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1. Introduction.

In [2] a large timestep generalization of Godunov’s method was proposed for solv-
ing scalar conservalion laws in one space dimension. The use ol larger timesleps resulls
in considerably less smearing of discontinuities. In Godunov’s method cach jump dis-

conlinuity w?,, — u? is propagaled according to the Rankine-Tugoniol jump condition

1

Lo ils prop(:rJ lo(:nl,ian at, time t, 0. The resulting solulion is then averaged over inter-
vals [a:]-_l/g,mj,l,,/g] Lo give zL;-‘""]. The usual Courant number restiriction for Godunov’s
melhod ensures that the discontinuitics do nol interact with one another over the course
ol a single timestlep.

In the large timestbep gencralization, discontinuities are allowed Lo propagate through
scveral mesh points in cach timestep. In gencral the discontinuitics should then inleract
with one anolher. In practice we can cither attempt to recognize and handle these
interactions or we can ignore them. The former approach is clearly superior and for scalar
problems it was found thal Lhis could be done casily and clliciently through a merging
procedure. Unfortunately, that procedure docs not generalize dirclly to systems and it
is doubtful whether any such procedure exists that is sufficiently cfficient Lo allow us to
handle all interactions correclly. The question then arises as Lo whether mosl inleractions
in a typical problem can be ignored in cach limeslep, perhaps concentraling our effort on
handling interaclions belween strong disconlinuilics.

As a first step in this dircction il is useful to experiment with the method in which
all intcractions arc ignored, in order to see where difficulties arise. This has been done for
a simple model problem and some results are reported on here. It is found that in smooth
regions of the flow it may be quite reasonable Lo ignore inleractions, at least with moderale
timesteps. Morcover, shock propagation and interactions are handled remarkably well in
some cases, oflen giving sharp and accurate results, although these resulls are highly
variable and depend strongly on both the Courant number and the meshsize used.

An interesting phenomenon is observed in which gross inaccuracies in the solution
caused by incorrectly handling interactions al one timestep will often be correcled in
later timesteps. This gives further hope that a more sophislicaled algorithm, in which
the most imporlant interactions are handled explicitly, will iudeed be able Lo deal with
realistic problems successfully and clficiently.

2. Numerical results.

Computalions have been performed only on a model system of two equations oblained
by setling 4 = 1 in the Buler cqualions (sce Roc[4]). The cquations are

pe+my = 0
my + (m?/p+a*p), =0

(1)

where p is the density, mn is the momentum, and a is the (constant) sound speed. The
cigenvalues ol Lhe Jacobian are m/p 4 a. For simplicily of deseriplion we assume Lhat
the flow is subsonie everywhere, |m/pl < a, so that the general solution Lo a Riemann
problem consists of one leflward moving wave and one righlward moving wave, cach of
which is cither a shock or a centered rarefaclion wave. The intermediale states and
propagation speeds are casily computed for this example. The sel ol stules (p, m) which
can be connecled Lo a given stale (p(),m()) through a shock salisly

N D
m = A ] e (= po),
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the 4- and — signs corresponding Lo rightward and feltward moving shocks respectively,
The velocity al which a shock propagates is (m — mg)/(p — po). The scb of slales which
:an be connecled through a centered rarefaclion wave salisly

o — rmo + apn(p/ po)-
-Po

The large timestep algorithm is best deseribed by considering a Lypical step. We begin
bl 1 D 3 vl
by initializing u;.‘+ =} [or all 5. Now consider a single Ricmann problem belween z;
and 2;1. Suppose it has been determined that the states w? and u?,, are connceled
7t J 741
through a leltward moving rarcfaction wave, an intermediale stale w,,, and a rightward
> b m) pJ
moving shock. The intermediate stabe w,, is oblained by solving lor p,, and m,, lrom

mMy
My == p——l — apm In{pi/p;)
7
and -
m; -
Pi+1 Pi+1

The disconlinuily v, — ], propagales to the right with speed

oMy — My
Pi+1 — Pm
Sctting jo = [ck/h], the integer part of the speed Limes the mesh ratio, we increment the

v gL n+1 n-p1 n ' ont /T n
values wi 'y, uiio, .o uif, by um—u?, and increment uZy, | by (ck/h—p)(wm—uly ;).

