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histogram is sharply peaked at some points.

In [10] - we have given a more symmetric alternative algorithm

for determining the discrete regrading matching Df to D

*

Definition 2: The regrading T e T: satisfying

*

— 3 _1
Tj =k Vj such that X g <% < X (5)

where X, = nT—l(k/m) , T = D; ° D¢ is called the weighted regrading
matching Df to Dg'

‘ *
The weighted regrading 1t given by (5) is representable by integer

break-points k =1,2,...,m such that - < x

S X
L(k/m). This algorithm

<jk+%, z.e.

Ik

= nT~

Jges
such that jk is the closest integer to X

also produces the exact regrading matching Df

*
Futhermore the weighted regrading 1 of Definition 2 gives the '"best"

to Dg when it exists.

approximation to the solution of Problem 1 in the following sense:

*
Theorem 2: The weighted regrading t minimizes the error between

3 . : m
DT®f and Dg in the discrete lp-norm (1 < p <o) over all 1 € Tn 5

that is

min
_f_ - Dg "p,m = TGTE I DT®£ - Dg "p,m (6)

*
I D_*g

{The discrete lp—norms of Df are given by

/p max

n 1
i 5, amD s, 1 <p<ew;and lDJ = .7 ID.(j/n) | .
"Dinp,n [jlei(J/n) 1 ijoo,n j | 5 )
Proof: let jk e {1,2,...,n} be the integer closest to X, = nT—l(k/m),

" *
k =1,2,...,m, and let T be the regrading defined by these break-points.

Then DT*<2ka/m) . Pﬁ(jk/n). There are two cases. Suppose first that
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Iy is monotonic non-decreasing we have

-1 < X, < jk ; then, .since Df

De((5,-1)/m) < Do) < De(y/m)

and since Df is linear on [(jk-l)/n ) jk/n] , we have

[DeCx) - Dl /m) | < D) - DG/mY] ¥y # dy

Using 1o Df'

oD and the definition of X we obtain

IDg(k/m) - Deliy/m| = je{lT;?...,n}IDg(k/m) - De(3/my|

The same result follows in the case .jk < X < jk-+1 . Hence

Dy (k/m) - D *g ¢ (k/m)] = ilrnﬁ Dy (k/m) - D ge(k/m]

and (6) follows directly by definition.

We observe that in the case f is of dimension m, the error

*
between DT62>f and Dg is also minimized by t in the L continuous

norm. This follows because Dg and DT®f are pieCewise-linear between

points k/m, k = 1,2,...,m , and therefore the maximum errors on

[0,1] are bounded by the errors at points k/m.

We conclude that amongst all choices of discrete transformation
T e'TE which approximate the continuous transformation T, the weighted

*
regrading 1 of Definiticn 2 minimizes the maximum error between

1

D and D_oT = = Dg . Other properties and the behaviour of the

®F £ .8

*
regrading T are given in [10].

*
A direct procedure for constructing 1 is easy to implement using

inverse linear interpolation to find the break-points X satisfying
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Df(xP/n) e Dg(k/m), where f, g are given. A simple FORTRAN subroutine

for determining t

*

is given in [9].
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4. Smoothed regradings

The regrading from nlinto m grades which maximally retains
information (in the sense of maximum entropy) is obtained by matching
the input histogram to a flat reference.histogram, and is called
equidistributing. Experience has shown that, although optimal in the
information theory sense, images produced by the equidistributing
regrading tend to be too sharp, and.to reduce many of the contrasts
in the image which are significant for interpretation. On the other
hand, the regrading which uniformly distributes the old grey levels
onto the new grey scale, called the linear regrading, preserves the
original shape of the histogram as accurately as possible. ‘In an
earlier paper [10], we have described methods for producing a continuous
range of smoothed regradings between these two cases: linear and
equidistributing. The smoothing is regulated by a single parameter
which provides a means of precisely balancing the gains and lésses in

image clarity between the extremes.

We have also defined methods for constructing single-parameter
families of smoothed regradings in a range between the linear regrading
and the weighted regrading which matches a specified reference histogram
[9]. These smoothed regradings minimize cost functions which measure
the error in matching the reference histogram against the information
lost from the linearly scaled input histogram. This result is most
easily demonstrated Sy first examining continuous transformations on
continuous image data. The smoothed regradings are then obtained by
algorithm (5) as "best" approximations to the continuous transformations.

