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Summary: A single theme is concentrated on. Namely, the development of finite
element methods so as to retain one of their principal attractions, that of
yielding optimal approximations, as they are extended from self-adjoint elliptic
problems to more general problems. Two types of problem and corresponding methods
are discussed: non-self-adjoint elliptic. problems, typified by diffusion- convection
problems, are dealt with by Petrov-Galerkin methods; hyperbolic problems are
treateo by both these methods and Characteristic Galerkin methods.

J
4. INTRODUCTION ! f
¢ In the'fields where they were originallyideveloped finite element methods had two |
inherept advantages. One was the flexibility that they brought to the modelling
of ewkwardly shaped regions. The other was the fact that they yield approximatione
to thelunknown functions which are optimal in a natural energy norm. The first is
presumably of little interest in meteorology but the second, with its promise of

accurate representation on coarse grids, should be a great attraction. However,
while the first depends 1ittle on the type of problem being solved the latter is
very problem dependent. Thus it 1s taking some time for the methods to be
developed to a point where they can make a practical impact on typical problems
in fluid dynamics and this is a very active research area at the present time.

We begin by recalling how the optimal approximation property arises. Consider
the following extremal problem for functions v defined in a regilon Q@ and

satisfying certain essential boundary conditions:-

minimise {3 | Tv]2 - <f,v>} , (1:1)

where T 1s a linear differential operator of order m, f 1is a given function
and <-,+>, |+ | denote respectively the L, inner product and norm over 9.
In the minimisation, v 1s to lie in Hmtﬂ], the Sobolev space of functions
with square integrable mth derivatives. The solution u of (1.1) satisfies the

differential equation of order 2m

T*Tu = f , (1.2)

together with the essential and possibly some natural boundary conditions,
where T* 1is the formal adjoint of T. Now suppose u 1is approximated from

a conforming finite element space Sh c H™Q) spanned by basis functions




¢j(-§]' that 1is

sh Ve, ()} . (1.3)

= m =
{VeH @) v(x) ZU]JJ

Then carrying out the minimisation in (1.1) over Sh gives the approximation

U satisfying the Galerkin equations

<TU, T4,> = <p,4,> vé, st (1.4)

Here, U 1like u 1s to satisfy the sssential boundary conditions so we write

U e SE, while the variations lie in the subspace of Sh - satisfying homogeneous--

essential conditions, which we have denoped by Sg.

Now u' also satisfies these equations. S0 on subtraction we get

! _ ! h
:T(u U].TQL> 0 V?L € SO' (1.5)
; I

From tpis orthogonality relationship forlthe error u-U it follows immediately

| that
' inf. |
urcu -0 - i Sh Irce-wva] . ? (1.6)

{

This is the optimal approxmation property of U. from it follow various

Superconvergence properties. For example, -suppose- T is the»gradientiqpegator

V so that m =1 and (1.4) corresponds ‘to Poisson's equation: and suppose Sh

consists of pilecewise linear functions over a triangulation of Q. Then w
will be piecewise constant and generally can only hope to have first order
accuracy. But for triangulations which are reasonably regular and everywhere
have six triangles meeting at each node, the derivative of U along each edge
will be second order accurate at the mid-point: at the same point the average
of the normal derivative either side of the edge will also be second order
accurate. So the whole vector VU can be "recovered” to second order at these
points (Levine, 1983). Gn practical meshes, the increase in accuracy is very
substantial. Such phenomena are very widespread and have long been exploited by

engineers in stress calculations and similar applications.

The Galerkin equations (1.4) can be written down and solved for a wide variety

of problem types. But unfortunately for the Galerkin approximation U to have
the crucial property (1.6) the bilinear form <T+,T*> on the left of (1.4) has

to be symmetric. In the next section we consider how Petrov-Galerkin methods can
yleld this property for steady flow problems having unsymmetric forms. For
unsteady flows, particularly hyperbolic problems, there is a different but related
difficulty: Galerkin methods have very desirable properties for very small time

steps but lose them long before CFL numbers near unity are reached. We shall see
in section 3 how Characteristic Galerkin methods, and even some Petrov-Galerkin




methods, can maintain these properties to unit CFL numbers.

2.  PETROV-GALERKIN METHODS FOR STEADY DIFFUSION-CONVECTION

Diffusion-convection problems not only form an important class of practical

problems in their own right: their successful approximation is a necessary
preliminary to tackling the Navier- Stokes equations at moderate Reynolds numbers,
that is considerably larger than the Re = 0(102) cases which are presently
solved very successfully by mixed Galerkin methods. A typical problem takes the

form: -

FETTEN L
e e

-V (avu - bul = f 1in @ (2.1a)

u=g on Ty du/d3n = 0 on FN‘ {(2.1b)

whefe ‘a 1s a diffusion coefficient and; b is a convective velocity field which '
we shall assume is incompressible (i.e. Vb = 0). We shall assume q 1s a boundeh
regiun!of the plane with boundary I'p v rN and a/a is in the outward normal

direction. The inhomogeneous Dirichlet boundary condition is an essential i

~ condition which we shall impose on the finite element approximation by assuming

that g 1is the restriction of a function G ¢ H'(Q) to the boundary Iy :
thus we define the trial space as SE, where

H@) 3 sl = qu=6+v|ve sq} (2.2a)

and, as in (1.3) and the remarks following,

1 h o - _
H @) = sy := {V(x) = z{J]VthJ(é] | V=0 on Igh. (2.2b)

