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ABSTRACT

Numerical techiques are applied toc solve an optimal control
problem occuring in tidal power generation. The problem considered is
that of maximising the average revenue from a tidal barrage subject to
the hydrodynamic equations of flow in an estuary. The flows in an
estuary are modelled by the non-linear channel equations, and the
head-flow characteristics of the barrage are given as a set of non-
linear functions for the turbines and sluices. A set of necessary
conditions for optimality of the controls are given, and the gradient
of the revenue functional 1is derived. A numerical algorithm which
couples a gradient optimisation technique with a finite difference
solution of the flow and associated adjoint equations is described.
Two numerical examples are provided, taking data for a proposed Severn
estuary tidal power scheme. The first example shows the operation of
the algorithm to maximise total energy output over a single tide, and
the second uses the algorithm to compare the maximum energy solution
with the maximum revenue solution, taking a typical winter tariff
function over a complete spring-neap-spring cycle. It is seen that it
is possible to increase revenue by 4% over the maximum energy solution

using the tidal barrage in ebb generation mode.



1. INTRODUCTION

A recent study [(11] has shown that the use of tidal energy to
generate electrical power is economically viable. In order to evaluate
any tidal power scheme, it 1is important to know that the plant is
operating in the most officient way and several studies have been made
(11, [91, [15], using a variety of mathematical techniques and models
in order to assess the best operating strategies. One technique which
has been shown to be particularly effective is that of applying the
mathematical theory of optimal control. In previous studies [2], [3],
(41, [5], [6], [8], optimal control methods are applied to the problem
of maximising the average power or revenue functional modelling the
output of a tidal power station, subject to the satisfaction of the
equations of flow 1in a tidal estuary. The resulting optimal control
problem is then solved approximately using numerical techniques. It
has been found that this approach is both computationally feasible and
flexible in being able to treat ebb or two way schemes, non-linear
head-flow relationships, and variable estuarine geometries. Initial
studies concentrated on establishing the computational feasibility of
the approach and were centred around solving problems where the
estuarine dynamics were described by linear ordinary and partial
differential equation models. A more recent study (7], has extended
the work to problems where the estuarine dynamics are described by a
non-linear ordinary differential equation where effects such as the
drying out of sand bars can more reallistically be modelled. In
Britain, the interest in +tidal power has centred around large
estuaries such as the Severn. For such estuaries it is known that
accurate mathematical modelling of the fluid dynamics is only possible
using more sophisticated models [12], since the ordinary differential
equation model takes no account of the different phases of the tides

at different points along the estuary.



In this report we present the application of optimal control
techniques to the problem of maximising the output from a tidal power
plant where the estuarine dynamics are modelled by a set of non-linear
partial differential equations based on the one-dimensional channel
flow equations [14].

In the next section the mathematical model of a tidal power scheme
is described and the corresponding optimal control problem is
formulated. Necessary conditions for optimality are derived. In
Section 3 a numerical method for determining the optimal control
strategy is developed and a computational algorithm is presented.
Results are given in Section 4 using data approximating that for a

scheme in the Severn estuary. Conclusions are presented in Section 5.



2. THE MATHFMATICAL MODEL

2.1 The Equations of flow

The fluid dynamics in the estuary are modelled by the one-

dimensional, non-linear channel flow equations [14]
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where b(n,x) > 0, A(n,x) > 0, rin,x) > 0 are the breadth, the vertical
cross-section and the hydraulic radius of the channel, the surface of
which 1is at a level n(x,t) above a give% datum at a distance x from
the tidal barrier and at time t. The hydraulic radius r is defined to
be the ratio of the cross-section A to the wetted perimeter of the
channel and for a wide shallow estuary such as the Severn is
approximated by the formula r = A/b. The average flow velocity

through a given cross-section is u(x,t), and the constants g > 0
and n > 0 are the acceleration due to gravity and Manning's constant.