In this section we consider the continuous case and in the next section
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we describe the discrete implementation.

Definition 3:  Given D » Dg e D be functions

e D, let FA’ G

A

continuously dependent on parameter A e¢ [0,1] such that FO = Df

. el :
G0 = 9& and F1 = Gl' Then TA = GA FA is a smoothed transformation

f

of D. into D .
g

The transformation T has the property that for A =0,

-1

T0 = 95 092 s Tl.e. qﬁ(s) = Pg(To(s)) and TO is just the continuous

transformation which matches cumulative histogram D_. to cumulative

£

histogram Dg. For A =1, T1 = G1 oF1 =1, Z.e. T1 corresponds to

a linear map between grey scales. For A ¢ (0,1) , TA provides a

compromise between the two extremes.

Linear Smoothing

The simplest smoothing depends linearly on the parameter A.

We have the following two cases:

(i) Let ‘FA = 9{ for all A, and let GA = (l-A)Qg.+ A.gf
Then we obtain the smoothed transformation
T. = ((1-A)D_+ AD) 1o D N
A 4 £ £ -

(ii) Let FA = (I—A)Df + A‘?ﬁ’ and let GA = 9& for all A.

Then we obtain the smoothed transformation

[ KX
n

<1
x =Dy °((NDg + 2D ) (8)

Both transformations optimize qﬁadratic cost functionals. For

the proof we require the following lemma, which is easily demonstrated
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by standard least-square arguments:

Lemma Given Di eD,i=1,2,...,p, and continuous, positive functions

o, = oi(s), the functional

F) = _El [ 0, (s)(D(s) - D;(s))2ds
1= .

is minimized by

D*(s) = [E ci(S)Di(S)] / [E oi(S)]- @
i=1 i=1
We obtain the following theorems: N

1

Theorem 3: Given D_.,D , the transformation %k defined by (7) minimizes

£’
1 2 1 2
(1-A)£ [d(Ti) - g] ods + xé [d<T£) = df] ods, (9)
where ¢ = o(s) in any continuous, positive function, df S D%, dg ES Dé,
and d(Tf} z (Dng‘l)'. (The function d(T£> may be regarded as the

probability density function of the continuously transformed continuous

image data defined in section 1.)

Proof: The functional (9) may be written

1

1 .
(1_x)£ ((DifT‘l)' - Dé?zcds + x£ ((DfOT'l)' = Di?zods. (10)

By the Lemma, (10) is minimized by

oT™1 = - L
T = (M) + 2Dy

Integrating and using Dg(l) = Df(l) = 1, and then re-arranging, we obtain

the minimum of (10) with

- _1 —'\'
T = ((1-M)D; +'ADE?_°Df =Ty



B e e

e - e . S ———

e el A L 1

16.

Theorem 4: Given Df, Dg’ the transformation TA defined by (8) minimizes

1 1
- 2 = 2
(14){) (d(T_I&) d£) ods + x{) (d(T_lg) d_g_) ods (11)
where ¢ = o(s) is any continuous, positive function, and df = D%, d = Dé,
- b o 1 o
d(Tvlg) S (Dg IDES

Proof: The functional (11) may be written

1 1
- oTY!' - DW2 + oTY!' - D)2
(1 x)(j) ((Dg T) Df_) ods' x(f) (U_J.& T) Dg) ods 12)

The rest of the proof follows from the Lemma as in Theorem 3.

It may be observed that when A = 0, TA = %A= Délon, and the minimum

value of functions (9) and (11) is zero. Similarly, when A =1,

=32

TA E A I, and the functionals (9) and (11) also take minimum value
zero. We remark that the cost functional (9) is equivalent to the

minimum information loss function of Hummel [4] and that the corresponding
"best" discrete approximation to the minimizing continuous transformation

is easily computed by the algorithms described in section 5 of this

paper.