The bilinear form corresponding to (2.1) is
Blv.w) := <aVv,%uw >+ <V (bv),w> . (2.3)

It is easy to see that for w =v and for v = 0 on fD we have, because of the

incompressibility,

B(u,u) =<a\1u,1u >+ 4 I (p_'ﬂlvzds. (2.4)

'y

By assuming further that FD includes all points of the boundary on which

b n < 0, so that u 1s prescribed on the inflow boundary, we ensure that B(u,v)

is positive definite. This in turn ensures that a unique solution exists to

(2.1) of the form u = L + G, where if we define

HL := {v e Hl(n) | v=0 on T}, (2.5)
EU D

u is given by the so-called weak form of the problem : find u0 ¢ Hé such that
0




B(ul,w) = <f,w> - B(G,w) Ywoe He oo (2.8)
a

By the same arguments, the Galerkin approximation is uniquely defined by
U=y« G, where U0 ¢ SS is given by

BILO W) = <f,W> - B(G,W) Woe sy . (2.7)
Since Sg c Hé we can substitute W for w in (2.6) and then subtracting

(2.7) from theuresult we get, corresponding to (1.5),
Blu? - U0, = B(u-UW =0 Ve sp . 12.8)

However, we cannot form a norm from B(-,*) to get (1.6) because it is
unsymmetric. Let us therefore take the main symmetric part and define

Bylviw) = <aVu,Vw > i (2.9) |

| ‘ i
with corresponding norm given by B1(u.v5 =:ﬂ vﬂ»% : and define ,U; € SE

1 i

as thq}begt.fit in this norm to wu. Theh we have, comparing (2.9) with (2.4) |
and uéing (2.8),

u-ulg s8C-u,u-0) - Blu-Uu-U2)
1

= B, (u-U,u-u3) +<p-¥(u-U), u-Us>

<[ u-ul 8! | u-us 8, * ol 7ay | aftu-un [ 1. (2.10)

Now it can be shown by a standard argument that, i1f h 1is the maximum diameter

of the elements in the discretisation of R, there is a constant K independent

of h such that

I a*(u-u;Jﬂs Kh Hu-U,T" 6, - (2.11)
It therefore follows that

lo-ull g s 01« kn max delan| TET-1 B (2.12)

1 1

The dimensionless parameter bh/a 1s called the mesh Péclet number and is the

key factor in the loss of optimality in the Galerkin approximation U.

This result is quite sharp, for consider the simple one-dimensional test problem:-

—aum"+ bu'=f on (0,1) (2.13a)

ulo) = 0, ul1) =1, (2.13b)




where a and b are positive constants. For f = 0 the solution is easily

seen to be

bx/a _ b/a

ulx) = (e 1)/ (e -1), {2.14)

giving a sharp boundary layer on the right when b/a >» 1. Piecewise linear
elements on a uniform mesh of size h give the Galerkin equations for
J=1,2,...,3-1 with Jh = 1

6 -
%UJ + (bh/a)agu, = 0 (2.15)

2 o m - . “am T lam G
in the usual difference notation § UJ : Uj+1 ZUJ + Uj_1,A0UJ : i(UJ+1,UJ_1]

These :have the solution

iuJ - G - wtug - 1), uy = (2% bN/a)/(2 - bhva). (2.16)
l .

When ’
the true solution and in fact the bound (2 12) can be attained with K = 1/7.

bh/a > 2, U exhibits spurious oscillations which bear no relation to

This is a very familiar consequence of Jsing central differences for the first
order term bu'. With difference methods it is overcome by some form of

Upwinding, replacing AUU by Alﬁ t= UJ J . or by a weighted average of
the two. The best known scheme is that' ‘of Allen & Southwell (1955) which with

the average (1- E)AU + EA  can be written as
-1 + ;gtbh/allsauj + (bh/a]AbUJ = 0; (2.17)
with the choice

£ = coth(ibh/a) - (ibh/a)” {2.18)

this is often called an exponentially-fitted scheme since for this model problem
it gives exact nodal values, matching the exponential of (2.14).

The first finite element methods to overcome the deficiencies of the Galerkin
method followed similar lines and used different welght functions from the trial
functions fj with a view to generating these upwind difference schemes. )
Generally we define what are now called Petrov-Galerkin methods as follows:

we introduce a test space Tg different from but with the same dimension as the

SS of (2.2b) and suppose it has basis functions ¢3(§) over the same elements,

h
1 *a =
HEO 5Ty = (V(x) = Z(J] ¢3(x) | V= 0o0n Iy} s (2.19)

then the Petrov-Galerkin approximation U ¢ 82 is given by

B(U,W) = <&, W > VW e Tg. (2.20a)




and the error satisfies

B(u-U,W) = 0 YW € TQ . (2.20b)

The problem then is to choose test spaces Tg which are practically convenient

and give good approximations - in some sense.

The earliest upwind test functions were those due to Christie et al. (1976) and
Heinrich et al. (1977): a useful review is that of Heinrich & Zienkiewicz

(1979) and other articles in the conference proceedings edited by Hughes (1979)
give valuable background. For piecewise linear trial functions %}x), typical

test functions of this type have the form

Py (x) = ¢i(x] + qoi(x) (2.21a)
where
3(x- Xy ][x -x)/(x = Xyl 1) XgqS X Sxg
o&[x] = 5 (2.21b)
-3(xi*1-x]{x-xi]/(xi”-x'il X, SX sx1+1 .