The tidal basin is taken to 1lie upstream of the tidal barrier,

located at x = 0, as shown in Figure 1. At the seaward end of the

estuary {x - 11) the tidal elevation, assumed periodic with period
T, is imposed, and at the upstream end of the basin (x = 12) zero flow
is assumed, giving boundary conditions
n(—]l,t) = f(t) , u(]z,t) =0 , (2)
where f(t) is the imposed tidal elevation assumed periodic with period
T. Across the barrier the continuity condition
0(0,t) = A(n",0")u(0",t) = A(n ,07)u(0,t) (3)
where 0(0,t) is the volumetric flow rate of water through the barrier.
The functions n, u are required to be periodic in time with period T,
such that
n{x,0) = n{x,T), ulx,0) = ul{x,T). (4)
In many cases the term uux is negligible in equations (1) and may be

dropped. If this s so then in the following work all terms inside



the braces { } should also be dropped. The barrier is assumed to
contain two types of device, namely turbines and sluices, which can
both be controlled. The discharge of water through each turbine and
sluice is denoted by q1(t)’ qz(t), respectively, and the relationships
between discharge and head-difference H{t) are described by
ql(t) = P(H(t)), qz(t) = R{H(t))
where P and R are differentiable functions with derivatives P' > 0,
R* > 0, and H(t) is defined by
H(t) = n(0".t) - n(0*.t). (5)
The total influx of fluid Q(0,t) from the estuary to the basin across
the barrier is then given by
0(0,t) = Kiai(t)P(H(t)) + Kzaz(t)R(H(t)) (6)
where the control vector a = [at,az]T gives the proportional discharge
across the turbines and sluices, respectively, and K1’K2 are positive
constants representing the maximum number of turbines and sluices
available for operation. The controls are thus bounded such that
0 ¢ ai(t). az(t) <1, (7)
We assume that, when operating, each turbine gives rise to F(H) Watts
(electricity) for a given head difference H (metres), where F is a
differentiable function. The tariff associated with electrical
production is denoted by C{t) 2 0, and thus the average total revenue

P derivable from operating the tidal power scheme is given by

T
P=1F§ K1C(t)a1(t)F(H(t)) dt. (8)

T O

2.2 The Optimal Control Problem.

The Aaptimisation nraoblem i<  +her +a determine the control

functions di(t), az(t) in order to maximise P subject to equations

(1),(2),(3),(4), and (6), and constraints (7) being satisfied.



2.3 Necessary Conditions.

Necessary conditions for the solution of the optimal control
problem are derived using the Lagrangian formulation of the problem.
This approach provides the basis for the numerical procedure described
in the next section

The Lagrangian functional L{a) associated with the optimal control

problem is defined by

T
L{a) = Sd CalF(H)+vi(A(n',O')u'-alKiP(H)-aszR(H)) +
v, (Aln,07)u’- Aln ,0 Ju™) dt +
] T
£ 1§ A=A -0 +ul-u_-uu_-gn -gn®ulu|/r*" P (n,x)) +
] 0 t x t x X
2
v(A - al{n,x)) dx dt (9)
where Q = Au, H = n(0™,t)-n(0",t), u= u(ot,t), nt= n(0s,t),
etc., A = al{n,x), and
1 A 0" 1
£ % z(x) dx 2§ z(x) dx + § &(x) dx.
1 1 0*
1 1

The functions yi(t), vz(t), v, Alx,t), and ul{x,t) are Lagrange
multipliers and we note that if n, u satisfy all the constraining
equations (1)-(4) and (6) then P(a) = KiL(a)/T . For alt) to be
optimal, it is necessary that the first variation &L(a, ©&a) of the
functional L is negative, where &L 1is defined to be linear with
respect to 6a = 3-a and such that
L(B) - Lla) = 6L{a,da) + oflp - aHZ)

for all (smooth) admissible controls B. To simpiify the notation we
denote the difference between the responses of the system (1)-(6) to
the controls (3 and a by é&ni{x,t) and 6ul(x,t), and let &a = B-a . Now
taking variations and integrating by parts, we find that the first

variation of the Lagrangian can be written in the form



T
8L = § Coa F(H) + Ca F'8H+y (60 -{a K P'+a K R']6H-8a K P-6a K R )+
O 1 1 1 0 1 1 2 2 1 1 2 2
y (b u én + A &u_ -b" &n' ut - A" suT ) dt «
2 0 0 0 0 4] 0 0 0 0 0
], T
§ 7 [-X6A -psu ] dx +
1 0
1
T 0 12
§ [-X80 -{p u 6u} - gusn] + [-A6Q0 - {u u &u} - guén) , dt o+
0 -1 0
1
1 T
§ 2 § X 8A+X 80+p Su+{p ubul+gu 6n -
-| O t X t X b4 (10)