Generalized Linear Smoothing

A more general form of smoothing can be obtained as a composition of

linear smoothings. The resulting transformation is non-linearly dependent

upon the parameter A:

(iii) Let FA . (l-A)D£-+ ADy, and let GX e (1—%)Dg_+ ADy, where

D € D is an arbitrary function. Then we obtain the smoothed transformation

T, = ((1—)\)1)g + ADX)'I o ((1-\)Dg + my). (3) -
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(We note that if S, is the transformation matching F

1 A

the tran;formatlon matching DY to GA’ then TA = 320 Sl.)

Using arguments similar to those of Theorems 3 and 4 we can show

to D and S, is
y 2

the following:

Theorem 5: Given Df, Dg and Dy’ the transformation %A defined by (13)

minimizes

1
(1-2)f o, (d -d)2+0,(d,p-1, y - d.)2ds
) 1 (TEA) g 2°°AT g%) £

1
. Af o.(d -d )2+ o0,(d,.—
0o ! <T£A) y 2V (T g, ?

- d )2s,
y gy

where o) = ol(s), o, = 02(5) .are any continuous, positive'functions,

-1
= 1. = ! = ' = o t - = °
and dg = Dy, d = Dy, &y = Dy, d"Tfﬁ = (FyeT ), dgg 1&‘) = (6,°T)".

We observe that the arbitrariness of the weight functions o, and

-
~ ~

» Oy in (9), (11) and (14) means that the transformations TA’ TA’ N

Jen

%1
defined by (7), (8) and (13) each minimize a large class of functionals.
However, despite these optimality properties, practical experience
jindicates that none of these rather unsophisticated smoothings is
as effective as non-linear methods based on 'padding" techniques.
In [10] we describe methods of this type for determining smoothed
equidistributing regradings. Generalizations of the discrete non-linear
techniques for obtaining smoothed weighted regradings are given in the

next section. Optimality properties of the non-linear regradings are

unfortunately not easy to determine.

-
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5. Implementation of smoothing

In principle, the discrete implementation of the continuous smoothing
procedures described in section 4 is very simple. The input histogram

f is replaced by a new histogram EA and the reference histogram g is

replaced by g then T; € Tﬂ, the weighted regrading satisfying

Definition 2, which matches Df to Dg is the smoothed weighted regrading.
= 2)
By Theorem 2, TK is the best discrete approximation to the smoothed

R

_eontinuous transformation T, = GXIOF of Definition 3, where F

A A

and GX = Dg%' (It is assumed that fO =l i gy = g and that fl’ g

are such that Dy = D ).
1 &

Linear Smoothing

Exact implementation of the linear smoothing (cases (i) and (ii))
of section 4 requires that the input histogram f and the reference
histogram g both be of dimension n. Then for case (i) f% and g, are

chosen as:

m

(i) £,

LH':

(1-2)g + Af;

£

and for case (ii) we take

(ii) (1-0)f + Ag,

LP'h

g =&

Clearly the cumulative histograms Df and D are equal, respectively,
= 2 .
to EA and GA as required by the definitions in section 4, and the smoothed

weighted regrading T; matching DEA to ng gives the best approximation
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) | o . O 5 ]
1n.Tn to TA in case (i) and to TA in case (ii). These regradings are

thus optimal in the sense that they minimize information loss as measured
by specific cost functionals. In particular, these regradings minimise a

specific balance between the error in matching D to Dg’ which gives the

weighted regrading, and the error in matching De to Df, which gives the

linear regrading.

Generalized Linear Smoothing

The linear smoothings (i) and (ii) are special cases of the
generalized linear smoothing (iii) where y is chosen in (i) equal to-
f and in (ii) equal to g. The more general form (iii) of the continuous

smoothing is implemented by choosing

(1ii)

£A (I-2)f + 2y,

(1-2)g + Ay.

L

If f and g are both of dimension n, then y = i_is taken, and y may be
chosen arbitrarily. In the case where g is of dimension q # n, we
u&eyj=c,j==lﬁ,”.m,ami% =E,j=:h2“.qq,WMEeC,E
are positive constants. In either case Dy = D;, and the smoothed

weighted regrading T; matching Df to Dg gives the best approximation in
=) Ex =
Tg to the smoothed continuous transformation TA defined by (13).