I

On a uniform mesh setting the parameter g equal to £ defined in (2.18) leads
to the Allen & Southwell difference operator and exact nodal values for the
pPoblem 12.13) when f 1is a constant. ;With variable coefficients local values
of & are used: and in two dimensions if bilinear elements are used on
rectangles the trial basis functions have the -Form ¢i(x)¢J (y) and it’ is
natural to use corresponding test functions '4’1(*] 43 (y) with the two parameters

a based on the two components of b.

An alternative but related approach is that due to Hughes & Brooks (1979, 1982):
their streamline diffusion method starts from regarding the Allen & Southwell

scheme written in the form (2.20) as enhancing the diffusion in the direction
of the flow vector b. Then the scalar diffusion coefficient of (2.1a) is
replaced by a tensor diffusivity with components

A’lm = aam +a bzbm (2.22a)

where

a = i(£1b1h Ezb h ) (2.22b)
and b1, b2 are the components of b along the sides of a rectangular element
of sides h1. h2 H 51 and §, are corresponding values of the parameter given
by (2.18). When bilinear elements ¢ are used and this modified operator is
Used with the Galerkin method, it can be shown that one obtains a difference
Operator equivalent to that obtained using a Petrov-Galerkin method with test

functions

v = ¢+ (a/|b|2b.vp . (2.23)




These are discontinuous and therefore non-conforming elements. So the terms

in the bilinear form corresponding to <az§,zp > have to be evaluated element-by-
.elemgnt.

Not only these test functions but clearly also any others which have the right
amount of asymmetry will reproduce the Allen & Southwell difference operator
for (2.13): but they will generally differ in two dimensions and even for (2.13)
they will give different results for general source functions . However,
Morton (1982a) has given a general framework in which one can identify the ideal
test functions for all f and also can estimate the performance of any given
test space. We apply it first to the symmetric form 'B1(-,-] of (2.9). " Since
for any fixed w, B(v,w) is a bounded linear functional of v 1in the norm

"ﬂ -ﬂ é » by the Riesz Representation Theorem it can be written as B1(v,R1w)
for some function R1w : and since this is true for any w 1in Hé and R1w
depenqs linearly on w we can define a }inear operator R1 :.H'IE0 9 Hé ~ such

that 0

[]

Blv,w) = B, (v,R, w) W, we HL . (2.24) |
1 1 EO
In effect R1 is a symmetriser for B(-,+). Applying (2.24) to (2.20a) since

wu=U et} , we get
E
0
h
B1(u U.R1WJ 0 VW € T0 . (2.25)
Clearly the ideal test functions w; would be such that
h
* =
Rylvi 1= 1¢,} ¢, € S, (2.26)

for then we could substitute ¢i for R1W in (2.25) and we would have recovered
the orthogonality condition of (1.5). Moreover for general test spaces we have

the following theorem:-

Theorem (Morton, 1982a) - Suppose the test space Tg has the same dimension as

Sg and that there exists a constant A1 € [0,1) such that

inf h

WeTg ||V-R1WHB1 < 4, HVHB1 Wes) . (2.27)

Then the error in the corrasponding Petrov-Galerkin approximation satisfies

Hu-U"B s(1-zs§)‘i i"::llu-vllB . (2.28)

1 VeSE 1

In particular if the ideal test space {¢;} of (2.26) is used then A1 = 0 and
U is the optimal approximation to u, in the norm l- “B « Of course it will

seldom be possible to find R1 explicitly so that A1 &ill usually be difficult




to estimate. However, for the model problem (2.13) we have

X
(Rywl(x) = wix) + (b/a) J Cwit)-w 1dt, (2.29)
0
1
where w = J wltldt : the ideal test functions are exponential in form and
0 .
correspond to those used by Hemker (1977), namely
-b(X X ]/aT "b(x ]/a < <
[1-e 1/l1-e ] i Xgq T XE Xy
%(x] 1=

‘b("1+1"‘1)/a]-[1 e'b("im"‘i)/a]' Xy XS Xy

-b(x-x,)/a
Pl LT

(2.30)

Scotney (1982) has calculated the constant in (2.28) for both the test space
of (2.21) and that of (2.23) and we reproduce his results in the table below.
(Note however that since in the last case the method is non-conforming

the tﬁeorem above does not strictly apply). The improvement over the Galerkin
method 1s obvious: note particularly how the bound is virtually independent of
bh/a. :

bh/a Galerkin Heinrich et al Hughes & Brooks
2 1.1547 1.0060 1.0924
1.7588 1.0468 1.1509
50 14.468 1.2022 1.1547
500 144,34 1.2344 1.1547
10° 28868 1.2383 1.1547

Table : Ratios of Petrov-Galerkin error to optimal error given
I 2
by (1-A§) * - cf. (2.27) and (2.28). _ e

Al

There are still two weaknesses in this development, however. The first is that
j“- “B is not obviously the most appropriate norm: because of the high gradients
there,1it concentrates attention on any thin boundary layer, where a good
approximation is not possible without local mesh refinement; and it is quite
independent of b. There is a natural alternative which has been used by
Barrett & Morton (1980, 1981, 1982, 1983) and with which they introduced the
idea of symmetrisation. The diffusion-convection operator is of the form

T‘Tz, where T, := a*V and T, := a*!_- (E/ailz the form B1('.') was based

1 1 - 2
on T1 and the alternative based on T2 can be defined as
B,(u,w) := <a%v, %> + <(b%/a)v,w > (2.31a)
= <T.v,T.w + {ben)vwds. (2.31b)
2 2 r oo



For increasing Peclet number this becomes closer to the L2 norm with less
emphasls on fitting gradients. Corresponding to (2.24) we can define an

operator R, and an optimal test space as in (2.26): and the theorem of (2.27),

2

(2.28) holds with a constant 4,. For the model problem (2.13], R;1 now has a
simpler form than R2 and we have
1
(RWI(x) = wix) + (b/a) J [w/t) - ce P 24¢, (2.32)
X

where the constant c 1s such as to ensure that (R;1w](0] = 0 : thus it 1is
easy to write down the ideal test functions as fR;1¢i} in this case, as it is

also for variable coefficients a and b.