1

ugn2(2|u|6u/r4'3-4u|u|rn6n/3r7/3)+v(6A—b6n) dx dt

+olldall,

where we have used the fact that da = b. We now use the fact that
an

6H = Gn; - 6rg. and 80 = Adu + buén, and simplify the expression

(10) by imposing the following conditions on the Lagrange multipliers:

b(kt+uk*) * 9+ 4ugn2u|u|r‘n =0
3'"7/3
R (11)
ut+{uux}+ Axx- 2ugn®lu] =0
Y‘4IJ
A + {pu} =0 at x = —11
(12a)
g =20 at x = +12
+ + +2 + . \ _ "
plo™ ,tllg - {bou0 /AO}) + yi(athP + aszR ) = Ca1 F
(12b)
rAat gL ot +2/:\.*\,\ - . ; _ -7,_.—
T U ' 000 0
Ax,0) = x(x,T)
(13)
uix,0) = pix,T)

where Y1(t) XO - xo + {uouo/A0 - uOuO/AO},

1]

Yz(t) . XO - {uouU/Ao}
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It is seen that equations (11) form a linear hyperbolic system of
partial differential equations with wave-speeds u /EK7E. Equations
(12) and (13) provide boundary and initial conditions respectively, so
that (11)-(13) form a well posed initial value problem in reverse time
P2} which we wii® call  tne ddjuint fiow probiem. wWher  cquat:onis
(1)-{6) and (11)-(13) are simultaneously satisfied then it 1is seen
that (10) simplifies to

T

§ vE(a)(t).6alt) dt, where
0

oL (a, da)

C(t)F(H)-Yl(t)KiP(H)

VE(a)(t) (14)

L1}

-Yl(t)KzR(H)

We may now write the necessary condition for optimality of the control

as
<VE(a),B - a» <O (15)

for each (smooth) admissible control a, where the inner product

< . , . > is defined by
T
<p,q> = § plt).qft) dt ,
0

and where VE(a){t) is proportional to the function space gradient of
P with respect to the controls [3] ( VP = K VE/T ). For a given

control the gradient vector VE(a)(t) may be evaluated from equation
(14) after first solving the flow problem (1)-(6) with the control a,
and then solving the adjoint flow problem (11)-(13). The inequality
(15) may then be easily tested since the controls take on values in
the closed interval [0,1] [3]). The ability to calculate the gradient
of the functional P also means that we can apply gradient
optimisation methods to the optimal control problem ([3], [10]. In
order to apply gradient techniques we therefore require to solve a

pair of hyperbolic initial value problems, and this may be done



approximately wusing numerical integration techniques. The rumerical
procedure described in the next section uses a gradient technique tc

generate a sequence of approximations to the optimal control problem
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3. THE NUMERICAL METHOD

The computational method which we use to solve the optimal control
problem consists of a constrained optimisation technique for
jteratively determining the optimal control function, together with a
numerical procedure for solvina the estuarine flow problem and the
adjoint flow problem with a given control.

3.1 Conditional Gradient Method.

Many optimisation techniques are described in the literature [10].
We describe here a conditional gradient method with a step size
selection procedure based on finding an approximation to the
coefficients 1in a Taylor expansion of the functional P, up to second
order terms. This method generates a sequence of piecewise continuous
controls do*(t), k = 1,2,... approximating the optimal control a(t).
Since the set of admissible controls U is convex, there exists a
maximal displacement 6 in the direction of the gradient VE{a*) such

that o + 8a 1lies in U. The conditional gradient method generates

the controls such that R o eéak where 06 e (0,1], and such
that either P(a**') > P(d*) or o**' satisfies the necessary
conditions (15). In practice the iteration is terminated when the

measure M(cd®) is less than a given positive tolerance, where M{a) is
given by

M{a) = max <VE(a),B - a> , (16)
BelU

and o is then accepted as a good solution to the optimal control
problem. The solutions of the flow problem (1)-{(6), and adjoint
problem (11)-{(13) are approximated using an explicit integration
method based on the Leap-Frog scheme [13], the flow problem being
integrated forward in time and the adjoint problem being integrated
backwards in time. In order to find the step length 6 at each step of
the iterative method we consider an approximation of the functional L

by a Taylor series about the current control o



L(a"

+ 8(B°-a")) = Lia") + 0+ 6°D /2 + 0(6”UB-al’) (17)
where D1 and D2 are the first and second directional derivatives of L
in the direction of B’— a respectively. Here the control 3 is taken

using the formula

D = <VE(aA).d “a s - max<VE(a ) .@ -d > , (18)
1 BGU

and then © 1is taken so as to maximise the quadratic expression

Lia®) + 8D + 1/2 6°D_
subject to the constraint that 6 e (0,1], and hence that the new
control o**'= o + 65a* is admissible whenever a is. The second

derivative D2 is approximated using

D, ~ <VE(d" + n(p*-a"),B* - o »-D (19)

h
for small h.