3
This is equivalent to propagating the discontinuity to the point 2, /94ck and projecting
the resulling solution on to the grid by averaging, as in Godunov’s method, if the Courant
number is less than 1 then g = 0 and only the value u"_i‘ll is affecled.
. - . - . J 3 . . 3 .
IFollowing (2], the rarefaction is splil into several weaker disconlinuitics which are
)
propagaled as entropy-violating shocks. This allows Lhe original disconlinuity to spread
out over several mesh peints and gives a good approximation to the brue rarefaction wave
provided il is split into sufliciently many picces. Specilically, we lake 7, picces where 4,
is some inleger roughly proportional to
Elm, my

h P m )

)

the number of grid poinls the rarcfaction wave is spread over ab time ¢,4.5. These
discontinuitics propagale at dilferent velocities and are separated by intermediate states
uy; fore=1,2,...,%, — 1 which arc given by

1: n
Pyi = f’;’l I i—(/)m - pj)
T

Py, iMy 41
W = == apy,i In(f)j‘{/[)j,{._l).
Pj,i—1

These stales are shown in the p-m planc for 7, = 8 in Fig. 1.
Fach discontinuily w; i — uy ;1 is then propagated to the lefl with velocity

C" =
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just as Lhe shock was propagated Lo the right. This scheme can be shown Lo be conser-
valive.
As a numecrical example, Lhe following initial conditions have been used:

Uy, 0 <<,
Uy, 0.1 <z <05,

gled = w05 <z < 0.8,
ug, 0,08 <z < I,
where .
u—| 05 u — [0 w02 ue | 035
Y o.11803) 2 0 7o 5= |~0.19843}"

We take a = 1. The states u; and uy are separaled by a shock moving to the right, wuy
and ug by a shock moving Lo the left. The stales uy and wg are separted by a rarclaclion
moving lo the lelt, an intermediate state

0.28260
0.098185]’

and a shock moving lo the right. We compare compuled and exact solutions at time 0.16,
before any inleraction has occured, and al time 0.32, afler Lhe shock separating w; and
ug has interacted wilh the rarefaclion separaling s and uz and the two shocks in the
right, hall of the interval have also interacted (sce Fig. 2).

For this problem the Courant number is roughly v == 1.5X\, where X = k/h. Tigurcs
3 and 4 show computalions with A = 1/50 and various values of X. For X = 0.5, v < 1
and we have Godunov's method. Nole the excesssive simearing of shocks. Taking A = |
gives a dramatic improvement. Another slight improvement is scen in going to X = 2.
For X = 4 and 8 the resulls at ¢ = 0.16 conlinuc to improve but the interacltions are
handled poorly and the results at ¢ = 0.32 are complelely incorreet in some regions.

The same computalions with A = 1/100 reveal an interesting phenomenon. With
this smaller valuc of /i the resulls with X = 4 (I'ig. 5a,b) arc much better while the resulls
for X = 8 (I"ig. 5¢,d) have also improved and now look very similar to the previous resulls
with X = 4.

This will be explained in the next seclion, where we will sce Lhal crrors caused
by ignoring interactions tend to correcl themselves in later timesleps, so that in Lhis
simple problem the accuracy ts determined in part by the number of sbeps taken since
the inleraclion. Since with fixed X reducing the timestep inereases the number ol steps
taken since the inleraction, and thus increases the amount of “self-correction” which has
taken place, a substantial improvement in the solulion is scen.