The second disadvantage of using such test functions as (2.21) and (2.23) in a
conventional Petrov-Galerkin formulation 1s that the system of equations to be
solved is unsymmetric. This 1s true even for test functions (2.30) used by
Hemker as they are linear combinations of the set {R;1¢1} which would give the
symmetric matrix {81(¢]f¢1]}' The alternative 1s to write the problem (2.6)
in the form, with m = 1 or 2,

B (u ,R w) =<f,w>- BIG,w) Yw e HL (2.33)
m m E0
and then to approximate it, using the ideal test functions w; = R;1¢i to give
Ul e sh, as
m 0

0 h
Bm(Um.¢1] = <*F.¢;>- B(G.w;_l V¢i € S0 . (2.34)

This 1s now a symmetric system of equations. What it requires 1is sufficient
knowledge of w; to be able to calculate the terms of the right-hand side, which
express the effect of the inhomogeneous data - both the source function € and
the Dirichlet boundary data. In practice it will need to be approximated. In
one dimension and with 82(-,-) this can be done extremely accurately because

of the explicit form available for R;1 : and this is the form used by Barratt

& Morton (1980, 1981, 1983) and Rheinhardt (1982) to obtain their very good
results. Note that for the model problem (2.13) we now obtain the self-adjoint
difference operator

2 2 1
=) uJ + (bh/a)s (1 + 5 a%uJ (2.35)

instead of the Galerkin operator in (2.15) or the ubiquitous Allen & Southwell
operator (2.17) which occurred with the use of B1(.,-] and the standard
Petrov-Galerkin formulation. The development of this approach for practical
two-dimensional problems 1s still continuing - see Scotney (1982) for early

raesults.



. stream-line diffusion scheme of (2.23) and a scheme based on the methods of

EBarretf & Morton (2.34) with m = 2, all with bilinear elements on

' mesh Peclet numbers bh/a S 100: at higher values they give some overshoot

: but generally fail to indicate the presence of a sharp input’ profile. The

There is no reliable error analysis for either approach in two dimensions

s0 we must consider model problems such as that due to Hutton (1981) and

modified by Morton (1982b). In this the flow field on -1 s x5 1, 0sy s 1
1;15éfived from a stream function (1-x2)(1-y2). 1In Hutton's problem a tanh

input profile is specified for u on y =0, -1 S x £ 0 with Dirichlet conditions
on the tangential boundary consistent with pure advection: the main test was

the outlet profile on y = 0, 0 £ x £ 1 for various values of the Peclet

number. In the modified problem a zero input profile is specified but on the
right-hand boundary (x = 1) we set u = 100 so that a tangential boundary

layer forms there corresponding to a cold fluid flowing- over a hot -surface, - ;

Results for the Heinrich et al.‘upwind scheme of (2.21), the Hughes & Brooks

rectanéles, have been given by Scotney [1982]. A selection are reproduced

in Fig&. 1-4, except that Fig. 3 represents more recent results.

For thé original Hutton problem, the two ;B1[f.°] based schemes work well for

_82( » J based method on the other hand works better for higher Peclet numbers.

The difference between the two approaches is shown more clearly with thermqg}fied
problem. Here the Heinrich.scheme seems to be”hore reliable'tﬁénighe‘étgééﬁiiﬁe
diffusion method in showing the thickening boundary layer for decreasing y:
but if we regard them as aiming at the best fit in the {I{HB1 norm neither

should show any overshoot. The advantage of the | °|| B2 norm is shown in

Fig. 4: not only is the thickening of the boundary layer as y decreases shown
well when this is larger than the mesh length; but even when bh/a = 100 the
degree of overshoot in this norm gives a measure of the boundary layer thickness
when it is substantially less than h - i.e. it gives sub-grid scale information.
The recovery of this information can be made quantitative by performing the local

recovery operation of setting

BZ(U - uéy) =0 (2.36)

for a sufficient number of neighbouring basis functions ¢i € Sg to determine
the free parameters in a hypothesised exponential u for u as described in
Barrett & Morton (1980) and applied by Scotney (1982). This is highly effective
for this problem even when the boundary layer is a fifth of the mesh length.

These last results serve to show why the clear objective of an optimal

approximation in an integral norm is worth pursuing, as well as the importance

TSR T L ol R



of choosing an appropriate norm. These points and theprocess of recovering

sub-grid scale information will be further illustrated in the next section.

CEGB TEST PROBLEM |. HEINRICH ET AL UPVIND METHOD. OUTLET PROFILE

MESH SIZE = 0. 100
2.2
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Fig. 1 - Outlet profile for test problem corresponding to an inlet profile of
u{x) = 1 + tanh 10(2x + 1) on (-1,0), using the Heinrich et al. (4977)

scheme.

Figs. 2 & 3 (on next page)

Corresponding results using the Hughes & Brooks (1982) scheme (Fig. 2)

and a method based on Barrett & Morton (1982)(Fig. 3).