The numerical optimisation algorithm is then obtained by replacing
all integrations in the following algorithm by discrete

approximations.
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Algorithm
STEP 0 : Choose o® e U (a®(t) £0 )

Choose 6 € (0,1]

P :=0
k :=0

k
a = a

STEP 1: Solve the flow problem (1)-(6) and evaluate P given by (8).

STEP 2: Solve the adjoint problem (11)-(13).

STEP 3: Evaluate VE(a)(t) given by (14).

STEP 4: Evaluate D , find g* given in (18) and use (19) to
approximate 02

STEP 5: If 02 > 0 then GO TO STEP 7

STEP 6: 6 = -Di/D2 , if > 1 then 8 = 1.

STEP 7: If D1 < tol then STOP.

STEP 8: a := o+ 0(f* -d° )
P := P(d¥).
STEP 9: k := k+1
k
a :=a
GO TO STEP 1.

Details of the numerical integration schemes are given 1in the

Appendix.



4. RESULTS

4.1 Half day cycles.

Numerical results are described for 3 problem which approximates a
Severn estuary tidal scheme Jlocated at the position of the 1981
preferred scheme [11]. For this problem we take a repeating tide of
period 12.4 hours. The estuarine geometry is numerically approximated
by taking a linear interpolation between lTow water and high water
breadths (Figures 2,3) to give b(n,x). The turbine and sluice
characteristics are modelled by (ebb-scheme)

390(1+tanh(10(y-2.27)) y <0

Ply) (turbine flow function)

I

0 y >0

Riy) 520 v(2gy) sgniy) {sluice flow function)

(Figure 4). The power output characteristics F(y) for each turbine are
given by a piecewise cubic polynomial approximation (Figure 5). The

rest of the data is as follows :

T = 44714 s (tidal period)
C(t) =1 {unit tariff)
flt) = F0 cos(2mt/T) + 0.15 (tidal elevation at seaward boundary)

where F0 is the tidal amplitude in metres. It is noted that P,R, and
F are not differentiable at y = 0. From a mathematical point of view
we can always replace these functions by smooth approximations near
the origin. This is in fact what is done in practice.

Table 1 shows the result of applying the numerical a]gor}thm
described in section 3 to this test problem. The initial control is
taken to be the constant control vector (1.00,0.1)T. We see that the
dverage power output from the tidal power model rises rapidly as ctne

iteration procedes. Figure 6 shows the main flow parameters for the

best computed control strategy (iteration 8).
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4.2 Half lunar cycles.

The second numerical example we give is a Severn estuary model,
where we seek to maximise a revenue functional over a 14 day spring-
neap-spring cycle. We take turbine and sluice data as given in §4.1
and consider the tidal power plant to be working in ebb-generation
mode. The tidal elevation f(t) is given by

f(t) = {2.25 cos®(mt/T) + 2.00} cos(54nt/T)
where T is the half lunar period. We take two tariff functions C(t).

The first tariff is based ‘on winter rate electricity prices as follows

0030 - 0730 1.37 p/kW hr
Weekdays 0730 - 2000 6.05 p/kW hr

2000 - 0030 2.43 p/kW hr
Weekends 2.43 p/kW hr |

where it is assumed that the first high spring tide occurs at 7 a.m.
on a Sunday. The second tariff function C{t) = 1, so that we are
merely seeking to maximise average power rather than revenue. Tables
2.3 show the results of the numerical iteration for the winter-rate
and unit tariff respectively and Figures (7a,7b), (8a,8b) show the
main flow parameters for the winter-rate and unit tariffs
respectively. As a comparison, Table 4 gives the average power output
in GW, and the total revenue in M£ for the best computed schemes with
C(t) = 1 and the winter tariff. As expected an increase in revenue
over the maximum output scheme is achieved by a reduction in the
average power, although this is only of the order of 4%. It 1is also
seen that the maximal revenue scheme produces an extra 4% profit over

the maximum output scheme.