This argument is valid in the right half of the intervaal, where only asingle interaction
takes place in Lhe true solution, but comparing Figures 4b and 5b shows that the shocek-
rarclaclion interaction is a

so handled more successfully, even though in this region new
interactions oceur (and are incorreclly handled) in every timestlep.

Smooth sclutions. As anolher test of Lhe algorithm we have made a more quan-
titalive comparison of the accuracy oblained with different Couranl numbers on smoolh
solulions. The inilial conditions used arce

p(,0) == 0.2 4 0.3 exp(—10(z ~ 0.5)%)
m(x, 0) == —0.1 sin(2nz)



TABLE |

Max norm of crrors in smoolh solulion al ¢t = 0.08. irrors in p and m are shown.

h=1/25 h == 1/50 h = 1/100
A = 0.5 7.831(-3) 1.479(-3) 2.118(-3
1.062(-3) 2.118(3) 8.485(-1
M= 1.0 6.676(-3) 3.531(-3) 1.259(-3)
5.157(-3) 281903 O L0M7()
M= 2.0 7.041(-3) 3.836(-3 1.402(-3
1.803(-3)

for which the Courant number is again roughly v = 1.5X. The errors at time £ = 0.08 are
shown in Table 1. These show that for Couranl numbers larger Lhan 1 the method remains
first order accurate. Morcover, in many cases the results obtained with large Courant
numbers are in facl betler than those obtained with smaller values. Some cxplanalion of
this will also be given in the next sccbion.

Thesc positive numberical resulls lead to the conjecture that the resulls obtained by
the algorithm described here converge to the true solution as £, A — 0 lor any lixed value
of the Courant number.

3. Analysis.
IMirst consider the clleet of applying this algorithm to a linear system
U + Aux =0
where A is a coInsLan.l‘, N X N malrix. Bach discontinuily w7}, | —u} is decomposed as

: ¢ 2
“;"-H—u}‘=C§-)+e§-)-l---- +e

(N)
3
where the (:S-i) arc cigenveclors of A, The disconlinuily cg-{) then propagales at a speed
given by the corresponding cigenvatue g, I the Courant number —:‘imux“u] is greaber
than | then disconlinuilies from neighboring Ricmann problems are again allowed to
simply pass through one another.

I'or the linear problem, ignoring interaclions in this manner is in facl the correct
way Lo handle them, and (exceepl for the projection process) the exact solulion is oblained

alter o single timestep ol any lenglh.,
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To sce Lhalb Lhis is so, wrile Lhe true solulion wu(z, t) as
w(m, t) = vz, 0) + o+ r(N)(z, ¢)
where the 1'({)(3:, t) are cigenvectors of A. Then the true solution ab time ¢4 k is given by
u(z, b+ k) = (e — ok, )+ + M = puwk, t).

In other words, :
Oz, t + k) = Oz — pik, t).

We will decompose the numerical approximation in the same manner,

u;} _ T;l)n eee F 'rf,‘N)“-
Since our algorithm handles cach eigenvector separalely, it is sufficient to look at a single
cigenveetor, say @, Tor concrcteness suppose gy > 0 and set g = |psk/h]. Then from
each grid point z; the jump e?) in the 7th cigenvector propagates through g mesh points,
and part way Lhrough another. Turning this around and looking at whatl increments a
fixed grid point receives when the algorithm is applied cverywhere we {ind that

'rg")n = Tg'i)n —ef) | - e;(;lz o eg«l# (i f‘—#)egu—l
i)n (i)n
= (1= (s k=2 + (s K
So 'r_s-{)"H, is obtained by lincarly interpolating betiween 7'51)_7; and "'5‘127,:—1 and hence is an

O(h?%) approximation to (& — psk,t). This is truc for cach of the cigenvectors and so
the algorithm is simply the method of characteristics with lincar interpolation.:

FFor lincar problems Lhe only error is due to Lhe projection (i.c. interpolalion) process
and so it is best o take very large timesteps, thus reducing the number of inlerpolations
performed.