Non-linear Smoothing

Although all three smoothing procedures (i), (ii) and (iii),
based on linear combinations of the weight and reference functions,
possess certain optimality properties, we have found that non-linear
"padding" procedures often produce more effective results in practice.

These methods are based on mesh selection techniques used in solving
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ordinary differential equations (see [8]), and operate by adding
artificial "pixels" to pad out the grey levels which have no, or few,
entries, thus "smoothing'" the input histogram (or reference histogram).
In [10] we have described two methods of this type for finding smoothed
equidistributing regradings. These methods match certain paddings of
the input histogram to flat reference histograms; the padding is regulated
by a single parameter A e [0,1] such that, with no padding (A = 0)
the equidistributing regrading is obtained and with heavy padding (A = 1)
the linear regrading results.

Methods fér determining smoothed weighted regradings, dependent
on a single parameter X € [0,1], are similarly obtained by padding
both input and reference histograms, and matching the padded histograms.
With A = 0, no padding is applied and the weighted regrading of Definition
2 results; with A = 1 the padded histograms both become constant and
the linear regrading is achieved.

The first of these nonlinear methods uses constant padding. The

input histogram f and the reference histogram g are replaced by EA and

g where
(iv) (5)j = max(fj, c, (), j =1,2,...,n,
(E_)\)J = max(gj, cz(}‘)), j= 1,2,---,%
and ¢ (0) = A (% max[£;] + 2(1-0)|£]/n), |
J
c,d) =2 O mzilx[gj] + 2(1-)|g|/m).

J

The smoothed weighted regrading is then determined by matching Df
' =\

to D_ . We note that any choice of the constants ¢ such that

g
-5y )
cl(O) =0 = cz(O) and Cl(l) = m?x fj’ cz(l) = m?x gj would give a

1° €2
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raﬁge of regradings satisfying our requirements. The constants chosen
here are designed to give the regradings a meaningful dependence on A
for histograms with different average and maximal values.

The second nonlinear method uses padding by an inverse linear
function rather than a constant. The smoothed weighted regrading is

obtained by matching D. to Dg where f% and g, are now given by

£A _—A '
(v) (EA)j = mix{fi / 1+ cl(x)fili - jl)}, j = PR . . N
(g—x)j = meiIX{gi / (1 + cz(k)gili - jl)}, ji=1,2,...,9,
with ¢;(A) = m log (1/2) / |£],
c,(0) = m log(1/A) / |gl.
(We note that as A +~ 0, f, -~ f and g, > g, and we may continuousl
: o AL & 7 & y
define fO = f and g = g.)

Both of the nonlinear methods (iv) and (v) give the smoothed
equidistributing regradings defined in [10] when the reference histogram

g is constant.

Properties of the two different padding procedures are illustrated
in [10]. The smoothed weighted regradings obtained by these paddings
are "best" discrete approximations (in the sense of Theorem 2) to the

smoothed continuous transformation T, =D -lep,_ of D, into D_,
S -* U " Y 4

where are defined by (iv) or (v). Both non-linear smoothings

L By
clearly provide a éompromise between the weighted regrading matching

D¢

grades (obtained with A = 1). Unfortunately, it seems difficult to

to Dg (obtained with X = 0) and the linear regrading from n into m

show that these non-linear transformations optimize any meaningful cost
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functionals. .The effect of the nonlinear smoothings on the break-points
of the regrading is, however, well-understood in the equidistributing
case [10]. Constant padding (method (iv)) limits the ratio of the
largest interval between breakpoints to the smallest such interval,
while padding by the inverse linear function (method (v)) bounds the
ratios of consecutive intervals between break-points; that is, for

method (iv) mix(xk - xk_l)/m]tn(xk - xk—l) < KA’ and for method (v)

I/KA < (xk+1 - xk)/(xk - xk—l) < KA’ Yk = 1,2,...,m-1, where
X, = nT;‘1 (k/m) are the breakpoints defining the smoothed regrading, and
KA’ kl are positive constants dependent upon A.