Fig. 2

CEGB TEST PROSBLEN 1.

HUGHES STREAMLINE UPVINDING.
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Fig. 4 - Boundary layers for modified test problem and each method (a) for mesh
Péclet number 8 = 20 and {b) for 8 = 100.

3. GENERALISED GALERKIN METHODS FOR HYPERBOLIC PROBLEMS
For over a decade it has been realised that Galerkin approximations to hyperbolic

equations have some very attractive properties - see, for example, Swartz &
Wendroff (1968, 1974), Thomée & Wendroff (1974), Wahlbin (1974), Dendy (1974),
Jespersen (1974). Consider the first order system of equations for the vector
of unknowns u(x,t)
Uy * L(g] =0, {3.1)
where we use the subscript t and the operator at interchangeably to denote
the partial derivatives with respect to time and L 1is a (generally non-linear)

operator involving the spatial derivatives. By the semi-discrete finite element

approximation we mean a system of ordinary differential aequations in time for the

coefficlents or nodal parameters in the expansion

Ulx,t) = ):m U, (tde, x), (3.2)

J

where we have assumed for simplicity that the same basis functions are used for



all the components of U. The semi-discrete Galerkin equations are then

<94+ LW, gya ) >= 0 vi,k (3.3a)

where €k) is the unit vector consisgting of just a unit component in the kth

position: this gives the system of ordinary differential equations for the nodal
parameter vectors Ueky of the components U(kltfft) of Ulx,t)

Mg(k] + é(k](l;” =0 , (3.3b)

where M 1s the mass matrix {Mij} 1= {<@i.¢5>} and EIKJ the stiffness vector
(<LWULg 02} |

Now suppose L(.) is a conservative operator in the sense that

t
4

|
Then, ;since equations (3.3a) can be multiplied by coefficients U(k)i and

<Lly),u>= 0 vu o . (3.4)

summed over 1 and k, we have
!

:<aty + Ltl;l].l_.l >= 0 {(3.5)
so that
_:ﬂyﬂzg 0; {3.6)

that 1is the "energy” ﬂU ﬂz is conserved for the approximation as for the exact
solution. Clearly by tﬁé same argument when any quadratic functional of u

is conserved then the same functional of the semi-discrete Galerkin appraximation
is also conserved. Note too that, if the so-callad "lumped mass" equations
obtained by replacing M in (3.3b) by the diagonal matrix with the same row
sums are used, then a discrete sum over the nodes |91|2 is conserved. 1In this
way, as Jespersen (1974} has shown, one may generate much more easily all the
energy-conserving difference schemes derived originally by Arakawa (1966) and

by a more direct technique by Morton (1970). Moreover one can see much more
readily the advantages of these schemes as regards the suppression of non-linear
instabilities because of the simpler Galerkin technique - see Morton (1977) for
details.

We have not explicitly mentioned the imposition of boundary conditions in the
above outline. However, certain homogeneous boundary conditions will be required
on u for (3.4) to hold. We suppose these same conditions are imposed on U

and the remaining non-physical conditions necessary for (3.3b) to be solved are
implied naturally. Then the set of ¢l which are used in (3.3a) span the
expansion (3.2) for U so that (3.5) still holds and hence the energy is

conserved 1n the presence of such boundary conditions. In this way the Galerkin



method gives a much simpler means of deriving conservative boundary conditions

than is possible with difference methods, as for instance in Morton (1970).

bSuch global properties as the above are natural to the Galerkin formulation:
Qh;t are not so obvious are the superconvargence properties obtained with one-
dimensional spline basis functions. In line with our earlier viewpoint of
seeking optimal approximations and following the analysis of Cullen & Morton
{1980) we write the error u - U in the form

u - U= (u-U*") + (U* - U) (3.7)

where U* 1is the L2 projection of u onto span '{éi} '56~tﬁét<'g’i @‘i
is the projection error and U* - U 1s the evolution error, that is the difference

of gi from the optimal approximation: the finite element space {¢i} is chosen !
: to minimise the first and the evolutionafy procedure designed to minimise the |
i seconq. Splines of order yu consist of piecewise polynomials of order p - 1 E
! which have u - 2 continuous derivatives, the most practical for prssent i
} purpoges being the piecswise linears cor%espondiﬁg to u = 2. Clearly then the
! optimdl approximation U* will generall& have an accuracy of order h*  while,

as we rhave seen, specific features of u can be recovered from this to a higher,

superconvergent accuracy. But for theségto be recovered frdm the approximation

U we need the evolutionary error U* -'U to be of this higher order. It was

""" AR ICI R

this quantity which Thomée & Wendroff (1974) showed was of order 'hzu' for
linear problems with either constant or variable coefficients. Subsequently,
Cullen & Morton (1980) showed this was also true for non-linear problems on a
uniform mesh. Thus one has the rather remarkable property of piecewise linear
elements yielding fourth order accuracy in this sense. Moreover, the implied

constant can also be made guite small if the two-stage Galerkin process of the

latter authors is used.

Howsver, one still has to discretise in time. To start from (3.3b) and use a
standard ODE package to solve the system seems rather unnatural and inefficient
for hyperbolic equations: for space and time are linked through the characteristics
and therefore the discretisation of one should have some influence over -that of
the other. Also a multi-level or multi-stage scheme can involve heavy storage
penalties. Thus most authors favour a fairly simple one- or two-step method
related to the spatial discretisation. For finite elements then the first choice
is whether to use this type of approximation in time as well as space. Ws shall
not do so but use finite differences in the time variable - though one could
usually, rather artificially, produce the same schemas by using tensor product
finite elements. This choice is partly for simplicity and flexibility: but

it 1s mainly because neither of the key features of finite element methods
pointed out in the Introduction are relevant to the time variable; geometric

flexibility would be helpful only for moving boundary problems; and best



approximation in a time-integral norm is seldom of interest.