5. CONCLUSIONS

In this report we examine a non-linear channel flow model suitable
for the accurate description of a tidal power scheme in a large
estuary such as the Severn. We describe an optimal control technigue
for determining the maximum revenue derivable from the model. A
numerical optimisation proced ure which 1is an extension of methods
previously developed 1is presented, and, for an example based on data
derived from the Severn estuary, is shown to be highly efficient.

We conclude that the application of optimal control techniques to
the problem of optimising tidal power scheme output is feasible even
in the case where the mathematical model is highly non-linear. It is
also concluded that, using an ebb generation scheme, it is possible to
re-schedule power output to increase revenue over a maximum energy

output policy.
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APPENDIX

NUMERICAL SOLUTION OF FLOW AND ADJOINT EQUATIONS

The numerical solution of the periodic initial value problem
(1)-(6) 1is obtained by  using a Leap-Frog approximation to the
differential equations, - followed by repeated numerical integration
over the time interval [0,T] until the initial values rﬁ,uj. and final
values rq.u: where At = T/M, agree to within some small tolerance.
The difference approximation is given by

rr+1_rr-1= _ V[on 0n ]/bn'

3 3 J+1 Ty-1700)
( n = Anun ,
OJ J 3 )
n+1 n-1 n-1 n n n n n n
u = [ut/dT T-vi{u -u u + - Y)/d
3 [ 3 3 ({ j+1 _1'1} J g(nJ"'l nj-i ) 3

followed by a post processing step

n n+1 n n-1
= + 2 + 4
n_1 (nj nJ nJ )/

where v = Ax/At d:=1+(gn2|ug|At)/(r;)4’3

. The numerical boundary
conditions are based on the problem boundary conditions plus an
implicit, stable boundary condition at the barrier and two.extra
boundary conditions derived using considerations of symmetry. These

are given by :

rg = f(t) (imposed tidal curve)
o =0 (zero flow at upstream end)
n_ gt s
Oucs =0y (symmetry condition)
ft) - o' = n -f(t) (symmetry condition)

n - n+1 n-1_ n+1_ n—-1

H (rh_1+rk_1 Met r'm+1)/2'
The 1last condition leads to a pair of non-linear algebraic equations
to be solved at each timestep. It is convenient to use a damped
Newton method for the numerical solution of these algebraic equations

since both P' and R' are available. The finite difference mesh is

shown in the figure folilowing .

j=0 j=1 J=m J=N

X = -1 | ] 1 ] 1 I 1 1 1 |
1 .
+«AxX— barrier
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The adjoint problem (11)-{13) 1is approximated in the reverse time
direction by an analogous scheme, where A{x,t),u(x,t) are the adjoint
elevation and flow velocity respectively. Both the flow problem
(1)-(6) and the adjoint problem (11)-(13) are solved on the same

rnite airrerence mesn.



Non-1linear P.D.E problem

Number of space intervals,N1l..-= 20

Number of space intervals,N2.. .= 15

Number of time intervals .M. = 250

Maximum number of iterations..-= 10

Length of outer estuary = 70000 Metres
Length of estuary basin = 50000. Metres
Mannings n..... = .0250

Tidal period T.. ....= 44714, Seconds
Number of turbines available. = 140.

Number of sluices available.. .= 187,

Tidal amplitude Fo............ = 4.25 Metres

*** Ebb-generation scheme ***

For U=0, stability check as follows..

Minimum Courant numbers= .4642

Maximum Courant number= .9038

At 7.0m o.d.,Maximum Courant number= .9981
Do o mi s se v it e is the iteration number
THETA.............. ... .. is the gradient step-length
o is the average power (GW)
A S is the weighted average power (GW)
MAX(DE) 1is an upper bound on the 1st variation of E
DEDK1....... is the rate of change of E with respect

to the number of turbines (MW/Turbine).

DEDK2....... is the rate of change of £ with respect

to the number of sluices (MW/Sluice).

1.000000 276021 .276021 3.695330 1.212040
1.000000 2.433201 2.433201 .043648 8.938183
.087014 2.437560 2.437560 .026599 9.010824
.290393 2.444120 2.444120 .009818 9.072761

BW N

THETA P (GW) E MAX(DE) DEDK1 (MW)

DEDK2 (MW)

.471796
. 715937
.690572
.692672

Table 1.