The discrete algorithms (i) - (v) for determining smoothed

weighted regradings are all rapid and efficient to implement. Look-up
tables for the regradings are produced easily by modifying the input

and reference histograms grade by grade and then computing the breakpoints
x, of Definition 2 which satisfy D. (x,./n) = D_ (k/m), using inverse

k . £,k &y
linear interpolation. Simple FORTRAN subroutines for these operations
are incorporated in the computer package PEEK [6] and are listed in [9].

Applications of the regrading algorithms are discussed in the next

section.



23.

6. Applications

In this section we report results obtained by the application of
the discrete regrading and smoothing techniques described in sections
3 and 5 to the processing of LANDSAT image data. .These techniques
are highly flexible and may be used to achieve a wide variety of

objectives.

Essentially any discrete regrading of the input data can be
determined by the weighted regrading algorithm (5) of Definition 2-
including, for example, a simple linear stretch._ The linear regrading
from n into m grades is obtained by matching any cumulative histogram

to itself. The algorithm (5) then reduces to the explicit_formula:

Ty = L[G+)m/m]

where [z] is 'the largest integer less than z." This regrading has been
used on‘LANDSAT data with good results for mapping input data into

a restricted grey scale range for colour display by various media,
including different video monitors, and "spray gun" reproduction; It
has also been used successfully for transforming '"standard colours"

P

between colour monitors.

The regrading technique may also be used for calibrating corrections
to balance sensor differences, that is for 'destriping'. Here the
histogram of each sensor in a given band is matched to a reference
histogram which may be one of the sensor histograms, or an average of
them all (see [3]). Good visual results are achieved by this method

over land masses, but difficulties arise when the sensors do not cover
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comparable areas. It has been found that the use of smoothing in

these cases tends to offset the poor effects.

Image enhancement by histogram "flattening" may also be achieved
using algorithm (5). The equidistributing regrading is then obtained
Iby matching the input histogram to a constant reference histogram.
Experience has shown, however, that significant contrasts are offen
lost in images produced by this regrading. Introducing smoothing in
these cases results in a much more satisfactory over-all image with
good contrast and definition of land covers. The smoothing techniques
also allow for the identification of special features and for finding
the most satisfactory visual images of a scene (or subscene) by

continuously varying the free parameter.

Image normalization requires that the histograms of two different
scenes, or subscenes, belmatched to the same reference histogram, and
may also be achieved by the weighted regrading of Definition 2.
Normalization, like destriping, involves a balance between the given
informétion contained in the data histograms and a "prior" view that
these histograms should be equal. Smoothing, in these cases, provides
a simple technique for balancing image colour by continuously varying
one or two parameters, and may be used with effect in mosaicing and in

multitemporal analysis.

An interactive computer package, known as PEEK [6] , for implementing
these aﬁplications of the regrading techniques has been developed at
CSIRO, Division of Land Use Research (DLUR). For a given choice of
scene (or subscene) the histograms of the six sensors in each of the

four colour bands are accumulated by the system, together with the total
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histogram of the data in each band, and the true minimal and maximal
values of the grey levels in each band are returned. The following

options are then available to the user:

(a) choice of "window" - to replace the calculated (default), minimal
and maximal grey levels in each band;

(b) "destriping" - witﬁ linear smoothing of type (i);

(c) "enhancement'" - by equidistribution, with smoothings of type

(i),@Ev), or (v);

(d) '"normalization" - by matching a specified reference, with smoothing
of type (i);
(e) colour "display" - with choice of up to three colour bands and

output to video terminal or to disc file for subsequent reproduction.

Option (a) fixes an initial linear stretch of the data from the
"window" onto the full set of output levels; at any subsequent operation
the ﬁser may redefine the number of output grades required. For colour
display, a linear regrading is applied if the number of output levels
requested differs from the number of input grades to that option.