Because of the characteristics it is also very often advantageous to use explicit
time-stepping. However, one then soon comes across disadvantages of the pure
'Galerkin approach. The price of the enhanced order of accuracy is generally a
reduced range of stability and in some cases this can be severe. For examplse
with leap frog time differencing for the advection equation the presence of the
mass matrix with linear elements reduces the stability range by a factor /3

but with Euler time-stepping, the central differences that the Galerkin method
produces, as in {2.15), makes the scheme completely impractical with a limig

At = 0(h?). Linked to this phenomenon one also finds a very rapid lossnof
accuracy with increasing At. In particular, the common Galerkin schemes do

not possess the unit CFL property: that is, when the characteristics of the

linear advection equation pass through successive nodes or mesh points, they do
not give exact advection.
Many Suthors have sought to overcome these disadvantages by moving to the more

general PRetrov-Galerkin methods, already described for the steady diffusion-
convection problems of section 2. That:is a test space is used, with basis ;

functions by replacing ¢y in (3.3a). In nearly all cases the idea of
upwinding is involved, either by conscious choice at the outset or as a natural
consequence. Thus the linsar advection. problem is a natural starting point for
developing the choicz of the {wi} and clearly this ochoice will deépend on' the
time-stepping to be used. Thus let us start with Euler time-stepping for linear

advection of a scalar and consider the schame

Un+1_un

< At

n
+ aaxU ,wi> = 0 vi. (3.7)
Morton & Parrott (1980) sought special test functions X4 which on a uniform
mesh with a&t/h = 1 lead to exact advection of U": for piecewise linear

¢i they found such test functions of the form

_ 4 - 6(x,-x)/h s Xy o S X S X
Xy (x) = . . 1 (3.8)

0 otherwise .

Then for more general meshes and a > 0 they set
wi(x] = (1 - vi)¢i(x] + vixi(x) (3.9)

where vy €(0,1] 1s determined from the local CFL number. Clearly if v, = 1
when aAt/h = 1 this scheme has the unit CFL property. For v, = aAt/h

it gives the same spatial operator as the Lax-Wendroff method but due to its
mass matrix it has improved accuracy while retaining the same stability range.

This is clearly a vast improvement over the corresponding Galerkin method in



most respects. Unfortunately however since the {xi} do not span the unit
constant the scheme doss not conserve the first moment of U, let alone the
second: thus it would be unsatisfactory for non-linear problems without further
'aeve10pment. For later reference it is worth noting that for a < 0 one could
replace X; by its mirror image x;. A much improved and much more convenient
scheme however 1s what Morton & Parrott called EPG II for which the test functions

are
= -2 12y ey 1 LA
by, = (1 ui]¢i + sui(xi+xi] + iuitxi xi) (3.10)

where ui is the local CFL number: this 1s third order accurate.

On the other hand, with leap frog time-differencing the corresponding X4

are s;milab to (3.8) but symmetric about xi. The resulting scheme as a
consequence conserves first moments. Moreover with vy = (aAt/h)2 it s fourth
order iaccurate in both h and At with no dissipation and remarkably good

phase jaccuracy. Also with Crank- Nicolson time-stepping the X; are Just the |
characteristic functions for the intervals (x1 1'%y ) and so lead to conservation
of first moments: the scheme with v, = (aAt/h)2 is third order accurate and
slightly dissipative but again has very good phase accuracy.

The above schemes extend without too much difficulty to systems of equations,
that for the leap-frog time-stepping giving a particularly sihplé'modification
to the Galerkin equations. However, Morton & Stokes (1982) found that some of
the properties were difficult to extend into two dimensions: while the CFL
property could be retained with bilinear elements on rectangles it could not be
made to hold along all the edge dirsctions of a uniform triangular mesh when
plecewise linear elements were used. Thus their interest switched to

Characteristic Galerkin methods.

An alternative approach to dealing with finite time-steps is that of Bonea {1982)
based on the same approach that led to the Lax-Wendroff methods. For Euler time-
stepping and the linear advection equation we write the Taylor expansion

1 .
u(t+pt) u(t) + Atu| + 1(At) Uy * B(At) Uppp * meee {3.11a)

and then replace the time-derivatives by space derivatives through the differential

equation to obtain the approximations:-

n
u, = -ay +-al
t X X

n
U, = -au . = a(aux]x -+ a(aUx)x (3.11b)

n+1 n
Uey + (a/At][a(Ux -Ux)]x .

This can then be incorporated in a Galerkin formulation to give the



Taylor-Galerkin method: -

n+1 n n+1 n
g e ganz < LU s
n n
+<a3, U",¢,> + dat <ad U, a3 ¢.> = 0. (3.12)

For constant a this 1s exactly the same as the EPG II scheme of (3.10).
Similarly for leap-frog time-stepping the same scheme as that based on (3.9)
is produced: but for Crank-Nicolscn the schemes are different. We shall return

- . - RN

to these schemes in a moment.