This behavior on the linear problem gives some indication of why the large timestep
algorithm computes smooth solutions to nonlinear problems as well as it does. [n asmooth
solution the cigenveclors are locally nearly constant and the charactersistics are neacly
straight lines. There is a tradeoll belween reducing the errors due to the nonlinearity
by laking X small, and reducing the errors due to interpolalion by taking X large. The
optimal X will depend on the deviation from lincarity.

Shock interactions. In order to analyze the manner in which the algorithm handles
shock interactions we return to the lincar problem and view interaclions there from a
dilferent standpoint. Consider a system with 2 variables which we again denole by p and
m. Take initial condilions with two discontinuitics:

Uy, z < Ty,
u(z, 0) = S us, Ty <z < g,
Uy, g < 2.

The true solulion is shown in I'ig. 6.

o
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If the wy are decomposed inlo cigenvectors vy vy correspouding Lo Lhe cigenvalues
< pa,

Uy == 'r(ll)- ()
OB )
Uy = r(l)-l 1g)

then the intermediale states ug, uq and %y are given by

= TZ(II) + 7'(12))

LUy =
1 2
Ug = rg ) -I- 7‘;(, ),

Uy = rgl) -+ rﬁ”.

The fact that the interaction is handled correctly is a consequence of Lhe fact that

Uy = ug — (ugz — ug) + (w4 — ug),

the laller two quanlitics being the increments wg receives in Lthe overlap region after
propagaling the discontinuities. IMig. 7 shows these states in the p-m planc. Adjacent
states are connecled by cigenveclors.

The fact that w3 = wg + uq — ug will be expressed by saying that i, is the lnear
reflection of ug through Lhe collision of uy and u4.

IFor the nonlinear problem with similar initial conditions the solution is shown in g,
8 (for convenicnce we take uy = uy and wg = ug). This corresponds Lo I'ig 9 in the p-m
plane.

Beceause of the nonlinearily, the shock speeds change alter the collision of wy and uy
and the state 23 is no longer the lincar reflection of ug. The large timestep algorithm,
by propagating the discoutinuitics through one another, ignores these lacts. Afler one
timeslep it produces the solution shown in Fig. (0, where uy = ug 4 uq — uy is Lhe lincar
reficetion of ug through wg and uy as scen in Fig. 11,

The accuracy of the computed solution again depends on the deviation from linearily
as well as the strenglh of Lhe shocks nvolved.

The self-correction phenomenon alluded to earlier can now he explained. Consider
the next timestep, frorm ¢+ & to ¢ -F 2k, 18ach of the discontinuilics present give rise to
Lwo new waves, .sopm‘mlcd by new intermediate states ug and ug. \thl slales ug and ug
collide a new state ug appears which is the linear reflection of u; This is showu in I'ig,
12 together with Lhe true solution from 1Mig. 8 as a dolled line.

From IMig. 13 it is clear thal vy~ is much closer Lo the true stale %y than was u;. (In
TFig. 4b onc can clearly see Lthe stales ug, u;* and g in the shock-shock interaction.)

Ir'urther correction-waves are generaled in taler sleps, pushing the intermedinte stale
even closer to 4s and restoring Lhe ouler shoeks to Lheir correcl Lrajectorics.

4. Conclusions.

We are sUill lefb with the problem of identifying which interaclions must be handled
explicitly in a given computalion and the task ol devising an eflicient algorithim to do so.
This is necessary i dependable resulls are Lo be generated using truly Targe Limesteps,

On the other hand, it may prove beller Lo restricl our allention to moderale values
of the Courant number, say v == 2 or 3, and ignore interactions. IFor sueh values ol »
incorveel intermediate stales will be contined to a lew mesh poinls, I these inaceuracies



are quickly corrcebed in subsequent timestéps Lthis may be a reasonable algorithm. Our
goal o maintaining sharp shocks will be al least partly accomplished sinee the numerical
results indieate that the most dramalic improvement in the solution oceurs in going from
v < | lova1b.