Except in option (e), the data is not re-read; all other options apply
operations to the accumulated histograms only, and return look-up tables
which define the required regrading directly. In options (b),(c) and (d)
the user chooses the smoothing parameter to be used, and in option (c)
the type of smoothing to be applied. The histograms of the processed
data can be printéd at any stage, and the raw histogram data can be
reset if necessary. The system is highly flexible and adjustable to

different colour display media.
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This package is currently being used at DLUR for the investi-
gation of forest and coastal regions in New South Wales and in manage-
ment studies of the Great Barrier Reef. The effects of the operations
described here are illustrated for a coastal subscene of the Morgan
River basin. 1In Figures 1 - 4, the histograms for colour bands 4, 5
and 7 are shown on a scale from 0% to 100%, where the aboslute value
at 100% is given by MAX. The raw input data for bands 4, 5 and 7 were
given on 105, 119 and 48 grades, and the output data were obtained on
16, 16 and 8 grades, respectively. In the Figures, the output for
band 4 is shown on the grey scale levels 0 - 15, band 5 is shown on

levels 22 - 37 and band 7 on levels 44 - 51.

In Figure 1 the histograms of the raw data (with a linear re-
grading) are displayed. Figure 2 shows the histograms of the three
colour bands after destriping was applied in each band. The destriping
visually improved the image, removing almost all of the original
striping. It may be observed that the total histograms in each band
are more peaked than those of the raw data, as a result of regrading
the data of each sensor into the same average form. Figure 4 shows -
the histograms after enhancement by equidistribution (histogram
"flattening"). The data is clearly distributed over all the grades
and the MAX value is greatly reduced. In the original image only one
or two major features were discernible, but in the enhanced image a
wide range of different ground covers were visible; the major features,
however, were no longer clearly distinct in the enhanced image. In
Figure 3 the results of smoothing by padding procedure (iv) with parameter
value 0.2 are shown. The histograms are much flatter than for the raw data,

but are not nearly so wide-spread as in the equidistributed case. 1In the
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smoothed image, the major features appear clearly, but the other
intéresting ground features are also shown with good contrast. By
varying the parameter a sequence of images were produced and the best
smoothing for enhancing a particular feature could be chosen. The
effects of the smoothing were principally apparent in the composite
colour images and not in separate grey scale maps, and, . therefore,

could not easily be illustrated here in black and white.

The flexibility of the PEEK system for image processing requires
choices to be made for a large number of different variables. Experience
over a wide range of experiments at DLUR suggests certain strategies
for these choices. For destriping, the best results seem to be achieved
by regrading from the full number of input grades into an equal number
of output levels. It has been observed that enhancement of destriped
images by histogram flattening causes striping to reappear. By smoothing
the enhancement, the effect of this striping can be minimized and a

balance achieved between striping and enhancement of desired features.

It has also been noted that with enhancement by full equidistribution{
an implicit "window" is defined by the majority of the data, such that
data outside this "window" is reduced to a common grey level. Using a
linear stretch with an explicit "window" has the same effect. Smoothed

regradings also define an implicit window, but allow minor features

of significance to be preserved by varying the smoothing parameter.

Experiments with smoothed equidistribution, using different

. padding procedures indicates that the non-linear method (iv) of section

5 is the most effective. Distinctive images occur for different choices

of the parameter, showing good contrast and exposing different visible
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features. This characteristic arises from the nature of the padding -
which moves the regrading break-points individually in distinctive

jumps from the equidistributing to the linéar positions (see [9], [10]).

One of the major advantages of the smoothing procedures discussed
here is that, given a pérticular option, the required number of output
levels and the smoothing to be applied, a whole range of regraded images
can be generated by simply varying a single parameter. As the regradings
are represented by look-up tables, which can be loaded into hardware, it
is possible'to display the continuous range of images directly on a
colour monitor (withoﬁt even re-processing the data). A striking
example of the value of smoothing is given by the detection of subtle
patterns in Eucalypt forests on the south coast of New South Wales where
burning had been used to remove under-growth six months before a LANDSAT
overpass in November, 1975. 1In this area the fire had caused some minor
crown damage. Here, equidistribution and severe linear strefching both
enhanced low contrast features, but did not show clearly the fire damage.
Smoothed regrading, however, enhanced the burn pattern associated with
the crown damage and produced a much more satisfactory over-all image,

which had good contrast and definition for interpretation of land

covers in the whole subset.

We conclude that the regrading algorithm and smoothing procedures
described here offer a rich source of enhanced and normalized images,
which can be rapidly and conveniently constructed, and provide the
means for reducing some of the severe problems encountered in image

processing.
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