However wa now turn to methods which make more explicit use of the characteristics,

in particular the characteristic-Galerkin methods. We will consider from the

outset the scalar conservation law in one space dimension

i
3gu *+ 3, flu) = 0 (3.13a) |

or latu + a(ulaxu =0 5 (3.13b]]
where' a {(u) = 3f/3u. Then u 1s constant along the characteristics dx/dt = a '
so that if we write u"(x) for ulx,nAt) and use a similar notation for f and

a, we have for smooth flows
n+1 n n n+1
u  (y) = u (x) where y = x + a (x)At = x + a (y)at. {3.14)

Thus for the L2 projection onto the trial space Sh = span{¢i} we have

i

<h"‘1.¢1> = Ju"*1(y1¢ity)dy = Iun(x)¢i(y)dy. (3.15)

This has been directly incorporated into schemes for an approximation u" by
sgveral authors [see, for example, Douglas & Russell (1980), Bercovier &t al.

(1982)]. We can set

<Un*1,¢i> = JUn(x]¢1(y]dy Vé, € S, (3.16a)

in which, 1if this is regarded as an explicit method, the right-hand side 1is
evaluated by solving for each y an implicit equation to give x, the foot of
the backward-drawn characteristic from y: or if this is regarded as an implicit
method we can use x = y - an+1[y]At. Alternatively we can rewrite (3.16a) as

<u"+1.¢i> - <7 > Vo, e sh (3.16b)

where ¢:(x) = ¢i(y)(dy/dx].



We prefer to follow the latter route and, taking it somewhat further, note

that

ntl _ n . n dy _
<u u ,§i> Ju (x) [¢i(y) " ¢i(x]]dx

y
= Jun(x] [a%-fx¢i(z)dz]dx
= - Bxu (x) C " ¢i(z]dz]dx.

That is, we have the exact relationship for the true solution:-

n+1 n n.n ; h tien
<u -u .¢£> + At<3xf 'Oi >= 0 V¢i €S , (3.17)
where’ x+an(x]At
(x) 1= —— ¢, (2)dz. (3.18)
1 a"(x)at Jx 1 L

I - i
|
This is now much more clearly related to a generalised Galerkin method and !

{ ;
its form suggests immediately the basic 'ECG method.:-

| , i i
WMue> ¢ aa W™, >= 0 Vg, € 8" (3.19)

where’ 32 has the same form as Q; butf@ith a" replaced by att™. The
resulting Un+1 is exactly the same as that given by (3.16a): that is, it 1is
the result of tracing the evolution of u"(x) through one time-step by means
of (3.14) and then projecting the result onto Sh. However, (3.19) leads to
several further improvements and approximations as well as pointing up the
relationship with the Petrov-Galerkin formulation {(3.7) and linking to some of

the schemes derived from it.

Suppose that the ¢i are piecewise linear. Then the fact that (3.18) is a
simple averaging operation means that 32 is very easily approximated. Morton
(1982b) gives several such approximations when the CFL number u = adt/h lies
in (0,1), all of which reproduce the results of (3.19) when a 1s constant,
One family of these takes the form

@, T (1 - du) | ¢ dug, .+ u(3 - 200040 - 41 )

+ MO, - ¢y 4) + dCo) - ¢} )] (3.20)

where the choice M = ip(1-4)2 gives the best L2 fit to ¢, by a linear

fit in each interval: there are clearly several relationships here with Petrov-
Galerkin methods proposed by Wahlbin (1974), Dendy (1974), and Hughes et al.
(1982) based on test functions of the form ¢1 + a¢i. (c.f. the streamline-
diffusion scheme (2.23)). Another approximates the inner product



<!

J,¢i> by (1-1)%<¢!,6.> - p(1-p)<¢!

3ot J
+ "(3'2"]<¢J'¢1-¢1—1> : (3.21)

4y oy

a form which requires no more inner products than the Galerkin method and is
particularly suitable for use with the product approximation (see Christis st
al. 1981)

ny « Ny,
3 FU) : Z[J) JCRIY (3.22)
Instead of deriving (3.17) with the L2 norm we could have used a mixed norm,

based .on the inner product
<u,v> + <Yaxu,ygx> (3.23)

for some weight function y . Then as for (3.18), with Rpiecewise linear ¢4 .
on a uniform mesh and pe{0,1), the corresponding special test functions have
support over the three intervals (xi_z,x1+1]. However 1f y2 = %{aAtlz

the average value over (x1—2'x1-1] is zero and a good approximation is given

by ¢i + iaAt¢i which yields exactly the same scheme when a 1is constant.

But then the resulting scheme is precisely the Taylor-Galerkin scheme (3.12):
indsed all the Taylor-Galerkin schemes can be generated in this manner. Similar
schemes based on mixed norms are used by Baker & Soliman (1982).

It should be noted that ir principle there is no stability limit on (3.19).
Indeed since if the terms in (3.19) are evaluated exactly the only error is at
the projection stage, the least error is committed in going from t = 0 to

t =T if one large step At = T is used. This is not very practical of course
because for a system of equations the characteristics will be curved, the simple
relation (3.14) will not hold and shocks will often intervene to destroy the
basic assumption above that the solution is smooth. Similarly there would be
increasing complication for large time-steps with the natural generalisation

of (3.18) to multidimensidanal problems: in these one has a flux vector flu),

a velocity vector a(u) = 3f/3u and (3.18) is replaced by

5_+3”(_>3]At

! ¢, (20 ; (3.24)

IEPIXJIAt X

n
¢1Q5] =

otherwise the form of the scheme is unchanged. However, for conventional time-
steps with CFL numbers of the order of unity, the basic ECG method is axtremely
accurate. With plecewise linears it 1s third order accurate and closely related

to well-known difference schemes studied by Warming et al. (1973): for example,



under the mixed norm (3.23) with y2 = %hz on a uniform mesh, the mass
matrix becomaes the identity so that the scheme is fully explicit, identical to

one of the schemes given theras.