Several [urther comments should be made aboul the results presented here and
possible dircctions for future rescarch.

Tiven ignoring inleractions between shocks of different, characteristic families, the
propagalion of an isolaled shock can already lead to difliculties. The resulls presented
here may give a false impression as to the case with which this is handled. In general the
shock is smeared over al leash Lwo intervals in order to represent it on the fixed grid, The
intermediate state introduced in Lhis manner is a convex combination of the lell and right,
states, and in general will not lic on the Hugoniol curve belween those states. In the next
thnestep cach of the resulling disconlinuities will generate waves of bolh characleristic
familics. The ones going backwards apparently cancel one another out. (The numerical
evidence for Lhis is supported by considering their positions in the phase planc.) Of the
waves moving forward, the trailing shock travels [aster than the leading shock and, for
large Courant numbers, may end up several grid points in front, causing an unphysical
smearing of the shock (sce [Mig. 4.1 in [2]). This has not happened in our examples because
of Lhe sinall relative difference in shock velocities (duce Lo our choice of a subsonic example)
and because ouly moderate values of the Courant number have been considered.

Further diflicultics may appear when this method is applied to the Tull Buler equa-
tions, particularly in handling conlact discontinuilics. One expecls that contact discon-
tinuilics will still tend to smear over lime, lacking the resloring forees of shocks, bul that
at larger Courant number the smearing will proceed more slowly due to the reduction in
the number of steps and hence the number of projections it undergoes. It is not clear how
well interaclions involving contact discontinuitics will be handled.

Many of the diflicullies slemming from averaging Lhe solution at each timestep may
be best avoided by climinating Lhe fixed grid altogether and representing the solution ab
cach time by a list of disconlinuities and their positions. This is almosl cerbainly the best
approach for sealar problems, bul for a system of N equations cach disconlinuily may split
into N new discontinuilics ab every limestep. IU will be necessary Lo merge discontinuities
in order to avoid an exponential growth in the amout of informalion relained.

We nole that in general it is impossible lo merge two discontinuilics into 2 single
discontinuily in a conservalive manner but that it is always possible to merge an arbitrary
number of discontinuitics al points z(,2s,...,7, into two disconlinuilics al the points
2y and z,. The correct intermediate stale is obtained simply by averaging the original
solution (i.c. integrating between zp and @), By ensuring thal strong discontinuilies
always lic al the endpoint of some integration interval it may be possible Lo avoid a greal
deal of smearing and many of Lhe associated problems. Tarten and Iy man[1] have used
a similar approach with good resulls. '

[For the model system considered here the exacl solulion to the Riemanu problem was
always used, exeepl in rarefaction waves. For practical problems it may be desirable to
use approximale Riemann solvers such as those advoeated by Rocf3]. Bach discontlinuity
is then split into cigenveetors of some locally defined matbrix A which are propagaled
al velocities given by the corresponding cigenvalues, lor the model system (1), Roc[4]



recomimends using Lhe matrix

~ 0 1
Ay, ) = '
( 7T 1) a? 2 9,
where v is the weighled average of velocities

1/2/p1/9 " ml/z /pl/z

J—Il
1/2 L/2
p / -+ )J/{—l

Preliminary numerical resulls indicate that the use of this approximale Ricmann solver
leads Lo some degradation of Lhe solulion with large timesteps, bul that the melhod still
converges for arbiteary Courant number.

The use of an approximate Riemann solver leads Lo Lhe caleulation of mcorrcct
intermediale stales and propagation speeds for cach disconlinuily al every limestep. This
shows up mosl clearly when larger timesbeps are used bulb it is truc in all calculations.
It appears that these tncorrect states are antomatically correcled in laler timesteps in
much the same way as large timestep inleraclions are corrected. This suggests a close
conncection between approximate solutlons Lo the Ricmann problem and our approximate
handling of interactions.
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