Non-1linear P.D.E problem

Number of space intervals,Nl..-= 20

Number of space intervals,N2..-= 15

Number of time intervals,M... = 8000

Maximum number of iterations.. = 20

Lanath ~¢F -~ +tay e R e Eaalalalal Motrpa
Length of estuary basin... ...=  50000. Metres
Mannings n.................... = .0250
Tidal period T....... ......... = 1209600. Seconds
Number of turbines avaitable..= 140.

Number of sluices available...= 187.

*** Ebb-generation scheme **x*

For U=0, stability check as follows..

Minimum Courant numbers= .3924
Maximum Courant numbers= .7641
At 7.0m o.d.,Maximum Courant number= .8438
| S is the iteration number
THETA. ... .. is the gradient step-length
P o is the average power (GW)
B is the weighted average power (10 £/hour)
MAX(DE) 1is an upper bound on the 1st variation of E
DEDK1....... is the rate of change of E with respect
to the number of turbines (£/hour/Turbine)
DEDK2....... is the rate of change of E with respect
to the number of sluices (£/hour/sluice)
I THETA P (GW) E MAX (DE) DEDK1 DEDK2
1 1.000000 .213729 .758387 6.825834 4.307169 .755756
2 1.000000 1.206439 4.402184 3.360253 2.801880 2.499796
3 .124131 1.273718 4.679106 1.274518 6.957050 2.445662
4 .206793 1.319601 4.880753 .542338 11.150896 2.122245
5 .678052 1.344498 5.069303 .356483 14.959934 1.514917
6 .498349 1.365714 5,142847 .203838 14.506371 1.508367
7 1.000000 1.334106 5.137614 .500521 15.615578 1.369551
8 .253066 1.361284 5.208131 .197642 16.259735 1.398727
9 .339230 1.370665 5.234169 .086228 15.392380 1.438005
10 .221709 1.374507 5.246522 .055172 16.067478 1.415052
11 .267066 1.376418 ©5.251740 .045368 15.524546 1.434107

Table 2.




Non-1linear P.D.E problem

<

Number of space intervals ,N1.. = 20
Number of space intervals,N2. .= 15
Number of time intervals,M.. = 8000
Maximum number of iterations..s= 20

70000 . Metres
50000. Metres

Length of outer estuary. ..
Length of estuary basin

Mannings n............. RN .0250
Tidal period T..... .. ... ..... . =1209600. Seconds
Number of turbines available..:= 140 .
Number of sluices available...= 187.
**% Fbb-generation scheme ***
For U=0, stability check as follows..
Minimum Courant number= . 3924
Maximum Courant number= . 7641
At 7.0m o.d. ,Maximum Courant number= .8438
T . s omd oo mo e G kv B0 VED B . o+ o is the iteration number
THET Asrae s 5w araos 2o i wit 3 is the gradient step-length
T T Tl Y T is the average power (GW)
E. ... e i as s is the weighted average power (104 £/hour)
MAX(DE) is an upper bound on the 1lst variation of E
DEDK1....... is the rate of change of E with respect
to the number of turbines (£/hour/Turbine)
DEDK2....... is the rate of change of E with respect
to the number of sluices (£/hour/sluice)
I THETA P (GW) E MAX(DE) DEDK1 DEDK2
1 1.000000 .213729 .213729 1.916060 1.215065 .210469
2 1.000000 1.206401 1.206401 .934885 .468807 .712733
3 .092902 1.266634 1.266634 .362592 1.502947 .674002
4 .214890 1.328319 1.328319 .144351 2.798630 .584197
5 .366676 1.367231 1.367231 .065132 3.684248 .440182
6 1.000000 1.374870 1.374870 .122586 3.670606 .337606
7 .358198 1.398210 1.398210 .042006 4.134104 .342669
8 .345718 1.406879 1.406879 .020512 4.165015 .339810
9 .447278 1.409972 1.409972 .028797 3.955593 .352600
10 .191736 1.414122 1.414122 .015900 4.129676 .347591
11 .275419 1.417030 1.417030 .013047 4.185672 .344431

Tahls



Spring-Neap-Spring cycle

Average power
(GW)

Total revenue over a
14 day period {(M£)

Clt)=1

1.42

17.0

~

i ¢ baseu

winter tariff.

Table 4.
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Plan of model estuary
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