The potential of the identity (3.17) goes further, however:to exploit it we need
to recall our objective of maintaining as near a best fit as possible to the
true solution. So suppose U" 1s the best fit to u" from Sh in either the
L2 norm or the mixed norm. Then any further information that we have about

u" or the underlying problem can be exploited by the recovery techniques
briefly described in the last section, in order to obtain a better approximation
than that given by (3.19). Thus suppose this further information - fbr?EQQEﬁie,
smoothness, monotonicity, positivity - is embodied in a recovery function a”

which iin the L

2 case satisfies

|

<" - ue> =0 Vo, e 8" . (3.25) |
| |
Then we can replace (3.19) by

U™ - U > ¢ at<a #G™, 3D = 0 vo, e 8", (3.26) |
where 5; has the same form as ¢2 in (3.18) but with a" replaced by ata").

For egample, 1f u" s smooth enough we can recover from piecewise linears

with cubic splines. Of even greater interest however is the ﬁossibiiity'of using
non-conforming elements, in particular the very simple piecewise constants.

Indeed one can show that for the linear advection equation with constant a,
quadratic spline recovery from piecewise constants yields through (3.26) precisely
the same formula as {3.19) with piecewise linears. There is 1in fact a whole
hierachy of similarly related Characteristic Galerkin methods based on splines
[c.f. results of Swartz & Wendroff {(1974)].

Piecewise constant elements are a natural choice for shock-modelling and we end

this section by 1llustrating the potential of the recovery process allied to
(3.26) with some of the results that have been obtained with these simple elements
- see (Morton, 1982c). Clearly the basic ECG scheme (3.19) is not defined when
u", (U™ and a(U") all have discontinuities at the cell boundaries, which we
take to be at xi+i' This is true even for smooth flows. However we can then
Justifiably smear the discontinuitieg in the recovery process: suppose we regard
U™ as the projection on to plecewise constants of a function which is piecewise

linear with flat sections in the centre of each cell; specifically, on a uniform

side of xi*i to join constant values 1 and Ujq ON either side. Then the

recovery formula (3.25), with piecewise constant ¢i, gives

mesh we spread the diacontinuity at xi** by a linear variation over {6k either
u

i 9 525 . 3.27
u, * 3 6‘91 U1 vi . (3.27)



For sufficiently small g and if aly ), a(ai] and a[ﬂi+1] are all

1-1
non-negative, we then find that (3.26) reduces to

he] - Ul « atca FU,) + g o0 6207 = 0 Vi, (3.28a)
te. Ul uj - (at/h)a_£CG,) vi. (3.28b)

Clearly as 6 + 0 this reduces to the familiar first order upwind scheme: for

8 > 0 it has a similar form but as (3.28a) shows it incorporates an anti-diffusive

flux, as in many modern difference schemes. In fact the recovery process in
(3.27) sharpens up the profiles broadened by the averaging process which..is

presumed to have led to Ui'

Reglons of smooth flow where it is legitimate to use such recovery technigues
are recognised by characteristics not crossing, typically that is

{ ) < a[u ). 1In the contrary cass, ;he crossing of characteristics leads to |
the presence of shocks and the breakdown of the basic formula (3.14) because ;
the mgpping from y to x 1s not unique. Even if recovery by a smooth function
were dppropriate here the exact evaluation of " followed by its projection would
not be described by (3.26): instead this gives the projection of a multi-valued
solut;on praoduced by the crossing characteristics. This can however be used for
small enough At as a good approximation to the true evolution and accurate
results are given by Morton (1982c) for breaking.QaQes using the inviscid
Burger’s equation. It is appropriate in the neighbourhood of shocks to take
the limit © + 0 4in (3.27) and (3.28) and it turns out then that precisely
the same upwind formula is obtained whether 3(51_1] < a(ai] or a(ai_1) > a{ail.
Moreover, if f(+) 1s convex with a single sonic point U at which af(u) = 0,
the intermediate case in which a(ui 1]a(u ) < 0 1s dealt with very naturally
through the recovery process: F(u ) - f(u ] is split into f(ui] - f{u)
and f(u) - f[ﬁ J. withthe first contributing to the updating of U: and the
second to that of Ui 4 The scheme 1s then identical to that of Engquist &
Osher (1980, 1981), which has the desirable property of avoiding nan-physical

shocks.

The use of the recovery process can be taken further in the modelling of shocks.

For instance, suppose that through some such critsrion as

Ea(u J - at™ ,)1at > h (3.29)

i+1

a shock 1s recognised as present in cell i. Then we can suppose that U: is
the average between two values either side of the shock and the position of the

shock can be deduced as xs " (1-n)xi_i + nxi+i where

n= aul/(a Ul «aud) . (3.30)



The way in which this simple procedure satisfies the Rankine-Hugoniot shock
conditions and greatly improves the accuracy of the results can be found in
(Morton, 1982c). Since then the method has been developed for the Euler
equations of gas dynamics, using the approximate Riemann-solver methods of

Roe (1981) to generalise the scalar methods to systems of equations. The form
of the ECG algorithm for piecewise constants 1s particularly appropriate for

this purpose, as it is for extending these techniques to two space dimensions.
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